

Pressure Testing of SPBP Welded Repair Design

Final Report

WHEN TECHNOLOGY WORKS, TREMENDOUS THINGS ARE POSSIBLE.

Prepared for Amplify Energy Corp.

100335-RP02-Rev0-111521

November 2021

Pressure Testing of SPBP Welded Repair Design

Final Report

Prepared for Amplify Energy Corp.

Houston, TX

November 2021

Prepared by: REDACTED PII Reviewed by:

Reviewed by:

REDACTED PII

REDACTED PII

REDACTED PII REDACTED PII REDACTED PII REDACTED PII REDACTED PII REDACTED PII

100335-RP02-Rev0-111521

Rev	Date	Description	Prepared	Checked	Reviewed
0	11.15.2021	Issued for Use	REDACT	REDACT	REDACT

Texas Registered Engineering Firm F-19081

www.advintegrity.com

Monday, November 15, 2021

100335-RP02-Rev0-111521

REDACTED PII

Amplify Energy Corp. 500 Dallas St, Suite 1700 | Houston, TX 77002 Phone: REDACTED PII | E-mail: REDACTED PII

Cory,

Enclosed is our report documenting the full-scale testing of a fabricated temporary repair intended to enclose a leaking defect identified on Amplify's San Pedro Bay Pipeline (SPBP). The temporary repair successfully contained pressure during an extended pressure hold of 17.9 hours at 1,440 psig. The full-scale test results discussed in this report demonstrate the ability of the temporary repair to contain pressure and mitigate product leakage at 1,440 psig.

Thank you for the opportunity to complete this work and please do not hesitate to contact us with any questions.

Regards,

REDACTED PII PE | Senior Associate

ADV Integrity, Inc. 28246 FM 2920 | Waller, TX 77484 Office: (REDACTED PII | E-mail: REDACTED PII Texas Registered Engineering Firm F-190

Reviewed by: REDACTED PII, PE | Chief Engineer – Pipeline Integrity

CONTENTS

Introduction and Background	4
Repair Design and Sample Fabrication	5
3D Scan of Fabricated Test Vessel	6
Full-Scale Testing	8
Post-Test 3D Scan	11
Summary	14
APPENDIX A: Full-Scale Test Repair Fabrication	
APPENDIX B: NDE of Test Spool	19
APPENDIX C: Pressure Transducer Calibration	
	Repair Design and Sample Fabrication

LIST OF FIGURES

Figure 2-1: Photograph of test vessel with installed crack and drill stops	5
Figure 3-1: 3D rendering of the test vessel received by ADV.	6
Figure 3-2: 3D rendering showing relationship between temporary repair and geometric deformation c	n
the received pipe sample	7
Figure 4-1: Photograph of test vessel enclosed in ADV's test chamber	8
Figure 4-2: Time vs. Pressure plot during pressure cycling	9
Figure 4-3: Time vs. Pressure plot during 17.9 hour pressure hold	9
Figure 4-4: Photograph showing resulting plastic deformation of the temporary repair	10
Figure 5-1: 3D rendering of sample after testing	11
Figure 5-2: 3D rendering of temporary repair showing change in shape (white arrow)	12
Figure 5-3: 3D rendering showing virtual cross sections through the temporary repair assembly	12
Figure 5-4: Plot comparing outer diameter of temporary repair, pre- and post-test.	13

1.0 INTRODUCTION AND BACKGROUND

ADV Integrity, Inc. (ADV) was contracted by Amplify Energy Corp. (Amplify) to perform a full-scale pressure test of a temporary repair designed to contain a leaking defect identified on Amplify's San Pedro Bay Pipeline (SPBP).

This report documents ADV's full-scale test set-up, and the results of the testing designed to demonstrate the pressure containing capacity of the temporary pipeline repair. Several parties were involved in the completion of the subject test program:

- Practical Engineering Solutions, LLC (PES) designed the welded repair option, including numerical modeling considering the as-inspected shape of the SPBP.
- □ Crosby Construction Services (Crosby) fabricated the sample including replicating the geometric deformation and welding the temporary repair to the representative sample.
- □ ADV performed pressure testing of the provided sample containing the geometric deformation and temporary welded repair.

2.0 REPAIR DESIGN AND SAMPLE FABRICATION

The construction drawings for the temporary repair considered in the full-scale testing program are included in Appendix A. ADV understands that a comparable repair configuration will be fabricated for use on the actual SPBP leaking defect. The temporary repair consisted of several circumferential welds connecting end caps to a short nominal 10-inch diameter pipe section. All welds passed NDE (radiographic and magnetic particle testing) as documented in in Appendix B. The temporary repair also included two, 2-inch threadolets and bull plugs that could be used to provide venting during underwater welding. The 10-inch vessel was then cut longitudinally to form a standoff temporary repair and welded over a simulated through-wall defect fabricated onto the deformed pipe using a ¾ inch single sided fillet weld, per the drawings included in Appendix A. In addition to the temporary repair, holes will be drilled at the termination of each end of the crack (i.e., drill stops), as shown in Figure 2-1 on the test vessel. These drill stops are installed to mitigate crack propagation.

The fillet weld between the 10-inch repair and SPBP carrier pipe will be completed by underwater welders per a Phoenix WPS using an Oxylance Sureweld #1 SMAW consumable that meets AWS A5.1, E6013. ADV understands that the Crosby fillet weld on the fabricated sample for testing was completed using E6010 SMAW consumables and capped with a E71T-21M FCAW consumable for aesthetic purposes. Therefore, the final cap pass of the fabricated test sample was completed using a higher strength consumable when compared to the planned actual repair; however, the majority of the weld in the fabricated test sample was completed using E6010 consumables of the same nominal tensile strength. This difference in strength for the weld cap is not expected to have a material impact on the performance of the fabricated sample. The Phoenix WPS describes the parameters and conditions for the welded temporary repair tested, including material property and attribute requirements. Based on the MTRs provided to ADV, the SPBP carrier pipe and the material used for the repair fabrication fall within the Phoenix WPS limitations.

Figure 2-1: Photograph of test vessel with installed crack and drill stops.

3.0 3D SCAN OF FABRICATED TEST VESSEL

Upon receipt of the test vessel fabricated by Crosby, ADV scanned the vessel using a Creaform HandyScan 307 with reflective positioning targets applied to the outside surface. 3D renderings of the test vessel are shown in Figure 3-1 and Figure 3-2. This data was used to understand the physical performance of the temporary repair after pressure testing.

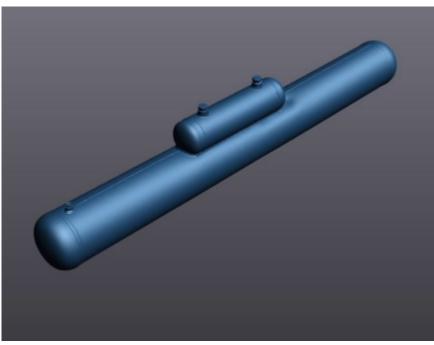


Figure 3-1: 3D rendering of the test vessel received by ADV.

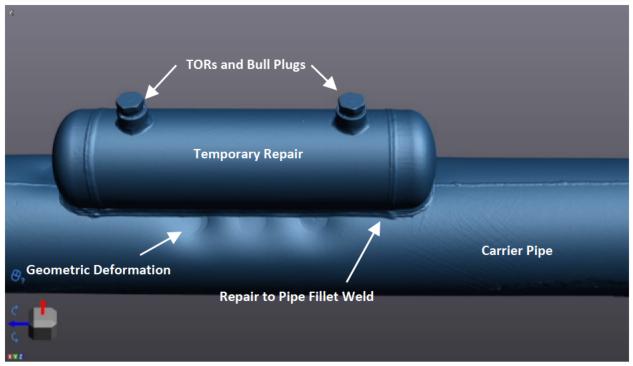


Figure 3-2: 3D rendering showing relationship between temporary repair and geometric deformation on the received pipe sample.

4.0 FULL-SCALE TESTING

ADV's pressure test plan included several full-scale testing steps, including pressure cycling, an extended pressure hold, and short duration holds at a higher pressure. The pressure was monitored via a pressure transducer fixed to the test vessel's outlet. The calibration certificate is attached in Appendix C. The sample was enclosed in ADV's test chamber, shown in Figure 4-1.

The as-received pipe sample survived 10 pressure cycles between 250 psig and 500 psig. A pressure increase was attempted to bring the pressure up to 1,440 psig for an extended hold. However, a leak occurred along the threads within one of the TOR/Bull Plugs. Therefore, ADV seal welded the plugs and restarted the test. This finding was helpful in optimizing the final design of the temporary repair. The final design will not include a similar TOR/Bull Plug, thereby, minimizing the likelihood of a similar leak path.

After seal welding the TOR/Bull plugs, the cyclic test program was restarted. Cyclic testing was repeated as shown in Figure 4-2, and then the pressure was increased to 1,440 psig. This pressure was held overnight resulting in a 17.9 hour hold as shown in Figure 4-3. Upon completion of this hold, ADV increased the pressure to find the maximum pressure containing capacity of the temporary repair. At 1,619 psig the pressure within the sample started to decrease. Upon inspection, it was discovered that the temporary repair had begun to experience plastic deformation without an identified leak as shown in Figure 4-4 and further quantified in Section 5.0, Post-Test 3D Scan. Therefore, ADV stopped the testing program. The most significant conclusion from this test was that the test vessel successfully contained pressure for 17.9 hours at 1,440 psig providing confidence in the welded temporary repair's ability to contain pressure and mitigate product leakage.

Figure 4-1: Photograph of test vessel enclosed in ADV's test chamber.

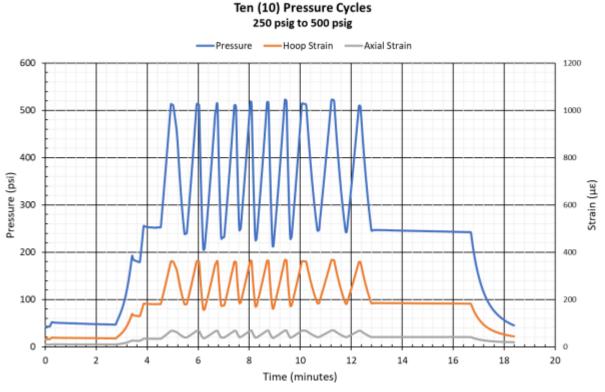


Figure 4-2: Time vs. Pressure plot during pressure cycling.

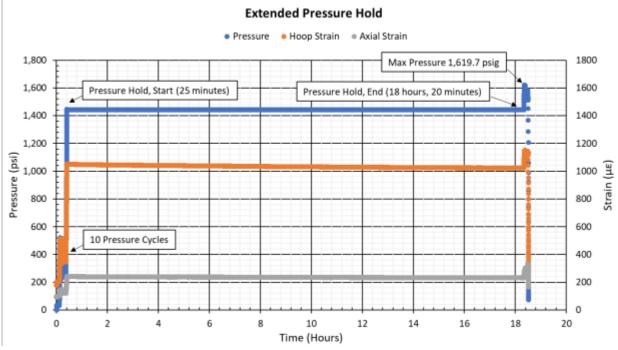


Figure 4-3: Time vs. Pressure plot during 17.9 hour pressure hold.

Figure 4-4: Photograph showing resulting plastic deformation of the temporary repair.

5.0 POST-TEST 3D SCAN

After completion of the full-scale test, ADV scanned the vessel using a Creaform HandyScan 307 with reflective positioning targets applied to the outside surface. A 3D rendering of the test vessel is shown in Figure 5-1. The 3D scan captured the change in the temporary repair diameter as shown in Figure 5-2. To better quantify the change in shape, ADV prepared a virtual cross section through the pipe/repair assembly, shown as green lines in Figure 5-3. The pre- and post-test diameter of the temporary repair at nine (9) locations were tabulated and presented in Figure 5-4. A maximum change in diameter of 0.96 inch between the pre- and post-test measurements was calculated.

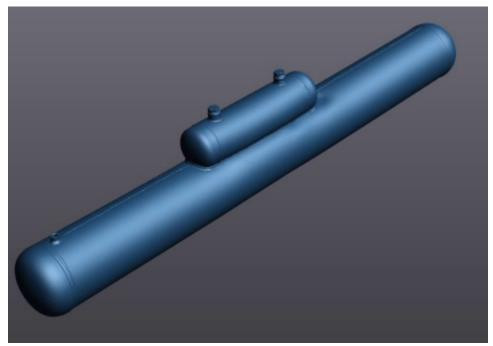


Figure 5-1: 3D rendering of sample after testing.

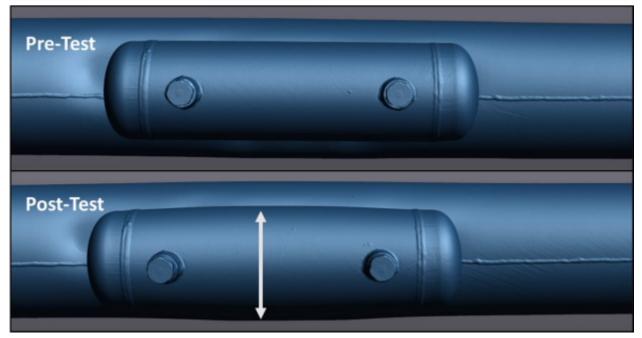


Figure 5-2: 3D rendering of temporary repair showing change in shape (white arrow).

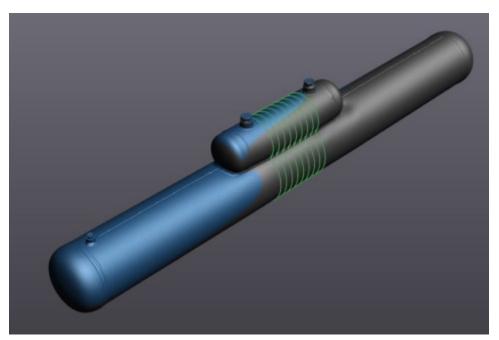


Figure 5-3: 3D rendering showing virtual cross sections through the temporary repair assembly.

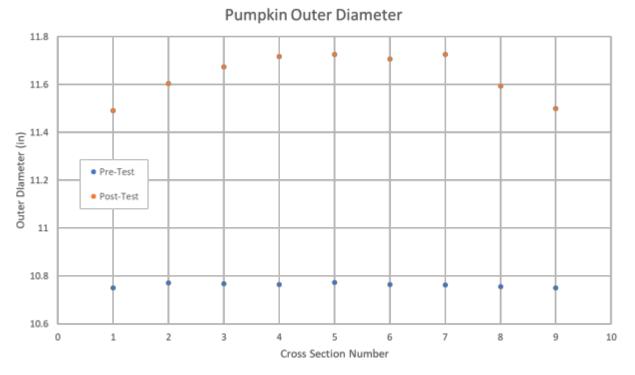
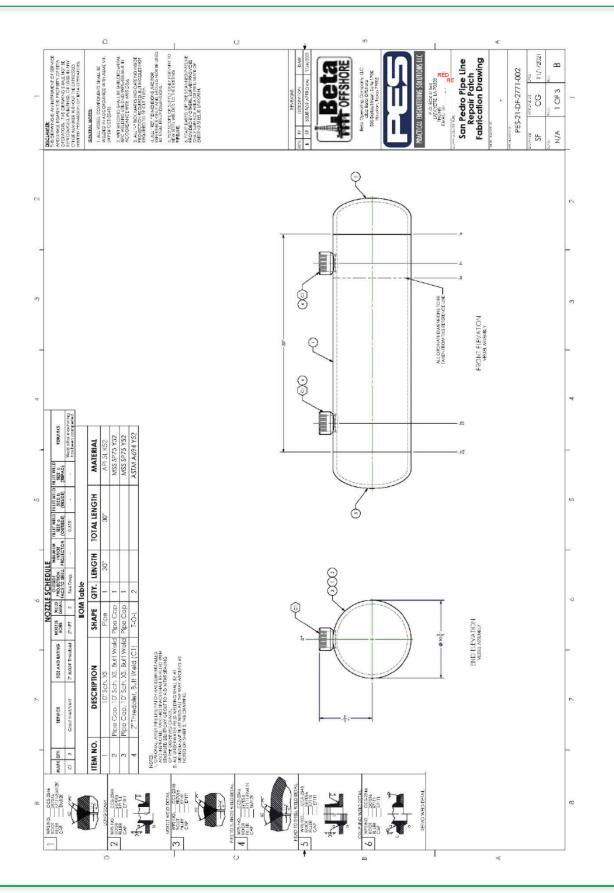
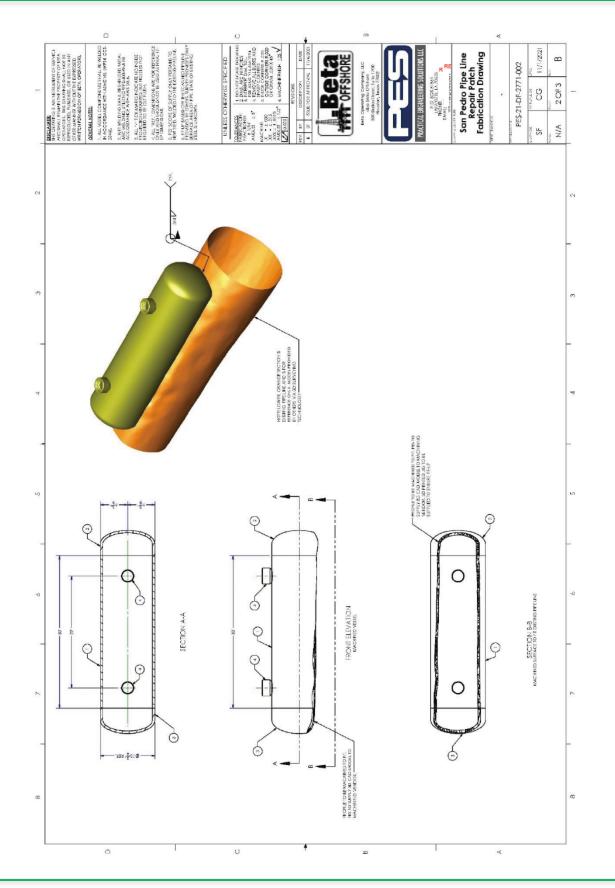


Figure 5-4: Plot comparing outer diameter of temporary repair, pre- and post-test.

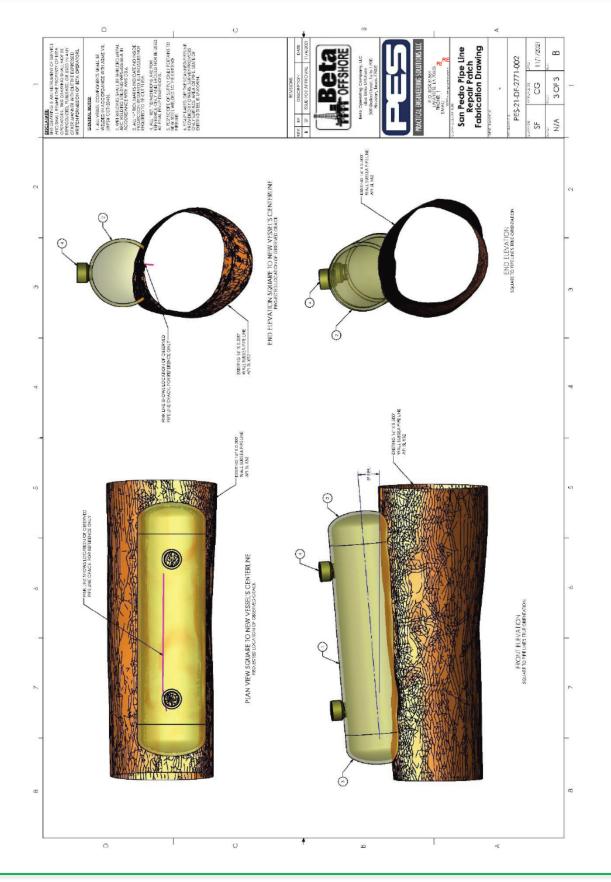
6.0 SUMMARY


The temporary repair as received by ADV passed simulated pressure cycles and an extended pressure hold of 17.9 hours at 1,440 psig. This simulation's most significant conclusion was that the tested vessel successfully contained pressure for 17.9 hours at 1,440 psig providing confidence in the welded temporary repair's ability to contain pressure and mitigate product leakage.

The results discussed in this report reflect the manufacturing processes of the temporary repair. If the processes used to construct and install the actual SPBP repair are followed, then it is expected the actual temporary repair will survive 1,440 psig. Critical parameters include the shape of the repair vessel, actual strength of materials used for the temporary repair, actual strength of weld material, quality of deposited weld metal, temporary repairs surface matching to the pipeline's geometric deformation, and WPS using during welding.



APPENDIX A: FULL-SCALE TEST REPAIR FABRICATION

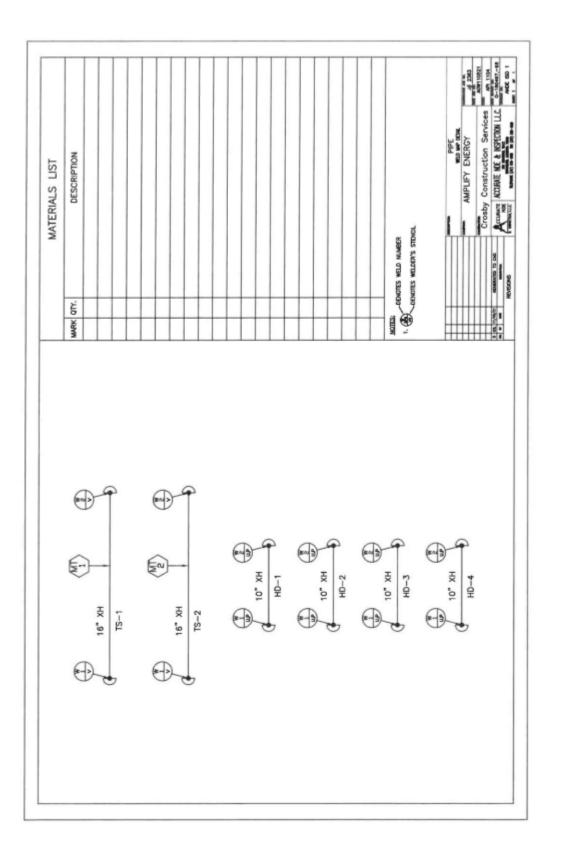


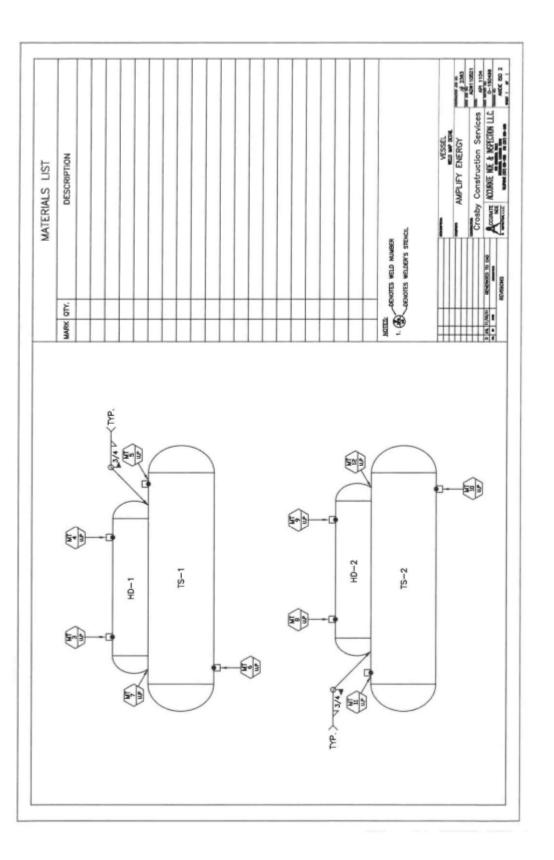
APPENDIX B: NDE OF TEST SPOOL

NDE Results Section 4

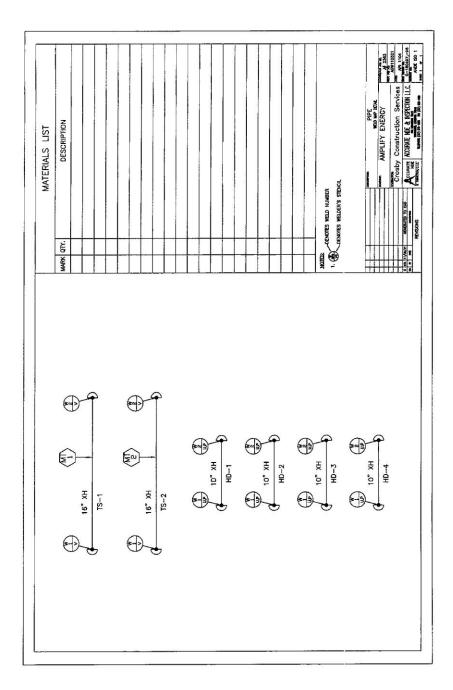
209 Inc	ling Addr dustrial Tr ard, LA 7	ace					URA N	IDE		Rev.	No.		EDACTED P Fax REDACTED F
Custom	er		Crosby	Cons	truction Services,	Inc.	Falori	cator		Crosby	Co	nstruction Servi	ces, Inc.
Ordere	d By				REDACTED PII		Locati	dot to no				Unknown	
Job No		236	3		P.O.		AFE					Other	AGW110521
Compa	TV				Amplify			(Grading	Criteria		API 1	104
	er Repres	entative					Techn	ician	RED	ACTED I	PII	Level II	
Date	or respired	0110070		5 No	ov-2021		Assis					REDACTED PII	
				0-140	V-2021	er							
Him Del	ivered to	ANDE N	-		a Bary	Client	Assis	tant					
X-Ray			(Samm	a Ray 🗸								
3.5 x 10	0 0	4	.5 x 10		0 4	.5 x 17 40	0	7 x 17		0		14 x	17 0
No. of V	Welds Che	ecked	12	2	Hours Worked	6	Trav	el Time		N/C		Milea	ge N/C
WELD	PIPE	SCH.	тнк.	1		REMARKS, LINE NUMBER, WELDER'S STENCE, ETC.	WELD NO.	PIPE	SCH.	тнк.	RE		REMARKS, LINE NUM WELDER'S STENCE.
W1	UNLE			x	REJECT W/S V	TS-1	W1				×	REJECT WS U.P	HD-2
1-	16.000	ХН	0.500	1			1-	10.000	хн	0.500	1		
2-	16.000	XH		1			2-	10.000	XH	0.500	1		
3-	16.000	XH		~			3-	10.000	XH	0.500	\checkmark		
4-	16.000	XH	0.500	\checkmark			W2					W/S U,P	HD-2
W2					W/S V	TS-1	1-	10.000	XH	0.500	\checkmark		
1-	16.000	XH	0.500	\checkmark			2-	10.000	XH	0.500	\checkmark		
2-	16.000	XH	0.500	~			3-	10.000	XH	0.500	\checkmark		
3-	16.000	XH	0.500	1			W1					WVS U,P	HD-3
4-	16.000	XH	0.500	~			1-	10.000	XH	0.500	1		
W1				-	W/B V	TS-2	2-	10.000	XH	0.500	V		
1-	16.000	XH	0.500	V			3-	10.000	XH	0.500	V		
2-	16.000	XH	0.500	~			W2				1	W/S U/P	HD-3
3-	16.000	XH	0.500	V			1-	10.000	XH	0.500	~		-
4-	16.000	XH	0.500	~	W/S V	TS-2	2-	10.000	XH	0.500	1		
W2	40.000	VII	0.500	~	AND A	10-2	3- W1	10.000	XH	0.500	~	WSUP	HD-4
1-	16.000	XH	0.500	V			1-	10.000	VH	0.600	1	110 07	
2- 3-	16.000	XH	0.500	V			2-	10.000	XH	0.500	V		
4-	16.000	XH	0.500	~			3-	10.000	XH	0.500	V		
W1	10.000	7411	0.500		W/S U.P	HD-1	W2	10.000		0.000	-	W/S U/P	HD-4
1-	10.000	XH	0.500	\checkmark			1-	10.000	XH	0.500	~		
2-	10.000	XH	0.500				2-	10.000	XH	0.500			
3-	10.000	XH	0.500				3-	10.000	XH	0.500			
W2					W/S U,P	HD-1							
1-	10.000	XH	0.500	~									TOTAL INSPECT
2-	10.000	XH	0.500										471.00 *
3-	10.000	XH	0.500	~								ANDE PROC: ACC-RT- GEN, REV.4	03-

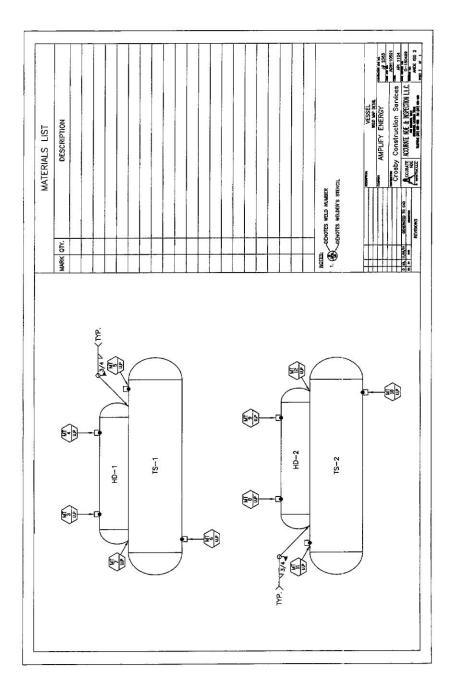
SJL TECHNIQUE SHI Mailing Address: 209 Industrial Trace Broussard, LA 70518			IDE	No. Rev. No.	0 - 1804 0	Tele REDA	of 1 CTED PII Fax ACTED PII
Customer Crosby Cons	truction Services, Inc	a. Fabr	icator	Crosby Cor	nstruction S	ervices, Ir	nc.
Company	Amplify	Locat	ion of Job		Unknow	n	
Job No 2363	P.O.				Other		/110521
Serial #				ing Criteria		PI 1104	./
Technique 2 - DWE/SWV So	1					lr 192	v
Seam Examined: Circumference	ial 🗸	Longitudinal		Plate		Pipe	V
Diameter 10.000 - 10.750	(Actual) Sch.			00 Mi	aterial Type		C/S
Penetrameter Information: Source		Film Side		Penetramete	r Size	ASTN	11B
Shim Thickness N/A, no shims	used M	arkers: Source Side	2		Film Side		~
Film Type: FUJI 100	Lead Scree	ens: Front 0.010"	Back	0.010" Obj	ect to Film D	istance	0.625
Source to Film Distance 11.2	50 Source t	o Object Distance	10.625	Geo	metric Unsha	rpness	0.0073
Source Strength: KV N/A	MA N/A	Curies	5 121	Exp	osure Time		19 secs.
Total Number Film Used	3		Max. Allowat	ole Weld Reinford	cement	0	.125
Film Processing: Automat	ic 🗸		Manual				
Developer Brand FU		Temperature	82	٩F	Time	3.5	minutes
Stop Bath Branci N		Temperature					N/A
Fixer Brand FU.		Temperature	82	۴F	Time		minutes
Rinse Temperature 72			Wetting Agent		°F	Time	N/A
1 - SWE/SWV		2 - DWE/SWV					
3 - DWE/DWV		4 - DWE/DWV		FLAST	AB FIAST	18	2
3 - DWDDWV							
	C			KETCH OF FIL CATION OF PE REFEREN		TERS, AN	
Technician REDACTED PII Lev			n Interneted A	(mund D.	RED	ACTED	PII
DEF		Fil	m Interpreted/				
Assistant REL			Date		5-Nov-2021		


SJL Mailing Address: 209 Industrial Trace Broussard, LA 70518	UE SHEET	\neg	URATE NDE TION, L.L.C.		No. <u>0 - 180</u> No. <u>0</u>	Tele REDA	of 1 phone CTED PII Fax CTED PII
Customer C	rosby Construction Se			Crosb	y Construction S	Services, In	1C.
Company							
					Other	AGW	110521
Serial #							
Technique 2 - DWE/	SWV Source Size	0.124	Source Type	2: Co 60		lr 192	\checkmark
Seam Examined:		Longitudinal				Pipe	\checkmark
	- 16.000 (Actual)						c/s
Penetrameter Information:		Film Si	de 🗸		ameter Size		1B
Shim Thickness N/A					Film Side		~
Film Type:				Back 0.010*	Object to Elm (listance	0.625
Source to Film Distance							
Source Strength: KV	N/A MA						
Total Number Film Used		4			sinforcement	0.	125
Film Processing:		v		anual			
Developer Brand	FUJI		erature		Time	3.5 n	ninutes
Stop Bath Brand	N/A	Tempe	trature 1	N/A °F	Time	1	A/A
Fixer Brand	FUJI	Tempe	rature				ninutes
Rinse Temperature	72 °F	Time 3 minutes		gent N//	A °F	Time	N/A
1 - SWE/	SWV	2 - DWE/	SWV				
3 - DWEA		4 - DWEA		F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2
3 - DWE/		4 - DWD/	()
0.5		65		LOCATION C	F FILM SHOWI F PENETRAME RENCE MARKI	TERS, AN	
Technician REDACTE	D PII Level II		Film interp	reted/Viewed By	RE	DACTED PI	I
Assistant	REDACTED	PII	Date		5-Nov-202	1	


Mailing Add 209 Industrial 1 Broussard, LA	frace			& INSPECTION, L.L.C.			REDA	Fax ACTED PI
Customer	Crosby Cor	REDACT	Services, Inc.	Fabricator	Crosby Cor	nstruction S	ervices, In	nc.
Ordered By		REDACT		Location of Job		Unknow	m	
ob No	2363	P.O.		AFE		Other	AGV	/110521
Company		,	Amplify	Grac	iing Criteria	,	API 1104	
ustomer Repre	sentative			Technician	REDACTED PII	Level II		
ate	5-N	lov-2021		Assistant	F	REDACTED F	PII	
Nagnetic Particle	×	Dye	Penetrant	Consumables	1 Car	of paint &	1 Can of	7HF
lo. of Welds Ch	necked 2	Hou	rs Worked 1	Travel Time	N/C		Wileage	N/C
WELD NO.	SIZE	× ×	ECOMMENDATION ACCEPT REJECT	LINE NUME	BER, WELDER'S	STENCIL, RE	MARKS, ET	rc.
MT1	16" XH PIPE	×	REJECT	TS-1 CRACK				
MT2	16" XH PIPE	1		TS-2 CRACK				
				ANDE PROC: ACC- MAGNETIC PARTIC PER ASTM E-709.			PERFOR	MED
				NO REJECTABLE IN	NDICATIONS V	WERE FOU	JND.	
				KY-P2 PERMANEN	YOKE 3"-6"	SPACING		T

Mailing Add 209 Industrial Tr Broussard, LA 7	race			CCURATE NDE PECTION, L.L.C.	Rev. No.	0 - 180	Tek REDA	Ephone ACTED PI Fax ACTED PII
Customer	Crosby Co	nstructi	on Services, Inc.	Fabricator	Crosby Cor	nstruction \$	Services, I	nc.
Ordered By		REDA	CTED PII	Location of Job		Unknow	wn	
Job No	2363	P.O.		AFE		Other	AGV	V110721
Company			Amplify	Gra	ding Criteria		API 1104	
Customer Repres	ventati e				REDACTED PII	Level II		
						0		
Date	./	Nov-202		Assistant				
Magnetic Particle	v	C	lye Penetrant	Consumables		n of paint 8	1 Can of	
No. of Welds Ch	ecked 10	н	ours Worked 4	Travel Time	N/C		Mieage	N/C
WELD NO.	SIZE	×	RECOMMENDATION	LINE NUM	BER, WELDER'S	STENCIL, R	MARKS, E	TC.
MT3	2" TOL	×	REJECT	TS-1 / HD-1, W/S U	U.P			
MT4	2" TOL	V		TS-1 / HD-1, W/S U				
MT5	1" TOL	1		TS-1 / HD-1, W/S U				
MT6	1" TOL	1		TS-1 / HD-1, W/S U				
MT7	36" X .75"	1		FILLET WELD HD-		U.P		
MT8	2" TOL	1		TS-2 / HD-2, W/S U				
MT9	2" TOL	1		TS-2 / HD-2, W/S U				
MT10	1" TOL	1		TS-2 / HD-2, W/S U				
MT11	1" TOL	1		TS-2 / HD-2, W/S U	J.P			
MT12	36" X .75"	1		FILLET WELD HD-2		U,P		
				TOTAL INSPECTE	D:			
				230.31 "				
				ANDE PROC: ACC	MT-03-GEN, R	EV.10		
_				MAGNETIC PARTIC	CLE EXAMINAT	TION WAS	PERFOR	MED
				PER ASTM E-709.				
				NO REJECTABLE	INDICATIONS V	VERE FOR	JND.	
				KY-P2 PERMANEN	T YOKE 3"-6"	SPACING	401 B TES	ST

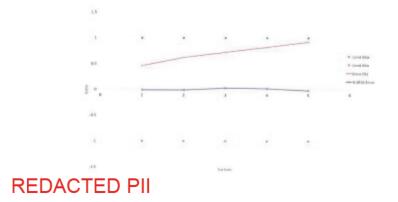




١

ļ

APPENDIX C: PRESSURE TRANSDUCER CALIBRATION


Certificate of Calibration

	niH	

								nunsmi	ner									
Certifics		050421-1							_						Print Dat	le	5/4/2021	1
	Unit Unde	r Test(UUT)															
	UUT ID			85409-05			Calibre	dien Dele:		5/4/2	121							
	Model:			101000880	50080300021		Expirat	ion Dote:		5/4/20	102							
	Ronge:			(0-5000 grai			Monuk	acturer:		TRANS	DUCERI DE	RECT						
	Resolution:			0.001mm			Custon	141		ADV B	NEOPHY							
	Application:	Sile		Ipecialloy	Calibration L	sborotory												
	Accuracy			0.29% PS														
	Calibratio	n Results																
			Result		Alex 8	THE	Temperature	Humid	IIV .		trespheric	Destiles						
	As Found		In foleronce		0.92		73%	52%			0.9915							
	As Left		in tolerance		0.92	*	734	52%			0.9916	Pa						
alibrat	tion Data -	As Found									Colibrati	on Data - /	is Left					
						Max Bro	0.92%				_						Adverse 17	nor 0.92
elPoints	Reference	Nominal	Reference	Tolerance	Deviation	Error		Test Point	Limit	Umit	SetFoints	Reference	Nominal	Reference	Tolerance	Deviation	Error	BISL
psi	psi	mt	rnA.	mA	mA	(%)			Mex	Min	poi	pai	mā	mA	TLA	m.L.	(7%)	01.25
		4.803	4.014	0.040	0.034	0.46			1	-4		D	4.000	4.074	0.640	0.874	0.46	4.0746
1250	1245	7.907	8.087	0.040	6.100	0.62		1	1	-t.	1250	1246	1.867	8.087	0.040	0.300	0.62	8.0804
2500	3487	11.990	12,806	6.040	0.155	0.72		3	1	-£.	2500	3497	11.990	12.100	0.040	0.315	0.72	12,1022
1755	8796	15.867	36.118	0.040	0.131	0.82		.4	1	-1	3750	3746	25.967	35.118	0.040	0.285	0.82	161362
5800	4996	10.881	30.127	0.040	0.147	0.92		. 8		-1	5000	4894	19.981	20,127	0.040	0.547	0.82	20.1800
3750	3752	18.006	56.118	0.040	0.110	0.68				-4	1750	879.2	36.008	15.116	0.040	0.210	0.69	16.1562
2500	25/04	1.2.000	NUMBER OF TAXABLE	11 (1997)	10.0000	0.02					and second		the second	and the second	-			The subscript of the su

5800	4984	10.881	30.127	0.040	0.147	0.92		3	-1	5000	4854	19.981	20.127	0.040	0.547		
3750	1752	16.006	36.118	0.040	0.110	0.68			-1	1750	3252	36.008	35.116	0.040	0.530		-
2500	2501	13:000	12.302	0.040	0.099	53.0	3		-1	2500	3505	12,008	12.102	0.040	0.099	0.62	10
1250	1.156	6.019	8.091	0.040	G.Dett.	0.40		. 1	-1.	1350	1256	8.019	0.000	0.040	0.065	0.40	
	0	-4.080	4.067	0.040	0.067	0.42		1	-1	0	0	4.000	4.067	0.040	0.067	0.42	
		As Found	Colloration (ata End								HALET CO	libration Dat	to Brid ann			
	Reference	25															

Mondactures	Model	Serial Number	Codificule No.	Due Date	Accuracy	BFSL ERROR	0.024	
Additel Corporation	ADE681 (0-10000) FSI	211H16F20048	234909	4/30/2022	0.02%			
-	-	-	-		_			
LA CROSSE	584107	DOHIDHM/2	5399219	1/11/2022	(*/-(2)* 7884			

Equipables Interpretation on the mathematic to the National Transition of National Technology. The Calibration & Contributions Name Name performed to Speciality's Gauley & Calibrativy Proceedings, AB Calibration Equipment and per BED/NCM, DAGS 1.1884

