Referenced Excerpts from Title 49 Subtitle B Chapter I Subchapter D 192 Electronic Code of Federal Regulations (https://ecfr.gov) Published by the Federal Register, as of July 5, 2019 ## Subpart B: Materials #### 192.53: General Materials for pipe and components must be: - (a) Able to maintain the structural integrity of the pipeline under temperature and other environmental conditions that may be anticipated; - (b) Chemically compatible with any gas that they transport and with any other material in the pipeline with which they are in contact; and - (c) Qualified in accordance with the applicable requirements of this subpart. #### 192.59: Plastic Pipe - a) New plastic pipe is qualified for use under this part if: - (1) It is manufactured in accordance with a listed specification; - (2) It is resistant to chemicals with which contact may be anticipated; and - (3) It is free of visible defects. - (b) Used plastic pipe is qualified for use under this part if: - (1) It was manufactured in accordance with a listed specification; - (2) It is resistant to chemicals with which contact may be anticipated; - (3) It has been used only in gas service; - (4) Its dimensions are still within the tolerances of the specification to which it was manufactured; and - (5) It is free of visible defects. - (c) For the purpose of paragraphs (a)(1) and (b)(1) of this section, where pipe of a diameter included in a listed specification is impractical to use, pipe of a diameter between the sizes included in a listed specification may be used if it: - (1) Meets the strength and design criteria required of pipe included in that listed specification; and - (2) Is manufactured from plastic compounds which meet the criteria for material required of pipe included in that listed specification. - (d) Rework and/or regrind material is not allowed in plastic pipe produced after March 6, 2015 used under this part. ## 192.63: Marking of Materials - (a) Except as provided in paragraph (d) and (e) of this section, each valve, fitting, length of pipe, and other component must be marked as prescribed in the specification or standard to which it was manufactured. - (b) Surfaces of pipe and components that are subject to stress from internal pressure may not be field die stamped. - (c) If any item is marked by die stamping, the die must have blunt or rounded edges that will minimize stress concentrations. - (d) Paragraph (a) of this section does not apply to items manufactured before November 12, 1970, that meet all of the following: - (1) The item is identifiable as to type, manufacturer, and model. - (2) Specifications or standards giving pressure, temperature, and other appropriate criteria for the use of items are readily available. - (e) All plastic pipe and components must also meet the following requirements: - (1) All markings on plastic pipe prescribed in the listed specification and the requirements of paragraph (e)(2) of this section must be repeated at intervals not exceeding two feet. - (2) Plastic pipe and components manufactured after December 31, 2019 must be marked in accordance with the listed specification. - (3) All physical markings on plastic pipelines prescribed in the listed specification and paragraph (e)(2) of this section must be legible until the time of installation. #### 192.67: Storage and Handling of Plastic Pipe and Associated Components Each operator must have and follow written procedures for the storage and handling of plastic pipe and associated components that meet the applicable listed specifications. # Subpart C: Pipe Design #### 192.121: Design of Plastic Pipe (a) Design formula. Design formulas for plastic pipe are determined in accordance with either of the following formulas: $$P = 2S \frac{t}{(D-t)}(DF)$$ $$P = \frac{2S}{(SDR - 1)}(DF)$$ P = Design pressure, gage, psi (kPa). S = For thermoplastic pipe, the hydrostatic design basis (HDB) is determined in accordance with the listed specification at a temperature equal to 73 °F (23 °C), 100 °F (38 °C), 120 °F (49 °C), or 140 °F (60 °C). In the absence of an HDB established at the specified temperature, the HDB of a higher temperature may be used in determining a design pressure rating at the specified temperature by arithmetic interpolation using the procedure in D.2 of PPI TR-3/2012, (incorporated by reference, see §192.7). For reinforced thermosetting plastic pipe, 11,000 psig (75,842 kPa). t = Specified wall thickness, inches (mm). D = Specified outside diameter, inches (mm). SDR = Standard dimension ratio, the ratio of the average specified outside diameter to the minimum specified wall thickness, corresponding to a value from a common numbering system that was derived from the American National Standards Institute (ANSI) preferred number series 10. DF = Design Factor, a maximum of 0.32 unless otherwise specified for a particular material in this section - (b) General requirements for plastic pipe and components. (1) Except as provided in paragraphs (c) through (f) of this section, the design pressure for plastic pipe may not exceed a gauge pressure of 100 psig (689 kPa) for pipe used in: - (i) Distribution systems; or - (ii) Transmission lines in Class 3 and 4 locations. - (2) Plastic pipe may not be used where operating temperatures of the pipe will be: - (i) Below -20 °F (-29 °C), or below -40 °F (-40 °C) if all pipe and pipeline components whose operating temperature will be below -20 °F (-29 °C) have a temperature rating by the manufacturer consistent with that operating temperature; or - (ii) Above the temperature at which the HDB used in the design formula under this section is determined. - (3) Unless specified for a particular material in this section, the wall thickness of plastic pipe may not be less than 0.062 inches (1.57 millimeters). - (4) All plastic pipe must have a listed HDB in accordance with PPI TR-4/2012 (incorporated by reference, see §192.7). - (c) Polyethylene (PE) pipe requirements. (1) For PE pipe produced after July 14, 2004, but before January 22, 2019, a design pressure of up to 125 psig may be used, provided: - (i) The material designation code is PE2406 or PE3408. - (ii) The pipe has a nominal size (Iron Pipe Size (IPS) or Copper Tubing Size (CTS)) of 12 inches or less (above nominal pipe size of 12 inches, the design pressure is limited to 100 psig); and - (iii) The wall thickness is not less than 0.062 inches (1.57 millimeters). - (2) For PE pipe produced after January 22, 2019, a DF of 0.40 may be used in the design formula, provided: - (i) The design pressure does not exceed 125 psig; - (ii) The material designation code is PE2708 or PE4710; - (iii) The pipe has a nominal size (IPS or CTS) of 12 inches or less; and - (iv) The wall thickness for a given outside diameter is not less than that listed in the following table: PE Pipe—Minimum Wall Thickness and SDR Values | Pipe size | Minimum wall thickness | Corresponding SDR (values) | |-------------|------------------------|----------------------------| | (inches) | (inches) | | | 1/2 " CTS | 0.090 | 7 | | 3/4 " CTS | 0.090 | 9.7 | | 1/2 " IPS | 0.090 | 9.3 | | 3/4 " IPS | 0.095 | 11 | | 1" CTS | 0.119 | 11 | | 1" IPS | 0.119 | 11 | | 1 1/4 " IPS | 0.151 | 11 | | 1 1/2 " IPS | 0.173 | 11 | | 2" | 0.216 | 11 | | 3" | 0.259 | 13.5 | | 4" | 0.265 | 17 | | 6" | 0.315 | 21 | | 8" | 0.411 | 21 | | 10" | 0.512 | 21 | | 12" | 0.607 | 21 | - (d) Polyamide (PA-11) pipe requirements. (1) For PA-11 pipe produced after January 23, 2009, but before January 22, 2019, a DF of 0.40 may be used in the design formula, provided: - (i) The design pressure does not exceed 200 psig; - (ii) The material designation code is PA32312 or PA32316; - (iii) The pipe has a nominal size (IPS or CTS) of 4 inches or less; and - (iv) The pipe has a standard dimension ratio of SDR-11 or less (i.e., thicker wall pipe). - (2) For PA-11 pipe produced on or after January 22, 2019, a DF of 0.40 may be used in the design formula, provided: - (i) The design pressure does not exceed 250 psig; - (ii) The material designation code is PA32316; - (iii) The pipe has a nominal size (IPS or CTS) of 6 inches or less; and - (iv) The minimum wall thickness for a given outside diameter is not less than that listed in the following table: PA-11 Pipe—Minimum Wall Thickness and SDR Values | Pipe size | Minimum wall thickness | Corresponding SDR (values) | |-------------|------------------------|----------------------------| | (inches) | (inches) | | | 1/2 " CTS | 0.090 | 7.0 | | 3/4 " CTS | 0.090 | 9.7 | | 1/2 " IPS | 0.090 | 9.3 | | 3/4 " IPS | 0.095 | 11 | | 1" CTS | 0.119 | 11 | | 1" IPS | 0.119 | 11 | | 1 1/4 " IPS | 0.151 | 11 | | 1 1/2 " IPS | 0.173 | 11 | | 2" IPS | 0.216 | 11 | | 3" IPS | 0.259 | 13.5 | | 4" IPS | 0.333 | 13.5 | | 6" IPS | 0.491 | 13.5 | - (e) Polyamide (PA-12) pipe requirements. For PA-12 pipe produced after January 22, 2019, a DF of 0.40 may be used in the design formula, provided: - (1) The design pressure does not exceed 250 psig; - (2) The material designation code is PA42316; - (3) The pipe has a nominal size (IPS or CTS) of 6 inches or less; and - (4) The minimum wall thickness for a given outside diameter is not less than that listed in the following table. PA-12 Pipe—Minimum Wall Thickness and SDR Values | Pipe size | Minimum wall thickness | Corresponding SDR (values) | |-------------|------------------------|----------------------------| | (inches) | (inches) | | | 1/2 " CTS | 0.090 | 7 | | 3/4 " CTS | 0.090 | 9.7 | | 1/2 " IPS | 0.090 | 9.3 | | 3/4 " IPS | 0.095 | 11 | | 1" CTS | 0.119 | 11 | | 1" IPS | 0.119 | 11 | | 1 1/4 " IPS | 0.151 | 11 | | 1 1/2 " IPS | 0.173 | 11 | | 2" IPS | 0.216 | 11 | | 3" IPS | 0.259 | 13.5 | | 4" IPS | 0.333 | 13.5 | | 6" IPS | 0.491 | 13.5 | - (f) Reinforced thermosetting plastic pipe requirements. (1) Reinforced thermosetting plastic pipe may not be used at operating temperatures above 150 °F (66 °C). - (2) The wall thickness for reinforced thermosetting
plastic pipe may not be less than that listed in the following table: | Nominal size in inches | Minimum wall thickness in inches | |------------------------|----------------------------------| | (millimeters) | (millimeters) | | 2 (51) | 0.060 (1.52) | | 3 (76) | 0.060 (1.52) | | 4 (102) | 0.070 (1.78) | | 6 (152) | 0.100 (2.54) | ## Subpart F: Joining of Materials Other than by Welding ## 192.273: General - (a) The pipeline must be designed and installed so that each joint will sustain the longitudinal pullout or thrust forces caused by contraction or expansion of the piping or by anticipated external or internal loading. - (b) Each joint must be made in accordance with written procedures that have been proven by test or experience to produce strong gastight joints. - (c) Each joint must be inspected to insure compliance with this subpart. ## 192.283: Qualifying Joining Procedures (a) Heat fusion, solvent cement, and adhesive joints. Before any written procedure established under §192.273(b) is used for making plastic pipe joints by a heat fusion, solvent cement, or adhesive method, the procedure must be qualified by subjecting specimen joints that are made according to the procedure to the following tests, as applicable: ## (1) The test requirements of— - (i) In the case of thermoplastic pipe, based on the pipe material, the Sustained Pressure Test or the Minimum Hydrostatic Burst Test per the listed specification requirements. Additionally, for electrofusion joints, based on the pipe material, the Tensile Strength Test or the Joint Integrity Test per the listed specification. - (ii) In the case of thermosetting plastic pipe, paragraph 8.5 (Minimum Hydrostatic Burst Pressure) or paragraph 8.9 (Sustained Static Pressure Test) of ASTM D2517-00 (incorporated by reference, see §192.7). - (iii) In the case of electrofusion fittings for polyethylene (PE) pipe and tubing, paragraph 9.1 (Minimum Hydraulic Burst Pressure Test), paragraph 9.2 (Sustained Pressure Test), paragraph 9.3 (Tensile Strength Test), or paragraph 9.4 (Joint Integrity Tests) of ASTM F1055-98(2006) (incorporated by reference, see §192.7). - (2) For procedures intended for lateral pipe connections, subject a specimen joint made from pipe sections joined at right angles according to the procedure to a force on the lateral pipe until failure occurs in the specimen. If failure initiates outside the joint area, the procedure qualifies for use. - (3) For procedures intended for non-lateral pipe connections, perform testing in accordance with a listed specification. If the test specimen elongates no more than 25% or failure initiates outside the joint area, the procedure qualifies for use. - (b) Mechanical joints. Before any written procedure established under §192.273(b) is used for making mechanical plastic pipe joints, the procedure must be qualified in accordance with a listed specification based upon the pipe material. - (c) A copy of each written procedure being used for joining plastic pipe must be available to the persons making and inspecting joints. #### 192.285: Qualifying Persons to Make Joints - (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining procedure by: - (1) Appropriate training or experience in the use of the procedure; and - (2) Making a specimen joint from pipe sections joined according to the procedure that passes the inspection and test set forth in paragraph (b) of this section. - (b) The specimen joint must be: - (1) Visually examined during and after assembly or joining and found to have the same appearance as a joint or photographs of a joint that is acceptable under the procedure; and - (2) In the case of a heat fusion, solvent cement, or adhesive joint: - (i) Tested under any one of the test methods listed under §192.283(a), or for PE heat fusion joints (except for electrofusion joints) visually inspected and tested in accordance with ASTM F2620-12 (incorporated by reference, see §192.7) applicable to the type of joint and material being tested; - (ii) Examined by ultrasonic inspection and found not to contain flaws that would cause failure; or - (iii) Cut into at least 3 longitudinal straps, each of which is: - (A) Visually examined and found not to contain voids or discontinuities on the cut surfaces of the joint area; and - (B) Deformed by bending, torque, or impact, and if failure occurs, it must not initiate in the joint area. - (c) A person must be re-qualified under an applicable procedure once each calendar year at intervals not exceeding 15 months, or after any production joint is found unacceptable by testing under §192.513. - (d) Each operator shall establish a method to determine that each person making joints in plastic pipelines in the operator's system is qualified in accordance with this section. ## 192.287: Plastic Pipe: Inspection of Joints No person may carry out the inspection of joints in plastic pipes required by §§192.273(c) and 192.285(b) unless that person has been qualified by appropriate training or experience in evaluating the acceptability of plastic pipe joints made under the applicable joining procedure. ## Subpart G: General Construction Requirements for Transmission Lines and Mains ## 192.303: Compliance with Specifications or Standards Each transmission line or main must be constructed in accordance with comprehensive written specifications or standards that are consistent with this part. ## 192.305: Inspection: General Each transmission line or main must be inspected to ensure that it is constructed in accordance with this part. #### 192.307: Inspection of Materials Each length of pipe and each other component must be visually inspected at the site of installation to ensure that it has not sustained any visually determinable damage that could impair its serviceability. #### 192.311: Repair of Plastic Pipe Each imperfection or damage that would impair the serviceability of plastic pipe must be repaired or removed. ## 192.321: Installation of Plastic Pipe - (a) Plastic pipe must be installed below ground level except as provided in paragraphs (g), (h), and (i) of this section. - (b) Plastic pipe that is installed in a vault or any other below grade enclosure must be completely encased in gas-tight metal pipe and fittings that are adequately protected from corrosion. - (c) Plastic pipe must be installed so as to minimize shear or tensile stresses. - (d) Plastic pipe must have a minimum wall thickness in accordance with §192.121. - (e) Plastic pipe that is not encased must have an electrically conducting wire or other means of locating the pipe while it is underground. Tracer wire may not be wrapped around the pipe and contact with the pipe must be minimized but is not prohibited. Tracer wire or other metallic elements installed for pipe locating purposes must be resistant to corrosion damage, either by use of coated copper wire or by other means. - (f) Plastic pipe that is being encased must be inserted into the casing pipe in a manner that will protect the plastic. Plastic pipe that is being encased must be protected from damage at all entrance and all exit points of the casing. The leading end of the plastic must be closed before insertion. - (g) Uncased plastic pipe may be temporarily installed above ground level under the following conditions: - (1) The operator must be able to demonstrate that the cumulative aboveground exposure of the pipe does not exceed the manufacturer's recommended maximum period of exposure or 2 years, whichever is less. - (2) The pipe either is located where damage by external forces is unlikely or is otherwise protected against such damage. - (3) The pipe adequately resists exposure to ultraviolet light and high and low temperatures. - (h) Plastic pipe may be installed on bridges provided that it is: - (1) Installed with protection from mechanical damage, such as installation in a metallic casing; - (2) Protected from ultraviolet radiation; and - (3) Not allowed to exceed the pipe temperature limits specified in §192.121. - (i) Plastic mains may terminate above ground level provided they comply with the following: - (1) The above-ground level part of the plastic main is protected against deterioration and external damage. - (2) The plastic main is not used to support external loads. - (3) Installations of risers at regulator stations must meet the design requirements of §192.204. ### 192.325: Underground Clearance - (a) Each transmission line must be installed with at least 12 inches (305 millimeters) of clearance from any other underground structure not associated with the transmission line. If this clearance cannot be attained, the transmission line must be protected from damage that might result from the proximity of the other structure. - (b) Each main must be installed with enough clearance from any other underground structure to allow proper maintenance and to protect against damage that might result from proximity to other structures. - (c) In addition to meeting the requirements of paragraph (a) or (b) of this section, each plastic transmission line or main must be installed with sufficient clearance, or must be insulated, from any source of heat so as to prevent the heat from impairing the serviceability of the pipe. - (d) Each pipe-type or bottle-type holder must be installed with a minimum clearance from any other holder as prescribed in §192.175(b). #### 192.327: Cover (a) Except as provided in paragraphs (c), (e), (f), and (g) of this section, each buried transmission line must be installed with a minimum cover as follows: | Location | Normal soil | Consolidated rock | |----------------------------------|-------------|-------------------| | Inches (Millimeters) | | | | Class 1 locations | 30 (762) | 18 (457) | | Class 2, 3, and 4 locations | 36 (914) | 24 (610) | | Drainage ditches of public roads | 36 (914) | 24 (610) | | and railroad crossings | | | - (b) Except as provided in
paragraphs (c) and (d) of this section, each buried main must be installed with at least 24 inches (610 millimeters) of cover. - (c) Where an underground structure prevents the installation of a transmission line or main with the minimum cover, the transmission line or main may be installed with less cover if it is provided with additional protection to withstand anticipated external loads. - (d) A main may be installed with less than 24 inches (610 millimeters) of cover if the law of the State or municipality: - (1) Establishes a minimum cover of less than 24 inches (610 millimeters); - (2) Requires that mains be installed in a common trench with other utility lines; and - (3) Provides adequately for prevention of damage to the pipe by external forces. - (e) Except as provided in paragraph (c) of this section, all pipe installed in a navigable river, stream, or harbor must be installed with a minimum cover of 48 inches (1,219 millimeters) in soil or 24 inches (610 millimeters) in consolidated rock between the top of the pipe and the underwater natural bottom (as determined by recognized and generally accepted practices). - (f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under water not more than 200 feet (60 meters) deep, as measured from the mean low tide, must be installed as follows: - (1) Except as provided in paragraph (c) of this section, pipe under water less than 12 feet (3.66 meters) deep, must be installed with a minimum cover of 36 inches (914 millimeters) in soil or 18 inches (457 millimeters) in consolidated rock between the top of the pipe and the natural bottom. - (2) Pipe under water at least 12 feet (3.66 meters) deep must be installed so that the top of the pipe is below the natural bottom, unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means. - (g) All pipelines installed under water in the Gulf of Mexico and its inlets, as defined in §192.3, must be installed in accordance with §192.612(b)(3). ### Subpart J: Test Requirements #### 192.503: General Requirements - (a) No person may operate a new segment of pipeline, or return to service a segment of pipeline that has been relocated or replaced, until— - (1) It has been tested in accordance with this subpart and §192.619 to substantiate the maximum allowable operating pressure; and - (2) Each potentially hazardous leak has been located and eliminated. - (b) The test medium must be liquid, air, natural gas, or inert gas that is— - (1) Compatible with the material of which the pipeline is constructed; - (2) Relatively free of sedimentary materials; and - (3) Except for natural gas, nonflammable. - (c) Except as provided in §192.505(a), if air, natural gas, or inert gas is used as the test medium, the following maximum hoop stress limitations apply: | Class location | Maximum hoop stress allowed as percentage of SMYS | | |----------------|---|------------------| | | Natural gas | Air or inert gas | | 1 | 80 | 80 | | 2 | 30 | 75 | | 3 | 30 | 50 | | 4 | 30 | 40 | - (d) Each joint used to tie in a test segment of pipeline is excepted from the specific test requirements of this subpart, but each non-welded joint must be leak tested at not less than its operating pressure. - (e) If a component other than pipe is the only item being replaced or added to a pipeline, a strength test after installation is not required, if the manufacturer of the component certifies that: - (1) The component was tested to at least the pressure required for the pipeline to which it is being added; - (2) The component was manufactured under a quality control system that ensures that each item manufactured is at least equal in strength to a prototype and that the prototype was tested to at least the pressure required for the pipeline to which it is being added; or - (3) The component carries a pressure rating established through applicable ASME/ANSI, Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS) specifications, or by unit strength calculations as described in §192.143. ### 192.513: Test Requirements for Plastic Pipelines - (a) Each segment of a plastic pipeline must be tested in accordance with this section. - (b) The test procedure must insure discovery of all potentially hazardous leaks in the segment being tested. - (c) The test pressure must be at least 150% of the maximum operating pressure or 50 psi (345 kPa) gauge, whichever is greater. However, the maximum test pressure may not be more than 2.5 times the pressure determined under §192.121 at a temperature not less than the pipe temperature during the test. - (d) During the test, the temperature of thermoplastic material may not be more than 100 °F (38 °C), or the temperature at which the material's long-term hydrostatic strength has been determined under the listed specification, whichever is greater. ## 192.515: Environmental Protection and Safety Requirements (a) In conducting tests under this subpart, each operator shall insure that every reasonable precaution is taken to protect its employees and the general public during the testing. Whenever the hoop stress of the segment of the pipeline being tested will exceed 50 percent of SMYS, the operator shall take all practicable steps to keep persons not working on the testing operation outside of the testing area until the pressure is reduced to or below the proposed maximum allowable operating pressure. (b) The operator shall insure that the test medium is disposed of in a manner that will minimize damage to the environment. ## 192.517: Records - (a) Each operator shall make, and retain for the useful life of the pipeline, a record of each test performed under §§192.505 and 192.507. The record must contain at least the following information: - (1) The operator's name, the name of the operator's employee responsible for making the test, and the name of any test company used. - (2) Test medium used. - (3) Test pressure. - (4) Test duration. - (5) Pressure recording charts, or other record of pressure readings. - (6) Elevation variations, whenever significant for the particular test. - (7) Leaks and failures noted and their disposition. - (b) Each operator must maintain a record of each test required by §§192.509, 192.511, and 192.513 for at least 5 years. #### **Subpart L: Operations** #### 192.603: General Provisions - (a) No person may operate a segment of pipeline unless it is operated in accordance with this subpart. - (b) Each operator shall keep records necessary to administer the procedures established under §192.605. - (c) The Associate Administrator or the State Agency that has submitted a current certification under the pipeline safety laws, (49 U.S.C. 60101 et seq.) with respect to the pipeline facility governed by an operator's plans and procedures may, after notice and opportunity for hearing as provided in 49 CFR 190.206 or the relevant State procedures, require the operator to amend its plans and procedures as necessary to provide a reasonable level of safety. ## 192.605: Procedural Manual for Operations, Maintenance, and Emergencies - (a) General. Each operator shall prepare and follow for each pipeline, a manual of written procedures for conducting operations and maintenance activities and for emergency response. For transmission lines, the manual must also include procedures for handling abnormal operations. This manual must be reviewed and updated by the operator at intervals not exceeding 15 months, but at least once each calendar year. This manual must be prepared before operations of a pipeline system commence. Appropriate parts of the manual must be kept at locations where operations and maintenance activities are conducted. - (b) Maintenance and normal operations. The manual required by paragraph (a) of this section must include procedures for the following, if applicable, to provide safety during maintenance and operations. - (1) Operating, maintaining, and repairing the pipeline in accordance with each of the requirements of this subpart and subpart M of this part. - (2) Controlling corrosion in accordance with the operations and maintenance requirements of subpart I of this part. - (3) Making construction records, maps, and operating history available to appropriate operating personnel. - (4) Gathering of data needed for reporting incidents under 191 of this chapter in a timely and effective manner. - (5) Starting up and shutting down any part of the pipeline in a manner designed to assure operation within the MAOP limits prescribed by this part, plus the build-up allowed for operation of pressure-limiting and control devices. - (6) Maintaining compressor stations, including provisions for isolating units or sections of pipe and for purging before returning to service. - (7) Starting, operating and shutting down gas compressor units. - (8) Periodically reviewing the work done by operator personnel to determine the effectiveness, and adequacy of the procedures used in normal operation and maintenance and modifying the procedures when deficiencies are found. - (9) Taking adequate precautions in excavated trenches to protect personnel from the hazards of unsafe accumulations of vapor or gas, and making available when needed at the excavation, emergency rescue equipment, including a breathing apparatus and, a rescue harness and line. - (10) Systematic and routine testing and inspection of pipe-type or bottle-type holders including— - (i) Provision for detecting external corrosion before the strength of the container has been impaired; - (ii) Periodic sampling and testing of gas in storage to determine the dew point of vapors contained in the stored gas which, if condensed, might cause internal corrosion or interfere with the safe operation of the storage plant; and - (iii) Periodic inspection and testing of pressure limiting equipment to determine that
it is in safe operating condition and has adequate capacity. - (11) Responding promptly to a report of a gas odor inside or near a building, unless the operator's emergency procedures under §192.615(a)(3) specifically apply to these reports. - (12) Implementing the applicable control room management procedures required by §192.631. - (c) Abnormal operation. For transmission lines, the manual required by paragraph (a) of this section must include procedures for the following to provide safety when operating design limits have been exceeded: - (1) Responding to, investigating, and correcting the cause of: - (i) Unintended closure of valves or shutdowns; - (ii) Increase or decrease in pressure or flow rate outside normal operating limits; - (iii) Loss of communications; - (iv) Operation of any safety device; and - (v) Any other foreseeable malfunction of a component, deviation from normal operation, or personnel error, which may result in a hazard to persons or property. - (2) Checking variations from normal operation after abnormal operation has ended at sufficient critical locations in the system to determine continued integrity and safe operation. - (3) Notifying responsible operator personnel when notice of an abnormal operation is received. - (4) Periodically reviewing the response of operator personnel to determine the effectiveness of the procedures controlling abnormal operation and taking corrective action where deficiencies are found. - (5) The requirements of this paragraph (c) do not apply to natural gas distribution operators that are operating transmission lines in connection with their distribution system. - (d) Safety-related condition reports. The manual required by paragraph (a) of this section must include instructions enabling personnel who perform operation and maintenance activities to recognize conditions that potentially may be safety-related conditions that are subject to the reporting requirements of §191.23 of this subchapter. (e) Surveillance, emergency response, and accident investigation. The procedures required by §§192.613(a), 192.615, and 192.617 must be included in the manual required by paragraph (a) of this section. ## 192.614: Damage Prevention Program - (a) Except as provided in paragraphs (d) and (e) of this section, each operator of a buried pipeline must carry out, in accordance with this section, a written program to prevent damage to that pipeline from excavation activities. For the purposes of this section, the term "excavation activities" includes excavation, blasting, boring, tunneling, backfilling, the removal of aboveground structures by either explosive or mechanical means, and other earthmoving operations. - (b) An operator may comply with any of the requirements of paragraph (c) of this section through participation in a public service program, such as a one-call system, but such participation does not relieve the operator of responsibility for compliance with this section. However, an operator must perform the duties of paragraph (c)(3) of this section through participation in a one-call system, if that one-call system is a qualified one-call system. In areas that are covered by more than one qualified one-call system, an operator need only join one of the qualified one-call systems if there is a central telephone number for excavators to call for excavation activities, or if the one-call systems in those areas communicate with one another. An operator's pipeline system must be covered by a qualified one-call system where there is one in place. For the purpose of this section, a one-call system is considered a "qualified one-call system" if it meets the requirements of section (b)(1) or (b)(2) of this section. - (1) The state has adopted a one-call damage prevention program under §198.37 of this chapter; or - (2) The one-call system: - (i) Is operated in accordance with §198.39 of this chapter; - (ii) Provides a pipeline operator an opportunity similar to a voluntary participant to have a part in management responsibilities; and - (iii) Assesses a participating pipeline operator a fee that is proportionate to the costs of the one-call system's coverage of the operator's pipeline. - (c) The damage prevention program required by paragraph (a) of this section must, at a minimum: - (1) Include the identity, on a current basis, of persons who normally engage in excavation activities in the area in which the pipeline is located. - (2) Provides for notification of the public in the vicinity of the pipeline and actual notification of the persons identified in paragraph (c)(1) of this section of the following as often as needed to make them aware of the damage prevention program: - (i) The program's existence and purpose; and - (ii) How to learn the location of underground pipelines before excavation activities are begun. - (3) Provide a means of receiving and recording notification of planned excavation activities. - (4) If the operator has buried pipelines in the area of excavation activity, provide for actual notification of persons who give notice of their intent to excavate of the type of temporary marking to be provided and how to identify the markings. - (5) Provide for temporary marking of buried pipelines in the area of excavation activity before, as far as practical, the activity begins. - (6) Provide as follows for inspection of pipelines that an operator has reason to believe could be damaged by excavation activities: - (i) The inspection must be done as frequently as necessary during and after the activities to verify the integrity of the pipeline; and - (ii) In the case of blasting, any inspection must include leakage surveys. - (d) A damage prevention program under this section is not required for the following pipelines: - (1) Pipelines located offshore. - (2) Pipelines, other than those located offshore, in Class 1 or 2 locations until September 20, 1995. - (3) Pipelines to which access is physically controlled by the operator. - (e) Pipelines operated by persons other than municipalities (including operators of master meters) whose primary activity does not include the transportation of gas need not comply with the following: - (1) The requirement of paragraph (a) of this section that the damage prevention program be written; and - (2) The requirements of paragraphs (c)(1) and (c)(2) of this section. ## 192.615: Emergency Plans - (a) Each operator shall establish written procedures to minimize the hazard resulting from a gas pipeline emergency. At a minimum, the procedures must provide for the following: - (1) Receiving, identifying, and classifying notices of events which require immediate response by the operator. - (2) Establishing and maintaining adequate means of communication with appropriate fire, police, and other public officials. - (3) Prompt and effective response to a notice of each type of emergency, including the following: - (i) Gas detected inside or near a building. - (ii) Fire located near or directly involving a pipeline facility. - (iii) Explosion occurring near or directly involving a pipeline facility. - (iv) Natural disaster. - (4) The availability of personnel, equipment, tools, and materials, as needed at the scene of an emergency. - (5) Actions directed toward protecting people first and then property. - (6) Emergency shutdown and pressure reduction in any section of the operator's pipeline system necessary to minimize hazards to life or property. - (7) Making safe any actual or potential hazard to life or property. - (8) Notifying appropriate fire, police, and other public officials of gas pipeline emergencies and coordinating with them both planned responses and actual responses during an emergency. - (9) Safely restoring any service outage. - (10) Beginning action under §192.617, if applicable, as soon after the end of the emergency as possible. - (11) Actions required to be taken by a controller during an emergency in accordance with §192.631. #### (b) Each operator shall: - (1) Furnish its supervisors who are responsible for emergency action a copy of that portion of the latest edition of the emergency procedures established under paragraph (a) of this section as necessary for compliance with those procedures. - (2) Train the appropriate operating personnel to assure that they are knowledgeable of the emergency procedures and verify that the training is effective. - (3) Review employee activities to determine whether the procedures were effectively followed in each emergency. - (c) Each operator shall establish and maintain liaison with appropriate fire, police, and other public officials to: - (1) Learn the responsibility and resources of each government organization that may respond to a gas pipeline emergency; - (2) Acquaint the officials with the operator's ability in responding to a gas pipeline emergency; - (3) Identify the types of gas pipeline emergencies of which the operator notifies the officials; and (4) Plan how the operator and officials can engage in mutual assistance to minimize hazards to life or property. #### 192.616: Public Awareness - (a) Except for an operator of a master meter or petroleum gas system covered under paragraph (j) of this section, each pipeline operator must develop and implement a written continuing public education program that follows the guidance provided in the American Petroleum Institute's (API) Recommended Practice (RP) 1162 (incorporated by reference, see §192.7). - (b) The operator's program must follow the general program recommendations of API RP 1162 and assess the unique attributes and characteristics of the operator's pipeline and facilities. - (c) The operator must follow the general program recommendations, including baseline and supplemental requirements of API RP 1162, unless the operator provides justification in its program or procedural manual as to why compliance with all or certain provisions of the recommended practice is not practicable and not necessary for
safety. - (d) The operator's program must specifically include provisions to educate the public, appropriate government organizations, and persons engaged in excavation related activities on: - (1) Use of a one-call notification system prior to excavation and other damage prevention activities; - (2) Possible hazards associated with unintended releases from a gas pipeline facility; - (3) Physical indications that such a release may have occurred; - (4) Steps that should be taken for public safety in the event of a gas pipeline release; and - (5) Procedures for reporting such an event. - (e) The program must include activities to advise affected municipalities, school districts, businesses, and residents of pipeline facility locations. - (f) The program and the media used must be as comprehensive as necessary to reach all areas in which the operator transports gas. - (g) The program must be conducted in English and in other languages commonly understood by a significant number and concentration of the non-English speaking population in the operator's area. - (h) Operators in existence on June 20, 2005, must have completed their written programs no later than June 20, 2006. The operator of a master meter or petroleum gas system covered under paragraph (j) of this section must complete development of its written procedure by June 13, 2008. Upon request, operators must submit their completed programs to PHMSA or, in the case of an intrastate pipeline facility operator, the appropriate State agency. - (i) The operator's program documentation and evaluation results must be available for periodic review by appropriate regulatory agencies. - (j) Unless the operator transports gas as a primary activity, the operator of a master meter or petroleum gas system is not required to develop a public awareness program as prescribed in paragraphs (a) through (g) of this section. Instead the operator must develop and implement a written procedure to provide its customers public awareness messages twice annually. If the master meter or petroleum gas system is located on property the operator does not control, the operator must provide similar messages twice annually to persons controlling the property. The public awareness message must include: - (1) A description of the purpose and reliability of the pipeline; - (2) An overview of the hazards of the pipeline and prevention measures used; - (3) Information about damage prevention; - (4) How to recognize and respond to a leak; and - (5) How to get additional information. #### 192.617: Investigation of Failures Each operator shall establish procedures for analyzing accidents and failures, including the selection of samples of the failed facility or equipment for laboratory examination, where appropriate, for the purpose of determining the causes of the failure and minimizing the possibility of a recurrence. ## 192.619: Maximum Allowable Operating Pressure: Steel or Plastic Pipelines - (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating pressure determined under paragraph (c) or (d) of this section, or the lowest of the following: - (1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part. However, for steel pipe in pipelines being converted under §192.14 or uprated under subpart K of this part, if any variable necessary to determine the design pressure under the design formula (§192.105) is unknown, one of the following pressures is to be used as design pressure: - (i) Eighty percent of the first test pressure that produces yield under section N5 of Appendix N of ASME B31.8 (incorporated by reference, see §192.7), reduced by the appropriate factor in paragraph (a)(2)(ii) of this section; or - (ii) If the pipe is 123/4 inches (324 mm) or less in outside diameter and is not tested to yield under this paragraph, 200 p.s.i. (1379 kPa). - (2) The pressure obtained by dividing the pressure to which the segment was tested after construction as follows: - (i) For plastic pipe in all locations, the test pressure is divided by a factor of 1.5. - (ii) For steel pipe operated at 100 p.s.i. (689 kPa) gage or more, the test pressure is divided by a factor determined in accordance with the following table: | Class location | Factors ₁ , segment— | | | |----------------|---------------------------------|-----------------------|-----------------| | | Installed before (Nov. | Installed after (Nov. | Converted under | | | 12, 1970) | 11, 1970) | §192.14 | | 1 | 1.1 | 1.1 | 1.25 | | 2 | 1.25 | 1.25 | 1.25 | | 3 | 1.4 | 1.5 | 1.5 | | 4 | 1.4 | 1.5 | 1.5 | ₁For offshore segments installed, uprated or converted after July 31, 1977, that are not located on an offshore platform, the factor is 1.25. For segments installed, uprated or converted after July 31, 1977, that are located on an offshore platform or on a platform in inland navigable waters, including a pipe riser, the factor is 1.5. (3) The highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column. This pressure restriction applies unless the segment was tested according to the requirements in paragraph (a)(2) of this section after the applicable date in the third column or the segment was uprated according to the requirements in subpart K of this part: | Pipeline segment | Pressure date | Test date | |-------------------------------|-------------------------------|------------------------------| | —Onshore gathering line that | March 15, 2006, or date line | 5 years preceding applicable | | first became subject to this | becomes subject to this part, | date in second column. | | part (other than §192.612) | whichever is later | | | after April 13, 2006 | | | | —Onshore transmission line | | | | that was a gathering line not | | | | subject to this part before | | | | March 15, 2006 | | | | Offshore gathering lines | July 1, 1976 | July 1, 1971. | | All other pipelines | July 1, 1970 | July 1, 1965. | - (4) The pressure determined by the operator to be the maximum safe pressure after considering the history of the segment, particularly known corrosion and the actual operating pressure. - (b) No person may operate a segment to which paragraph (a)(4) of this section is applicable, unless over-pressure protective devices are installed on the segment in a manner that will prevent the maximum allowable operating pressure from being exceeded, in accordance with §192.195. - (c) The requirements on pressure restrictions in this section do not apply in the following instance. An operator may operate a segment of pipeline found to be in satisfactory condition, considering its operating and maintenance history, at the highest actual operating pressure to which the segment was subjected during the 5 years preceding the applicable date in the second column of the table in paragraph (a)(3) of this section. An operator must still comply with §192.611. (d) The operator of a pipeline segment of steel pipeline meeting the conditions prescribed in §192.620(b) may elect to operate the segment at a maximum allowable operating pressure determined under §192.620(a). #### 192.621: Maximum Allowable Operating Pressure: High-pressure Distribution Systems - (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the lowest of the following pressures, as applicable: - (1) The design pressure of the weakest element in the segment, determined in accordance with subparts C and D of this part. - (2) 60 p.s.i. (414 kPa) gage, for a segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless the service lines in the segment are equipped with service regulators or other pressure limiting devices in series that meet the requirements of §192.197(c). - (3) 25 p.s.i. (172 kPa) gage in segments of cast iron pipe in which there are unreinforced bell and spigot joints. - (4) The pressure limits to which a joint could be subjected without the possibility of its parting. - (5) The pressure determined by the operator to be the maximum safe pressure after considering the history of the segment, particularly known corrosion and the actual operating pressures. - (b) No person may operate a segment of pipeline to which paragraph (a)(5) of this section applies, unless overpressure protective devices are installed on the segment in a manner that will prevent the maximum allowable operating pressure from being exceeded, in accordance with §192.195. ## 192.625: Odorization of Gas - (a) A combustible gas in a distribution line must contain a natural odorant or be odorized so that at a concentration in air of one-fifth of the lower explosive limit, the gas is readily detectable by a person with a normal sense of smell. - (b) After December 31, 1976, a combustible gas in a transmission line in a Class 3 or Class 4 location must comply with the requirements of paragraph (a) of this section unless: - (1) At least 50 percent of the length of the line downstream from that location is in a Class 1 or Class 2 location; - (2) The line transports gas to any of the following facilities which received gas without an odorant from that line before May 5, 1975; - (i) An underground storage field; - (ii) A gas processing plant; - (iii) A gas dehydration plant; or - (iv) An industrial plant using gas in a process where the presence of an odorant: - (A) Makes the end product unfit for the purpose for which it is intended; - (B) Reduces the activity of a catalyst; or - (C) Reduces the percentage completion of a chemical reaction; - (3) In the case of a lateral line which transports gas to a distribution center, at least 50 percent of the length of that line is in a Class 1 or Class 2 location; or - (4) The combustible gas is hydrogen intended for use as a feedstock in a manufacturing process. - (c) In the
concentrations in which it is used, the odorant in combustible gases must comply with the following: - (1) The odorant may not be deleterious to persons, materials, or pipe. - (2) The products of combustion from the odorant may not be toxic when breathed nor may they be corrosive or harmful to those materials to which the products of combustion will be exposed. - (d) The odorant may not be soluble in water to an extent greater than 2.5 parts to 100 parts by weight. - (e) Equipment for odorization must introduce the odorant without wide variations in the level of odorant. - (f) To assure the proper concentration of odorant in accordance with this section, each operator must conduct periodic sampling of combustible gases using an instrument capable of determining the percentage of gas in air at which the odor becomes readily detectable. Operators of master meter systems may comply with this requirement by— - (1) Receiving written verification from their gas source that the gas has the proper concentration of odorant; and - (2) Conducting periodic "sniff" tests at the extremities of the system to confirm that the gas contains odorant. - (a) When a pipeline is being purged of air by use of gas, the gas must be released into one end of the line in a moderately rapid and continuous flow. If gas cannot be supplied in sufficient quantity to prevent the formation of a hazardous mixture of gas and air, a slug of inert gas must be released into the line before the gas. - (b) When a pipeline is being purged of gas by use of air, the air must be released into one end of the line in a moderately rapid and continuous flow. If air cannot be supplied in sufficient quantity to prevent the formation of a hazardous mixture of gas and air, a slug of inert gas must be released into the line before the air. #### 192.631: Control Room Management - (a) General. (1) This section applies to each operator of a pipeline facility with a controller working in a control room who monitors and controls all or part of a pipeline facility through a SCADA system. Each operator must have and follow written control room management procedures that implement the requirements of this section, except that for each control room where an operator's activities are limited to either or both of: - (i) Distribution with less than 250,000 services, or - (ii) Transmission without a compressor station, the operator must have and follow written procedures that implement only paragraphs (d) (regarding fatigue), (i) (regarding compliance validation), and (j) (regarding compliance and deviations) of this section. - (2) The procedures required by this section must be integrated, as appropriate, with operating and emergency procedures required by §§192.605 and 192.615. An operator must develop the procedures no later than August 1, 2011, and must implement the procedures according to the following schedule. The procedures required by paragraphs (b), (c)(5), (d)(2) and (d)(3), (f) and (g) of this section must be implemented no later than October 1, 2011. The procedures required by paragraphs (c)(1) through (4), (d)(1), (d)(4), and (e) must be implemented no later than August 1, 2012. The training procedures required by paragraph (h) must be implemented no later than August 1, 2012, except that any training required by another paragraph of this section must be implemented no later than the deadline for that paragraph. - (b) Roles and responsibilities. Each operator must define the roles and responsibilities of a controller during normal, abnormal, and emergency operating conditions. To provide for a controller's prompt and appropriate response to operating conditions, an operator must define each of the following: - (1) A controller's authority and responsibility to make decisions and take actions during normal operations; - (2) A controller's role when an abnormal operating condition is detected, even if the controller is not the first to detect the condition, including the controller's responsibility to take specific actions and to communicate with others; - (3) A controller's role during an emergency, even if the controller is not the first to detect the emergency, including the controller's responsibility to take specific actions and to communicate with others; - (4) A method of recording controller shift-changes and any hand-over of responsibility between controllers; and - (5) The roles, responsibilities and qualifications of others with the authority to direct or supersede the specific technical actions of a controller. - (c) Provide adequate information. Each operator must provide its controllers with the information, tools, processes and procedures necessary for the controllers to carry out the roles and responsibilities the operator has defined by performing each of the following: - (1) Implement sections 1, 4, 8, 9, 11.1, and 11.3 of API RP 1165 (incorporated by reference, see §192.7) whenever a SCADA system is added, expanded or replaced, unless the operator demonstrates that certain provisions of sections 1, 4, 8, 9, 11.1, and 11.3 of API RP 1165 are not practical for the SCADA system used; - (2) Conduct a point-to-point verification between SCADA displays and related field equipment when field equipment is added or moved and when other changes that affect pipeline safety are made to field equipment or SCADA displays; - (3) Test and verify an internal communication plan to provide adequate means for manual operation of the pipeline safely, at least once each calendar year, but at intervals not to exceed 15 months; - (4) Test any backup SCADA systems at least once each calendar year, but at intervals not to exceed 15 months; and - (5) Establish and implement procedures for when a different controller assumes responsibility, including the content of information to be exchanged. - (d) Fatigue mitigation. Each operator must implement the following methods to reduce the risk associated with controller fatigue that could inhibit a controller's ability to carry out the roles and responsibilities the operator has defined: - (1) Establish shift lengths and schedule rotations that provide controllers off-duty time sufficient to achieve eight hours of continuous sleep; - (2) Educate controllers and supervisors in fatigue mitigation strategies and how off-duty activities contribute to fatigue; - (3) Train controllers and supervisors to recognize the effects of fatigue; and - (4) Establish a maximum limit on controller hours-of-service, which may provide for an emergency deviation from the maximum limit if necessary for the safe operation of a pipeline facility. - (e) Alarm management. Each operator using a SCADA system must have a written alarm management plan to provide for effective controller response to alarms. An operator's plan must include provisions to: - (1) Review SCADA safety-related alarm operations using a process that ensures alarms are accurate and support safe pipeline operations; - (2) Identify at least once each calendar month points affecting safety that have been taken off scan in the SCADA host, have had alarms inhibited, generated false alarms, or that have had forced or manual values for periods of time exceeding that required for associated maintenance or operating activities; - (3) Verify the correct safety-related alarm set-point values and alarm descriptions at least once each calendar year, but at intervals not to exceed 15 months; - (4) Review the alarm management plan required by this paragraph at least once each calendar year, but at intervals not exceeding 15 months, to determine the effectiveness of the plan; - (5) Monitor the content and volume of general activity being directed to and required of each controller at least once each calendar year, but at intervals not to exceed 15 months, that will assure controllers have sufficient time to analyze and react to incoming alarms; and - (6) Address deficiencies identified through the implementation of paragraphs (e)(1) through (e)(5) of this section. - (f) Change management. Each operator must assure that changes that could affect control room operations are coordinated with the control room personnel by performing each of the following: - (1) Establish communications between control room representatives, operator's management, and associated field personnel when planning and implementing physical changes to pipeline equipment or configuration; - (2) Require its field personnel to contact the control room when emergency conditions exist and when making field changes that affect control room operations; and - (3) Seek control room or control room management participation in planning prior to implementation of significant pipeline hydraulic or configuration changes. - (g) Operating experience. Each operator must assure that lessons learned from its operating experience are incorporated, as appropriate, into its control room management procedures by performing each of the following: - (1) Review incidents that must be reported pursuant to 49 CFR part 191 to determine if control room actions contributed to the event and, if so, correct, where necessary, deficiencies related to: - (i) Controller fatigue; - (ii) Field equipment; - (iii) The operation of any relief device; - (iv) Procedures; - (v) SCADA system configuration; and - (vi) SCADA system performance. - (2) Include lessons learned from the operator's experience in the training program required by this section. - (h) Training. Each operator must establish a controller training program and review the training program content to identify potential improvements at least once each calendar year, but at intervals not to exceed 15 months. An operator's program must provide for training each controller to carry out the roles and responsibilities defined by the operator. In addition, the training program must include the following elements: - (1) Responding to abnormal operating conditions likely to occur simultaneously or in sequence; - (2)
Use of a computerized simulator or non-computerized (tabletop) method for training controllers to recognize abnormal operating conditions; - (3) Training controllers on their responsibilities for communication under the operator's emergency response procedures; - (4) Training that will provide a controller a working knowledge of the pipeline system, especially during the development of abnormal operating conditions; - (5) For pipeline operating setups that are periodically, but infrequently used, providing an opportunity for controllers to review relevant procedures in advance of their application; and - (6) Control room team training and exercises that include both controllers and other individuals, defined by the operator, who would reasonably be expected to operationally collaborate with controllers (control room personnel) during normal, abnormal or emergency situations. Operators must comply with the team training requirements under this paragraph by no later than January 23, 2018. - (i) Compliance validation. Upon request, operators must submit their procedures to PHMSA or, in the case of an intrastate pipeline facility regulated by a State, to the appropriate State agency. - (j) Compliance and deviations. An operator must maintain for review during inspection: - (1) Records that demonstrate compliance with the requirements of this section; and - (2) Documentation to demonstrate that any deviation from the procedures required by this section was necessary for the safe operation of a pipeline facility. Subpart M: Maintenance 192.747: Valve Maintenance: Distribution Systems - (a) Each valve, the use of which may be necessary for the safe operation of a distribution system, must be checked and serviced at intervals not exceeding 15 months, but at least once each calendar year. - (b) Each operator must take prompt remedial action to correct any valve found inoperable, unless the operator designates an alternative valve. ## 192.756: Joining Plastic Pipe by Heat Fusion; Equipment Maintenance and Calibration Each operator must maintain equipment used in joining plastic pipe in accordance with the manufacturer's recommended practices or with written procedures that have been proven by test and experience to produce acceptable joints. ## Subpart N: Qualification of Pipeline Personnel ## 192.801: Scope - (a) This subpart prescribes the minimum requirements for operator qualification of individuals performing covered tasks on a pipeline facility. - (b) For the purpose of this subpart, a covered task is an activity, identified by the operator, that: - (1) Is performed on a pipeline facility; - (2) Is an operations or maintenance task; - (3) Is performed as a requirement of this part; and - (4) Affects the operation or integrity of the pipeline. ## 192.803: Definitions Abnormal operating condition means a condition identified by the operator that may indicate a malfunction of a component or deviation from normal operations that may: - (a) Indicate a condition exceeding design limits; or - (b) Result in a hazard(s) to persons, property, or the environment. Evaluation means a process, established and documented by the operator, to determine an individual's ability to perform a covered task by any of the following: - (a) Written examination; - (b) Oral examination; - (c) Work performance history review; - (d) Observation during: - (1) Performance on the job, - (2) On the job training, or - (3) Simulations; - (e) Other forms of assessment. Qualified means that an individual has been evaluated and can: - (a) Perform assigned covered tasks; and - (b) Recognize and react to abnormal operating conditions. # 192.805: Qualification program Each operator shall have and follow a written qualification program. The program shall include provisions to: - (a) Identify covered tasks; - (b) Ensure through evaluation that individuals performing covered tasks are qualified; - (c) Allow individuals that are not qualified pursuant to this subpart to perform a covered task if directed and observed by an individual that is qualified; - (d) Evaluate an individual if the operator has reason to believe that the individual's performance of a covered task contributed to an incident as defined in 191: - (e) Evaluate an individual if the operator has reason to believe that the individual is no longer qualified to perform a covered task; - (f) Communicate changes that affect covered tasks to individuals performing those covered tasks; - (g) Identify those covered tasks and the intervals at which evaluation of the individual's qualifications is needed; - (h) After December 16, 2004, provide training, as appropriate, to ensure that individuals performing covered tasks have the necessary knowledge and skills to perform the tasks in a manner that ensures the safe operation of pipeline facilities; and - (i) After December 16, 2004, notify the Administrator or a state agency participating under 49 U.S.C. Chapter 601 if the operator significantly modifies the program after the administrator or state agency has verified that it complies with this section. Notifications to PHMSA may be submitted by electronic mail to InformationResourcesManager@dot.gov, or by mail to ATTN: Information Resources Manager DOT/PHMSA/OPS, East Building, 2nd Floor, E22-321, New Jersey Avenue SE., Washington, DC 20590. #### 192.807: Recordkeeping Each operator shall maintain records that demonstrate compliance with this subpart. - (a) Qualification records shall include: - (1) Identification of qualified individual(s); - (2) Identification of the covered tasks the individual is qualified to perform; - (3) Date(s) of current qualification; and - (4) Qualification method(s). - (b) Records supporting an individual's current qualification shall be maintained while the individual is performing the covered task. Records of prior qualification and records of individuals no longer performing covered tasks shall be retained for a period of five years. ## 192.809: General - (a) Operators must have a written qualification program by April 27, 2001. The program must be available for review by the Administrator or by a state agency participating under 49 U.S.C. Chapter 601 if the program is under the authority of that state agency. - (b) Operators must complete the qualification of individuals performing covered tasks by October 28, 2002. - (c) Work performance history review may be used as a sole evaluation method for individuals who were performing a covered task prior to October 26, 1999. - (d) After October 28, 2002, work performance history may not be used as a sole evaluation method. - (e) After December 16, 2004, observation of on-the-job performance may not be used as the sole method of evaluation.