GOVERNMENT GEOTECHNICAL REPORT FOR NATIONAL TRANSPORTATION SAFETY BOARD

PREPARED BY

U.S. ARMY CORPS OF ENGINEERS

FORT WORTH DISTRICT

ENGINEERING AND CONSTRUCTION DIVISION

GEOTECHNICAL BRANCH

CESWF-EC-G

APRIL 2019

Table of Contents

1.	General
2.	Subsurface Investigation 2
3.	Subsurface Conditions 2
4.	Testing
5.	Discussions
6.	Conclusions
Refe	erences:

GOVERNMENT GEOTECHNICAL REPORT

1. General.

The purpose of this report is to outline the results of a geotechnical study performed to help the National Transportation Safety Board (NTSB) evaluate the technical accuracy of the preliminary geotechnical assessment report provided by Bryant Consultants, Incorporated (BCI) regarding the possible cause of the gas pipeline explosion in Dallas, TX.

The NTSB has requested the services of U.S. Army Corps of Engineers (USACE) for this study. This work is being performed as per the Inter/Intra-Agency Agreement Number 9531BM19H0019 dated October 10, 2018 between NTSB and USACE. This agreement was modified on February 20, 2019 to change the technical point of contact and extend the period of performance to April 30, 2019. The scope of our work included reviewing the preliminary assessment report prepared by Bryant Consultants, Incorporated, performing borings to determine subsurface stratigraphy and collecting soil samples within the accident area, determining the characteristics of the soil samples and performing analyses to determine the shrink/swell potential of the soils. Figure 1 shows the accident block and the location of natural gas leaks.

Accident Block: Espanola Dr.—El Centro Dr.—Durango Dr.—Larga Dr.

Figure 1 Map of the block bounded by Durango Drive, Larga Drive, Espanola Drive, and El Centro Drive showing the location of natural gas leaks and affected houses.

2. Subsurface Investigation.

In line with the Scope of Work developed by the U.S. Army Corps of Engineers (USACE), Fort Worth District, three (3) borings were drilled for this assessment. One of the originally proposed borings (Boring B-3) could not be drilled due to the presence of existing utilities. The borings were drilled to depths of 20 feet below ground surface. The field investigation was performed using a Gus Pech 1300C truck-mounted drill rig and conventional drilling attachments. Test hole advancement and sample recovery was performed using 6-inch diameter short flight hollow stem augers, a nominal 3-inch diameter Shelby tube sampler, and a 6-inch diameter drag bit. Samples recovered from the borings were sealed in airtight containers and taken to the laboratory of TEAM Consultants, Incorporated (Arlington, Texas) for testing. Boring locations are shown in Figure B-101. Results of the field investigation are shown in Logs of Borings (Appendix A).

a. <u>Groundwater Conditions.</u> Groundwater conditions were monitored during and upon completion of drilling operations. The borings were dry during the observation period. However, it should be noted that groundwater conditions are relative to the time of drilling, annual precipitation, and drainage conditions at the site.

3. Subsurface Conditions.

<u>General Geology.</u> Based on the Geological Atlas of Texas, Dallas Sheet, primary material underlying the accident block consists of Eagle Ford Shale Formation (K_{ef}). Figure 2 shows the location of the accident block. To the West of the block is the Fluviatile Terrace Deposits (Q_t) and to the East of the block is the Austin Chalk Formation (K_{au}). Eagle Ford Shale Formation and the Austin Chalk Formation are of the Upper Cretaceous age whereas the Fluviatile Terrace Deposits are of the Pleistocene age.

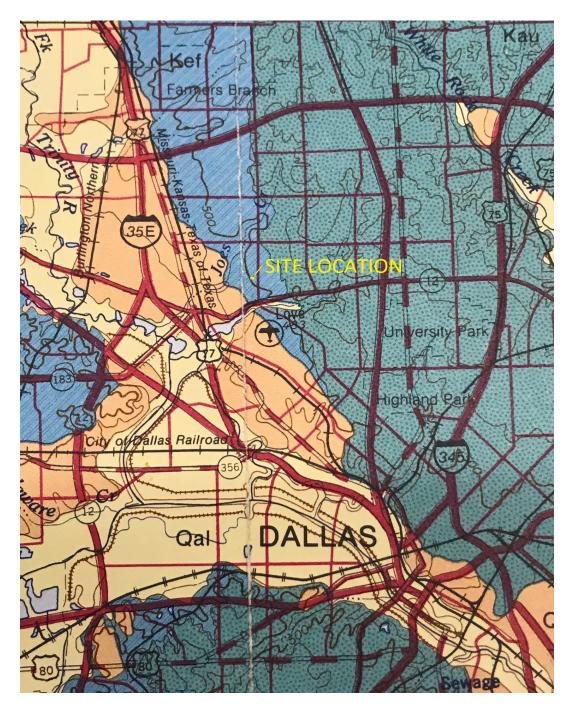


Figure 2 Geology at the accident block (Geological Atlas of Texas, Dallas Sheet)

The Eagle Ford Shale Formation typically consists of shale, sandstone, and limestone interbedded with clay seams. Soils derived from the Eagle Ford Shale Formation are typically plastic clays exhibiting high shrink/swell potential with variations in moisture content. The Austin Chalk Formation consists of gray chalky limestone with some shale and partings. This

unit weathers to a light tan; it is typically overlain by a layer of residual, dark colored clay. The residual clays on top of the chalky limestone are highly expansive. Fluviatile Terrace deposits consist of gravel, sand, silt and clay.

Subsurface conditions representative of the project site are shown on the logs of borings in Appendix A. The legend on the individual boring logs show materials as classified in the laboratory using procedures presented in ASTM D 2488. It should be noted that the actual interface between material types may be far more gradual or abrupt than presented; therefore, actual subsurface conditions in areas not sampled may differ from those predicted.

4. Testing.

Laboratory Testing. Representative soil samples recovered from test holes were subjected to laboratory testing for identification, moisture content, grain-size distribution, Atterberg limits, density, and controlled expansion-consolidation. The accumulative test results are tabulated and presented in Appendix B. Results of identification and moisture content testing are shown on the boring logs, Appendix A.

Results of laboratory testing performed on samples obtained from the site are presented graphically in Appendix B as follows: Plasticity characteristics are shown on Plate 1, Plasticity Chart. Moisture content values of representative samples are shown with respect to depth on Plate 2. Atterberg limits test results are shown with respect to depth on Plate 3. Dry density values of representative undisturbed samples and their corresponding moisture contents are shown with respect to depth on Plate 4.

(1) Controlled Expansion-Consolidation Testing and Swell Pressure

<u>Testing.</u> Controlled expansion-consolidation (CEC) testing was performed on eight specimens of high plasticity (CH) clay and one specimen of low plasticity (CL) clay collected at the site. The high plasticity (CH) clay overburden specimens were collected at depths ranging between

2 to 15 feet. Liquid limits (LL) measured from representative samples of the high plasticity clays vary between 51 and 64, plastic limits (PL) vary between 18 and 25 with plasticity indices (PI) between 32 and 41. The moisture content is equal to and up to 3 percent higher than the plastic limit. An expansion pressure (P_{exp}) of approximately 0.75 tons per square foot (tsf) to 1.5 tsf was recorded during CEC testing of the high plasticity clay specimens. Based on CEC test results, and the considerations discussed above, the high plasticity clay specimens have a moderate to high expansion potential ($C_s = 0.04$ to 0.06) and a moderate to high consolidation potential ($C_c = 0.15$ to 0.22) at present moisture contents.

Controlled expansion-consolidation testing was performed on one specimen of the low plasticity clay at depth of 18 to 20 feet. LL measured from representative samples of the low plasticity clays were 45 and 46, PL was 18, with PI of 27 and 28. The moisture content is 2 percent higher than the plastic limit. An expansion pressure (P_{exp}) of approximately 1.0 tsf was recorded during CEC testing of the low plasticity clay specimen. Based on CEC test results, the low plasticity clay specimen has moderate expansion potential ($C_s = 0.04$) and a moderate consolidation potential ($C_c = 0.15$) at present moisture content. Controlled expansion-consolidation test results are presented in Appendix C at the end of this report.

Boring Number	Depth (feet)	Liquid Limit	Plasticity Index	P _{exp} (tsf)	P_{exp}/P_o	Cs	Cc	Soil Type
B-1	2.0	63	39	0.75	4.0	0.06	0.19	СН
B-1	8.0	55	33	1.0	1.8	0.05	0.18	СН
B-2	2.0	61	36	1.0	5.4	0.06	0.22	СН
B-2	4.0	57	36	1.0	3.2	0.05	0.19	СН
B-2	13.0	60	40	1.5	1.7	0.05	0.15	СН
B-4	1.0	64	40	1.5	12.0	0.06	0.22	СН
B-4	5.0	61	39	1.0	2.7	0.06	0.19	СН
B-4	8.0	52	32	1.0	1.8	0.04	0.16	СН
B-4	18.0	45	27	1.0	0.8	0.04	0.15	CL

Controlled expansion-consolidation test results are summarized below.

 P_{exp} = Swell Pressure in tons per square foot; P_0 = Overburden Pressure in tons per square foot

C_s= Swell Index; C_c= Compression Index

5. Discussions.

The surficial soils encountered in the borings are high plasticity clays. Swell potential significantly increases as subgrade moisture content increases. Based on TxDOT test method TEX-124-E which uses Atterberg limits values and in situ moisture content, we estimate a potential vertical rise (PVR) in the range of $1-\frac{3}{4}$ to $2-\frac{1}{2}$ inches. Our estimate assumes a zone of influence of 15.0 feet below ground surface. PVR in the range of $2-\frac{1}{2}$ to 3.0 inches is estimated assuming a dry soil moisture condition.

As mentioned previously in the general geology section of this report, the accident block is located in an area underlain by the Eagle Ford Shale Formation. Fluviatile Terrace deposits are located to the west and Austin Chalk Formation is located to the east of the Eagle Ford Formation. Soils derived from the Eagle Ford Shale Formation and the residual soils on top of the Austin Chalk Formation are high plasticity clays. These clays shrink on drying and swell when provided access to water. This shrink/swell movement causes a lot of distress to the structures constructed on top or within these formations.

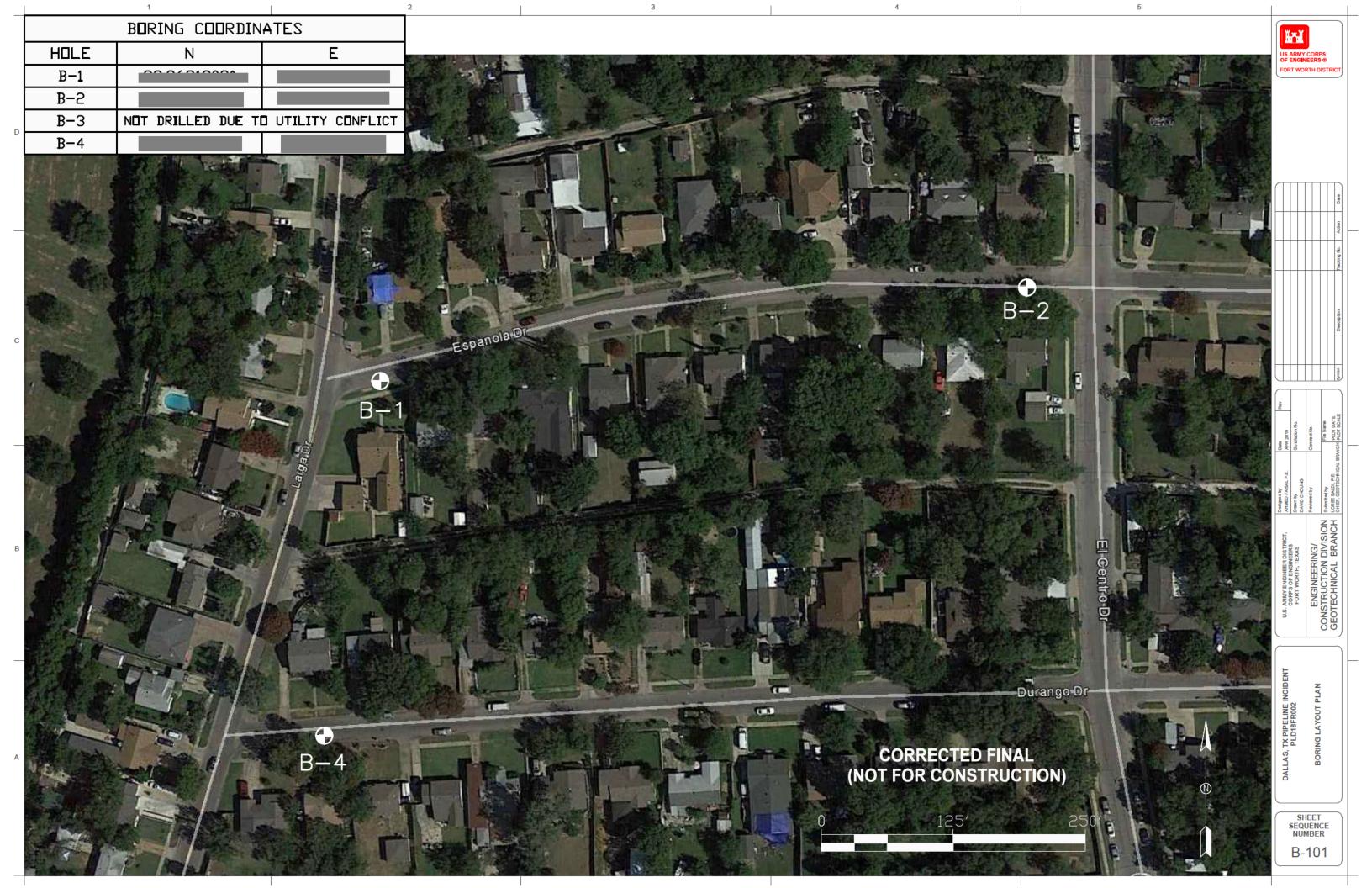
The borings were drilled in March during the colder months. So, the soils encountered at the site were moist and the moisture content was equal to and up to 3 percent higher than the plastic limit of the soil. The swell pressure recorded in the soil samples tested ranged between 0.75 tons per square foot (tsf) to 1.5 tsf. Drier high plasticity soils exert very high swell pressures (5 to 6 tsf) when provided access to water and prevented from swelling. The ratio of the swell pressure to overburden pressure (P_{exp}/P_o) of high plasticity clays at this site ranged from 1.7 to 12 indicating a moderate to very high swell potential.

Structures and pipes founded within highly expansive soils as well as in different geological formations experience differential movements when variable moisture conditions are present in the soils supporting the structures or pipes. Clays are impermeable and water cannot easily flow through them whereas sands and gravels are permeable and provide easy access for water to permeate. Granular backfill around the pipes also provide a medium through which

water flows easily. There may be localized areas where water may stagnate within these granular backfill and cause heave. This localized heave will cause differential movement between this area and the area not provided access to water. There may also be low areas where water is ponding causing localized heave. During summer, the highly plastic clays shrink. This cyclic shrink /swell movement exerts a lot of forces on the joints and pipe connections. The magnitude of the force is directly proportional to the plasticity of the soil and the variability of the moisture content within the soil. Construction in the vicinity of the buried pipes may also provide access to water in the soils supporting the pipes.

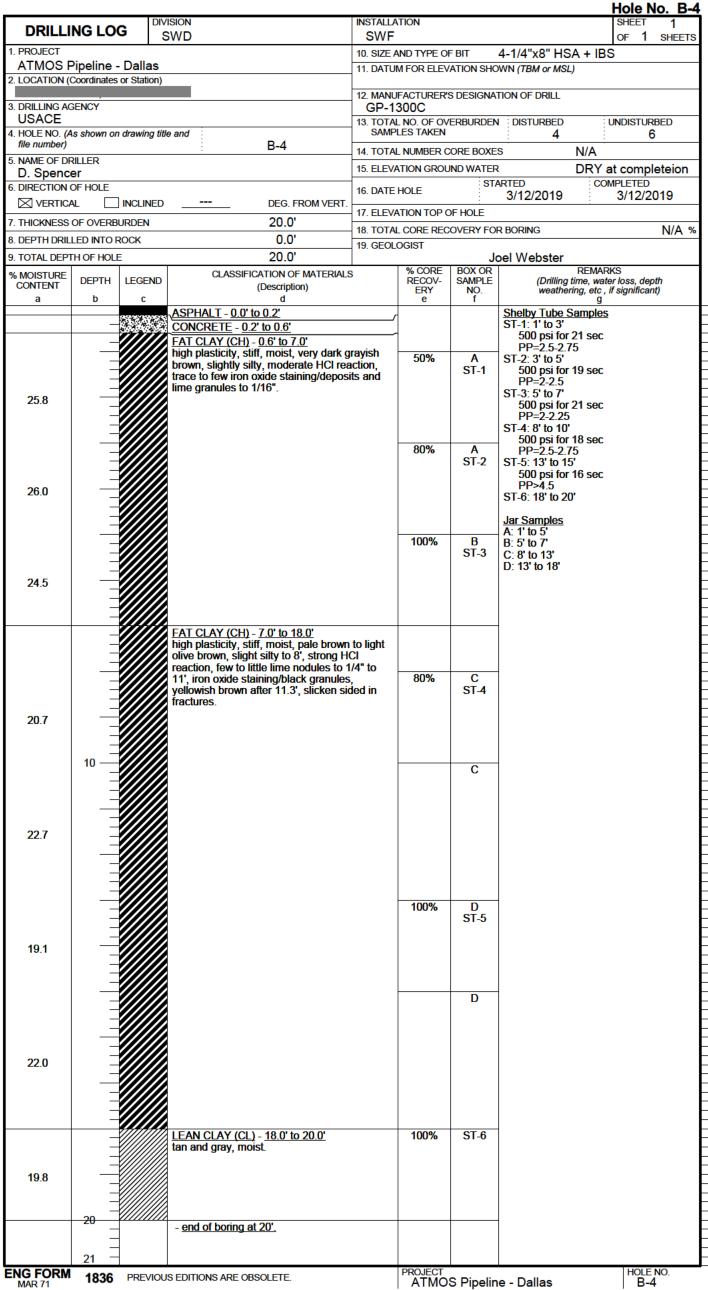
6. Conclusions.

BCI's report asserts there are two different geologic formations, the Eagle Ford and Austin Chalk, underlying the accident site. USACE, Fort Worth District disagrees that there are two different geologic formations underlying the accident site. Based on the site-specific borings, drilled as part of the USACE subsurface investigation, there is only one geologic formation, the Eagle Ford Shale, underlying the accident site. Furthermore, based on the lab test results, the plasticity characteristics and swell potential of the subsurface materials within the accident block are highly uniform.


References:

- TEAM Consultants, Incorporated Report No. 192031
- TM 5-818-1 Soils and Geology Procedures for Foundation Design of Buildings and Other Structures (Except Hydraulic Structures)
- TM 5-818-7 Foundations in Expansive Soils
- UFGS Guide Specifications for Construction

FORT WORTH DISTRICT APRIL 2019


APPENDIX A

BORING LOCATIONS & LOGS OF BORINGS

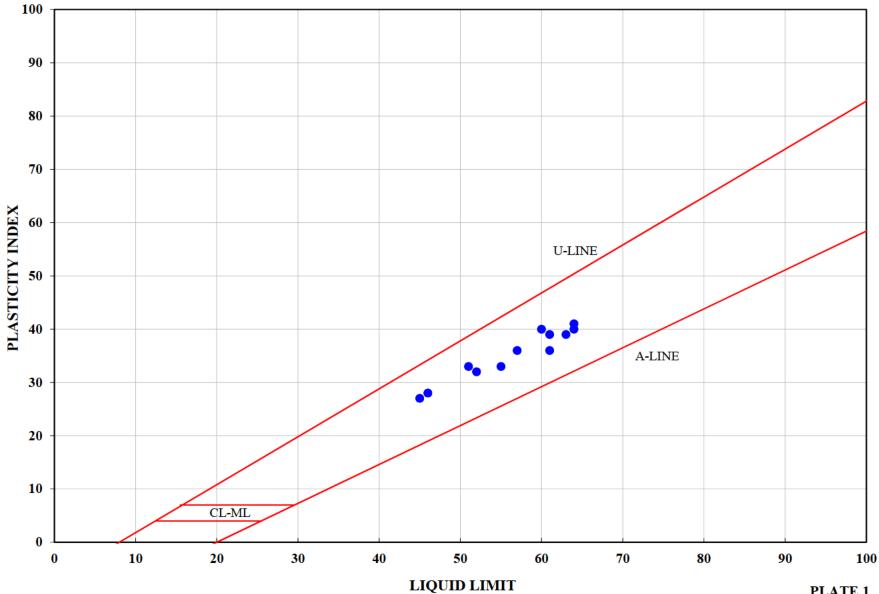
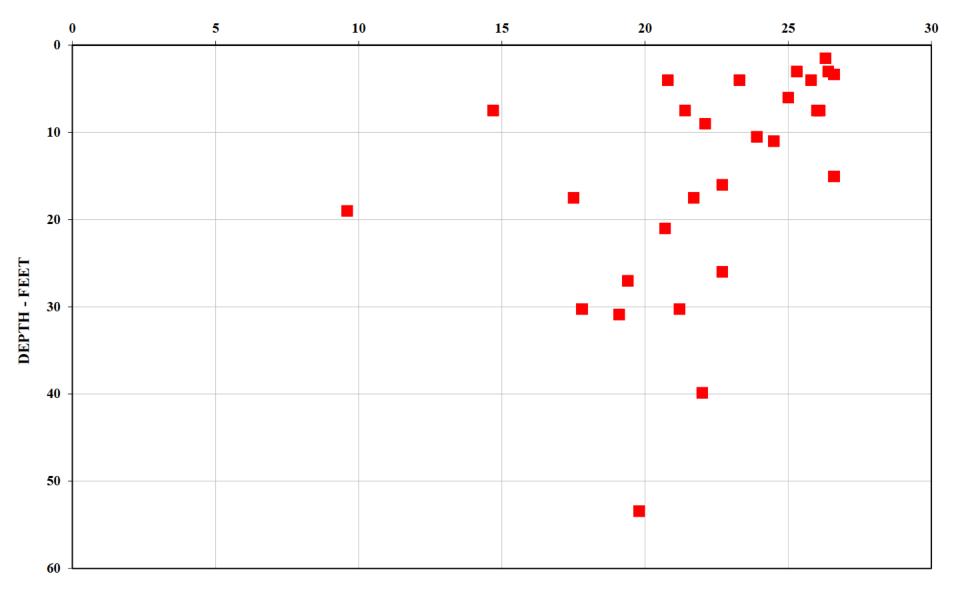
DRILLI			ision SWD	INSTALLA SWF	TION		SHEET	
PROJECT					ND TYPE O	F BIT		SHEE
							DWN (TBM or MSL)	
LOCATION (C		or station)		12. MANU	FACTURER	S DESIGNA	TION OF DRILL	
DRILLING AG	ENCY			GP-1	300C			
USACE HOLE NO. (A	s shown on	drawing titl	e and		. NO. OF OV LES TAKEN	ERBURDEN	N DISTURBED UNDISTU	JRBED
file number)		,	B-1	14. TOTAL	NUMBER C	ORE BOXE		-
NAME OF DR D. Spence				15. ELEVA	TION GROU		DRY at com	pleteio
DIRECTION				16. DATE	HOLE	ST	ARTED COMPLETED 3/13/2019 3/13/	
		INCLINED	DEG. FROM VERT.	17. ELEVA		DF HOLE	3/13/2018 3/13/	2013
THICKNESS (20.0'	18. TOTAL	CORE REC	OVERY FO	R BORING	N/A
DEPTH DRILL			0.0' 20.0'	19. GEOL	OGIST		oel Webster	
MOISTURE			CLASSIFICATION OF MATERIALS	3	% CORE	BOX OR	REMARKS	
ONTENT	DEPTH	LEGEND	(Description)		RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, d weathering, etc , if signific	əpth ant)
а	b	C	d ASPHALT - 0.0' to 0.3'		e	f	g Shelby Tube Samples	
		*****	BASE MATERIAL - SANDY GRAVEL	- <u>0.3' to</u>			ST-1: 2' to 4' 500 psi for 20 sec	
			<u>1.6'</u> coarse to fine grained, subangular, ma	edium			PP=2.25	
		*****	dense, moist to wet, pale brown, chall to few fines.	ky, trace			ST-X: 4' to 6' 500 psi for 17 sec	
			FAT CLAY (CH) - 1.6' to 7.2'				no recovery ST-2: 8' to 10'	
			high plasticity, stiff, moist, gray, silty, f little fine grained sand, moderate HCI	reaction.	IBS 85%	A ST 1	500 psi for 16 sec	
			trace to few lime granules to 1/16", tra oxide staining; becoming gray and ligh	ace iron	80%	ST-1	PP=2.5 ST-Y: 13' to 15'	
25.3			with little lime granules to 1/4" below 6				500 psi for 16 sec no recovery	
							Jar Samples A: 2' to 4'	
					IBS 100%	B	B: 4' to 7.2' C: 8' to 13'	
					_		D: 13' to 17.1'	
							E: 17.1' to 17.9' F: 18' to 20'	
25.0	_							
			FAT CLAY (CH) - 7.2' to 17.1'				-	
			high plasticity, stiff, moist, light gray w vellowish brown staining, moderate H	rith Cl				
			reaction, trace black staining/iron oxid granules to 1/4", trace lime granules to	e	IBS	ST-2	1	
			granules to 1/4, trace lime granules to	U 1/4 .	100%			
22.1								
	10 —							
						С		
23.9								
							-	
					SPT-N 6-8-9-9	D		
					95%			
26.6								
			LEAN CLAY WITH SAND (CL) - 17.1			E	-	
17.5			tan and gray, moist, very silty with sor grained, slickensided in fractures.					
			SILTY SAND (SM) - 17.9' to 20.0'			F	1	
			fine grained, poorly graded quartz, me dense, light gray to 19', yellowish brow	edium vn below		'		
10.0			19', trace fines.					
19.0								
	-20 _	··· (••· •• •• •• ••	- end of boring at 20'.				1	
						1		
	21 -							

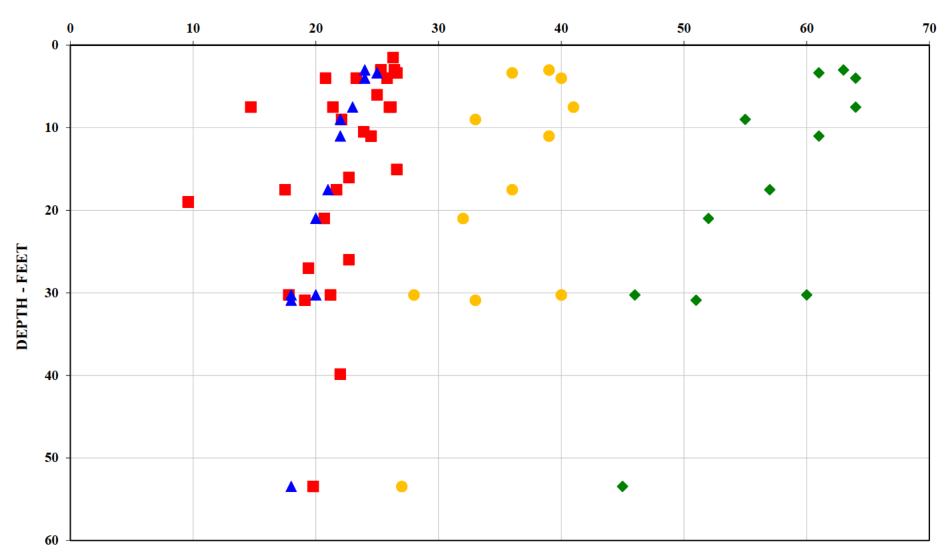
DRILL	NG LOO				TION		SHEET 1
PROJECT			SWD	SWF			
ATMOS F					ND TYPE O		4-1/4"x8" HSA + IBS
LOCATION (. ,
DRILLING AC	GENCY			12. MANU		S DESIGNA	TION OF DRILL
USACE		drawing	o and	13. TOTAL	. NO. OF OV ES TAKEN	ERBURDEN	
file number)	as snown on	drawing titi	B-2		. NUMBER C		<u> 6 4 </u> s <u>N/A</u>
					TION GROU		
D. Spenc				16. DATE I			ARTED COMPLETED
		INCLINED	DEG. FROM VERT.				3/13/2019 3/13/2019
THICKNESS	OF OVERBU	JRDEN	20.0'		TION TOP C		R BORING N/A
DEPTH DRIL	LED INTO R	OCK	0.0'	19. GEOLO		OVERTIFU	R BORING IN/P
TOTAL DEPT	TH OF HOLE		20.0'		A/ 0005		oel Webster
6 MOISTURE CONTENT	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	3	% CORE RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth
а	b	с	d		ERY e	NO. f	weathering, etc , if significant)
		*****	<u>ASPHALT - 0.0' to 0.3'</u> BASE MATERIAL - SANDY GRAVEL	- 0 3' to			Shelby Tube Samples ST-1: 2' to 4'
			1.0'				500 psi for 15 sec PP=2.75
			coarse to fine grained, subangular, m dense, moist, pale brown, chalky, trac	edium ce to few [ST-2: 4' to 6'
			fines. <u>FAT CLAY (CH)</u> - <u>1.0' to 5.7'</u>]			500 psi for 15 sec PP=2.5
			high plasticity, stiff, moist, dark gray,	slightly	85%	A	ST-3: 8' to 10' 500 psi for 19 sec
			silty, trace fine grained sand, trace ling granules to 1/16", trace rootlets; beco	ming	0070	ST-1	PP=2.5
26.6			light gray with little lime granules to 1/ 4.5', strong HCI reaction.	8" below			ST-4: 13' to 15' 500 psi for 20 sec
20.0			H.J., SUUNY FICHTERCUUM.				PP=2.75 ST-5: 18' to 20' (no recovery - SPT or
							2nd attempt)
					100%	A	500 psi for 19 sec PP=2.75
	1					ST-2	Jar Samples
21.7							A: 2' to 5.7'
	=						B: 5.7' to 8' C: 8' to 11.3'
			FAT CLAY (CH) - 5.7' to 8.0'				D: 11.3' to 12.1' E: 13' to 18'
			'same as CH below'		IBS 100%	В	F: 18' to 20'
					10070		
19.4							
					IDe	С	
			LEAN CLAY (CL) - 8.0' to 11.3' tan and gray, moist.		IBS 100%	ST-3	
/ -							
17.8							
	10 —					С	-
20.0							
20.8							
			LEAN CLAY WITH SAND (CL) - 11.3	' to 12.1'		D	-
14.7	=		tan, moist, some lime nodules to 1'.				
			FAT CLAY (CH) - 12.1' to 20.0'				-
			high plasticity, stiff, moist, light gray w yellowish brown staining, moderate H	vith little Cl			
			reaction, trace to few silt, few lime no	dules to	IBS	E	-
			1/4", trace black staining/granules to to little slickensides at 30° to 60°; yell	owish	95%	ST-4	
21.2			brown with some light gray below 12.	1'.			
£1.£							
						E	1
23.3							
_							
					SPT-N	F	
	1				2-5-7-9 100%		
21.4							
	20						
			- end of boring at 20'.				
	21 -						
NG FORM							he - Dallas B-2

APPENDIX B

LABORATORY TESTING DATA PLOTS

ATMOS PIPELINE - DALLAS PLASTICITY CHART

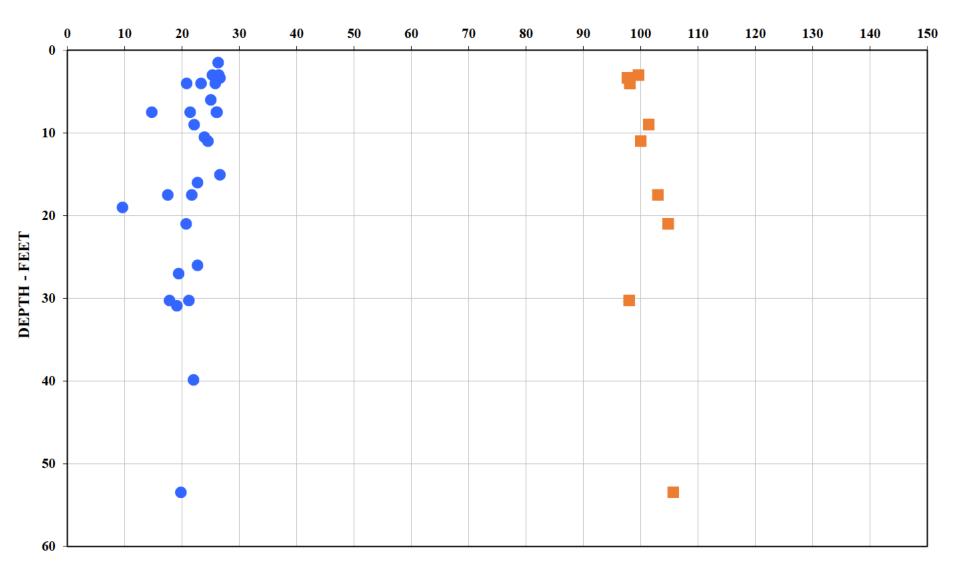




PLATE 1

ATMOS PIPELINE - DALLAS MOISTURE CONTENT VS DEPTH

MOISTURE CONTENT - %

PLATE 2



ATMOS PIPELINE - DALLAS ATTERBERG LIMITS VS DEPTH

MOISTURE CONTENT - %

■MC ◆LL ▲PL ●PI

PLATE 3

ATMOS PIPELINE - DALLAS MOISTURE CONTENT - DRY DENSITY VS DEPTH

MOISTURE CONTENT - % DRY DENSITY - pcf

APPENDIX C

LABORATORY TESTING DATA

Geotechnical, Environmental, Construction Materials Testing

April 15, 2019 TEAM Project No. 192031 Report No. 1

U.S. Army Corps of Engineers CESWF-EC-DG

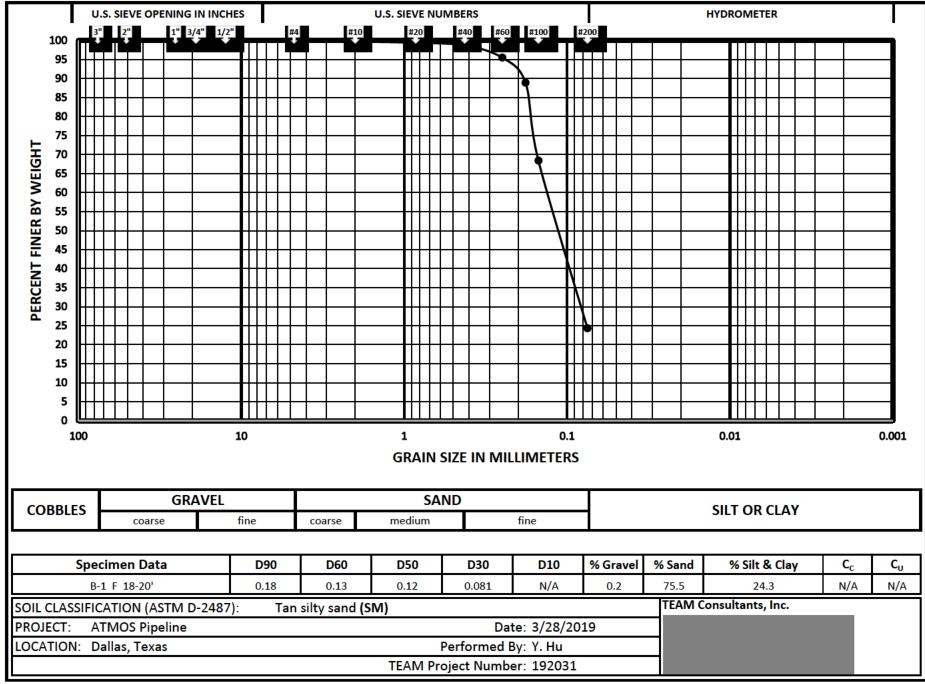
Attn: Mr. Faisal Ahmed

Re: Laboratory Testing Services

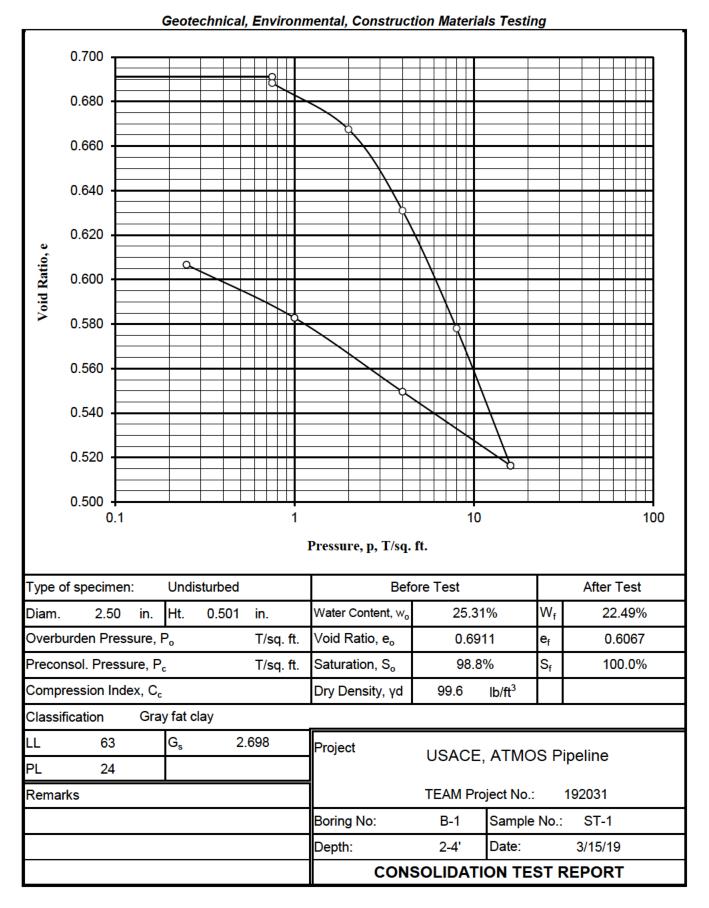
Dear Mr. Ahmed:

Submitted here is our report of laboratory testing services completed on soil samples received at our materials testing laboratory in Arlington, Texas, on March 13, 2019 for the above referenced project. The laboratory test program authorized March 15, 2019 was finished utilizing the following test methodologies:

Moisture Content Atterberg Limits Grain Size Analysis Classification of Soils Controlled Expansion Consolidation


ASTM D-2216 ASTM D-4318 ASTM D-422 ASTM D-2487/D-2488 USACE EM 1110-2-1906, App. VIII

We appreciate the opportunity to be of assistance to you with this project. Should you have any questions, or if we may be of further assistance, please call the undersigned at **Comparison**.


Very truly yours,	
Jason Young, GIT Staff Geologist	
Staff Geologist	
James Hutt	
Vice President	

			SUMMARY OF LABORATORY TEST RESULTS									
			LABORATORY TESTING SERVICES									
			NTSB Dallas Pipeline									
	T T T	1 1	Dallas, Texas	1 1	T	1		1	1	1		
		Sample										
Boring	Sample	Depth	Visual Description &			-	Percent			I.	#400	#000
No.	No.	(ft.)	Unified Soil Classification (ASTM D-2487/2488)		#4	#10	#20	#40	#60	#80	#100	#200
B-1	ST-1	2-4	Gray fat clay	СН	99.6	97.4	96.0	95.2	94.4	93.3	92.1	88.2
	Α	2-4	Gray fat clay	СН								
	В	4-8	Light brown fat clay	СН								
	ST-2	8-10	Tan and gray fat clay	СН	99.4	98.0	97.0	96.5	95.9	95.2	94.4	92.0
	С	8-13	Tan and gray fat clay	CH								
	D	13-17.1	Tan and gray fat clay	CH								
	E	17.1-17.9	Tan and gray lean clay with sand	CL								
	F	18-20	Tan silty sand	SM	99.8	99.7	99.4	98.7	95.5	88.9	68.4	24.3
B-2	ST-1	2-4	Gray and dark brown fat clay	СН	100	99.6	99.2	98.9	98.4	97.6	96.7	94.3
D-2	A	2-5.7	Dark gray fat clay	СН								
	ST-2	4-6	Gray and dark gray fat clay	СН	99.0	97.8	97.0	96.6	96.2	95.5	94.8	92.6
	B	5.7-8	Light gray fat clay	СН								
	ST-3	8-10	Tan and gray lean clay	CL	99.9	99.6	98.7	97.9	97.1	96.4	95.6	93.6
	с	8-11.3	Tan and gray fat clay	СН								
	D	11.3-12.1	Tan lean clay with sand	CL								
	ST-4	13-15	Tan and gray fat clay	СН	100	100	99.8	99.6	99.2	98.7	98.2	96.5
	E	13-18	Brown and gray fat clay	СН								
	F	18-20	Brown and gray fat clay	СН			-				-	
B-4	A	1-5	Gray fat clay	СН								
	ST-1	1-3	Gray and dark brown fat clay	СН	98.9	98.0	96.8	96.1	95.2	94.0	92.6	88.9
	ST-2	3-5	Gray and brown fat clay	СН	100	99.1	98.1	97.3	96.4	95.1	93.8	90.3
	ST-3	5-7	Brown and gray fat clay	СН	98.3	95.7	94.5	93.5	92.6	91.5	90.7	87.6
	B	5-7	Tan and gray fat clay	CH								
	ST-4	8-10	Tan and gray fat clay	CH	99.9	98.6	97.4	96.5	95.7	95.1	94.7	93.0
	C ST-5	8-13 13-15	Tan and gray fat clay	CH								
	51-5 D	13-15	Brown and gray fat clay Brown and tan fat clay	СН СН	100	100	100	99.9 	99.7 	99.4 	99.1 	97.4
	ST-6	18-20	Tan and gray lean clay	CL	100	99.4	99.2	99.1	98.9	98.7	98.5	97.7
	51-0	10-20		0L	100	33.4	33.2	33.1	30.3	30.7	30.5	51.1

			SUMMARY OF LABORATORY TEST RESULTS							
			LABORATORY TESTING SERVICES			1				
			NTSB Dallas Pipeline							
		г г	Dallas, Texas				1			
		Sample			Moisture			terbe		
Boring	Sample	Depth	Visual Description &		Content	Weight		_imit		<u> </u>
No.	No.	(ft.)	Unified Soil Classification (ASTM D-2487/2488)		(%)	(pcf)	LL	PL	PI	Remarks
B-1	ST-1	2-4	Gray fat clay	СН	25.3	99.6	63	24	39	(1)
	Α	2-4	Gray fat clay	СН	26.4					
	В	4-8	Light brown fat clay	СН	25.0					
	ST-2	8-10	Tan and gray fat clay	СН	22.1	101.4	55	22	33	(1)
	C	8-13	Tan and gray fat clay	СН	23.9					
	D	13-17.1	Tan and gray fat clay	СН	26.6					
	E	17.1-17.9	Tan and gray lean clay with sand	CL	17.5					
	F	18-20	Tan silty sand	SM	9.6		No	n-Pla	stic	
B-2	ST-1	2-4	Gray and dark brown fat clay	СН	26.6	97.7	61	25	36	(1)
	A	2-5.7	Dark gray fat clay	СН	26.1					
	ST-2	4-6	Gray and dark gray fat clay	СН	21.7	103.0	57	21	36	(1)
	В	5.7-8	Light gray fat clay	СН	19.4					
	ST-3	8-10	Tan and gray lean clay	CL	17.8		46	18	28	
	C	8-11.3	Tan and gray fat clay	СН	20.8					
	D	11.3-12.1	Tan lean clay with sand	CL	14.7					
	ST-4	13-15	Tan and gray fat clay	СН	21.2	98.0	60	20	40	(1)
	E	13-18	Brown and gray fat clay	СН	23.3					
	F	18-20	Brown and gray fat clay	СН	21.4					
B-4	A	1-5	Gray fat clay	СН	26.3					
	ST-1	1-3	Gray and dark brown fat clay	СН	25.8	98.1	64	24	40	(1)
	ST-2	3-5	Gray and brown fat clay	СН	26.0		64	23	41	
	ST-3	5-7	Brown and gray fat clay	СН	24.5	100.0	61	22	39	(1)
	В	5-7	Tan and gray fat clay	СН	22.7					
	ST-4	8-10	Tan and gray fat clay	СН	20.7	104.8	52	20	32	(1)
	С	8-13	Tan and gray fat clay	СН	22.7					
	ST-5	13-15	Brown and gray fat clay	СН	19.1		51	18	33	
	D	13-18	Brown and tan fat clay	СН	22.0					
	ST-6	18-20	Tan and gray lean clay	CL	19.8	105.7	45	18	27	(1)
			(1) See attached "Laboratory Data Sheets" for Consolidation Test results.							

PARTICLE SIZE ANALYSIS (ASTM D-422)

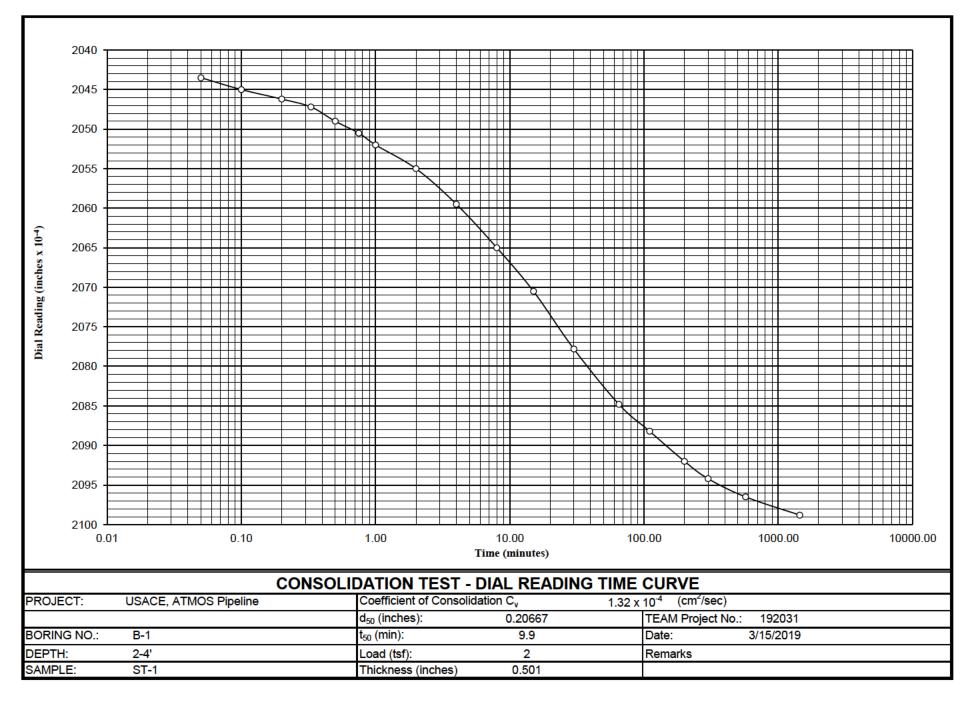
TEAM Consultants, Inc.

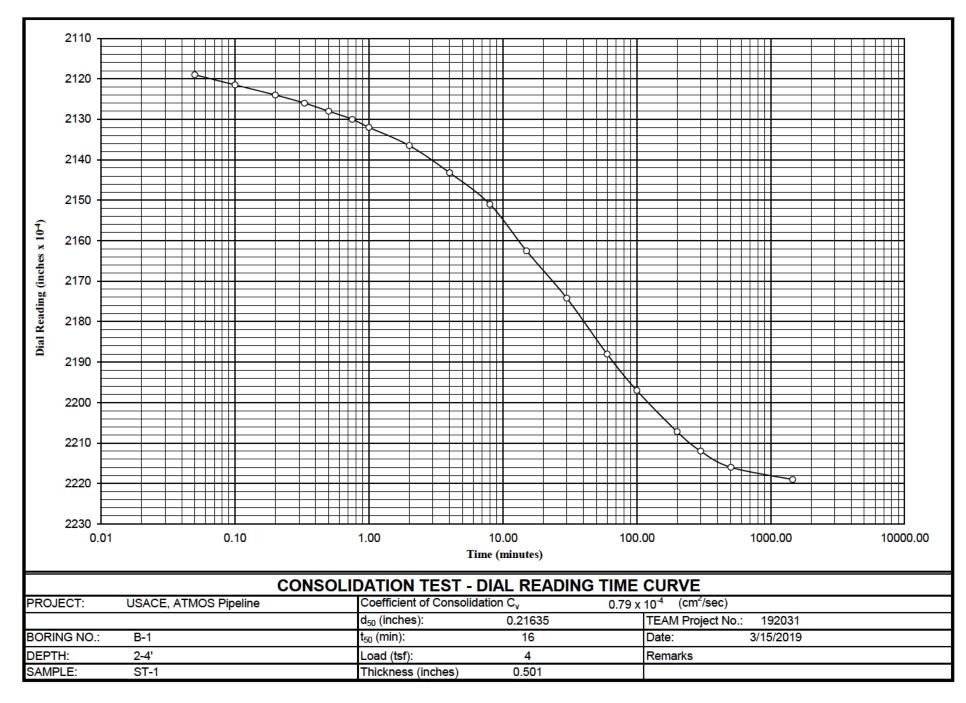
Geotechnical, Environmental, Construction Materials Testing

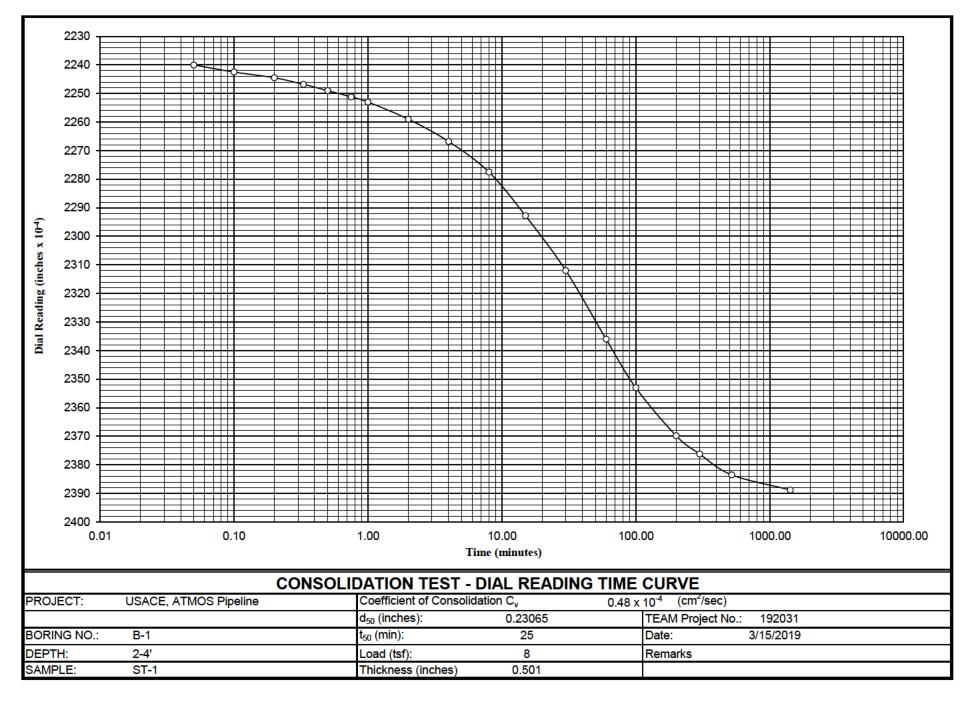
					IDATION TE. cimen Data)	ST			
Pr	oject: USAC	ΈΔΤΜ	OS Pipeline			TEAM Job I	No ·	1920	131
	-	, ∧ ⊓м -1	Sample No	o.: ST-1	Depth:	2-4'	Date:	3/15	
Class	rification Grav	fat clay							
Class	ification Gray	Tat Clay		Be	efore Test				After Test
			Sr	ecimen		Trimmings			Specimen
	Tare No.			and Plates		625			451
S	Tare plus wet	soil		191.03				113.03	
jram	Tare plus dry			74.76		582.91 507.24			98.57
Weight in grams	Water	Ww		16.27		75.67		W _{wf}	14.46
eigh	Tare			10.46		208.30			34.27
Š	Dry soil	Ws		64.30		298.94			64.30
W	ater Content	w	W _O 2	5.31%		25.31%		W _f	22.49%
C	Consolidometer No			5	Area	of specimen, A	, (sq. c	m.)	31.67
	Weight of ring, g			N/A	Heig	ht of specimen,	H, (i	n.)	0.501
	Weight of plates, g			N/A	Spec	ific Gravity of so	lids, (Gs)	2.698
Final Net c	nal height of water height of water, H change in height of ht of specimen at e	wf = specime	$\frac{W_{Wf}}{A \times \gamma_W} =$	31 est, ΔH =	14.46 .67 x 1 x 2 -0.02500	x 2.54 2.54 = in.	0.1798	3 in.	
	ratio before test, e ratio after test, e _f			0.2963		= 0.6911 = 0.6067			
	ee of saturation be						98.8		
	ee of saturation aff								.ft.
Rema	arks								
Tech	nician Jas	on Youn	g Co	omputed by	Jason	Young	Chec	ked by _	James Hutt

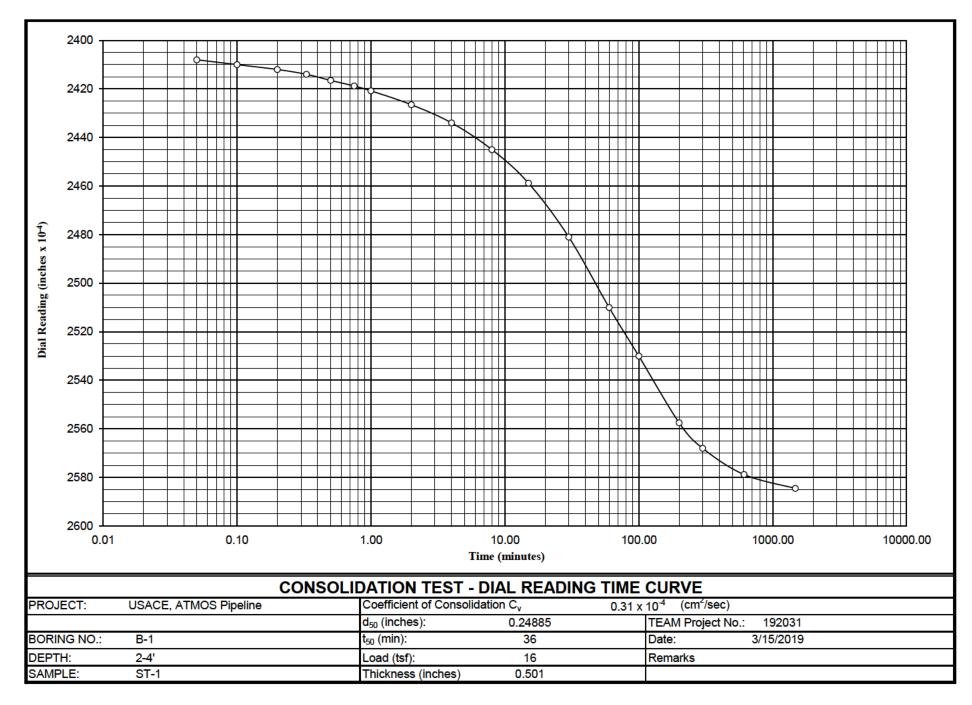
_			TE	AM C	Cons	sulte	ants	s, In	с.		
		Ge	eotechnica	l, Environn				Materia	ls Testing		
				CONSO	LIDATI	ON TES	Т				
				(Time - C	onsolid	ation Da	ta)				
Proje	ct:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	_
Borin	a No.:		B-1	Sample No	.: ST	[-1 De	epth:	2-4'	Consol.No.:	5	•
							· -				
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/15	0.25	11:00	0	2003	20	3/19	4	8:50	0	2098.8	20
3/15	0.5	11:05	5	2002		3/19	4	8:50	0.05	2119	
3/15	0.75	11:40	40	2010		3/19	4	8:50	0.1	2121.5	
3/18	0.75	8:00	4140	2020	19	3/19	4	8:50	0.2	2124	
						3/19	4	8:50	0.33	2126	
						3/19	4	8:50	0.5	2128	
						3/19	4	8:50	0.75	2130	
			_		10	3/19	4	8:51	1	2132	
3/18	2	8:45	0	2020	19	3/19	4	8:52	2	2136.5	
3/18	2	8:45	0.05	2043.5		3/19	4	8:54	4	2143.2	
3/18	2	8:45	0.1	2045		3/19	4	8:58	8	2151	
3/18	2	8:45	0.2	2046.2		3/19	4	9:05	15	2162.5	
3/18	2	8:45	0.33	2047.2		3/19	4	9:20	30	2174.2	
3/18	2	8:45	0.5	2049		3/19	4	9:50	60	2188	
3/18	2	8:45	0.75	2050.5		3/19 3/19	4	10:30	100	2197	
3/18	2	8:46 8:47	1	2052		3/19	4	12:10 13:50	200	2207.2	
3/18 3/18	2	8:49	2	2055		3/19	4		300	2212	
3/18	2	8:53	4	2059.5		3/19	4	17:15 9:05	505 1455	2216	20
3/18	2	9:00	<u>ہ</u> 15	2065 2070.5		3/20	4	9.05	1400	2219	20
3/18	2	9:15	30	2070.3							
3/18	2	9:50	<u> </u>	2077.8							
3/18	2	10:35	110	2084.8							
3/18	2	12:05	200	2000.2							
3/18	2	13:45	300	2094.2							
3/18	2	18:15	570	2094.2							
3/19	2	8:50	1445	2098.8	20						
	_		1410	2000.0							
								1		1	
\rightarrow										1	
					-	Te	echnicia	n <u>Jaso</u>	n Young	-	

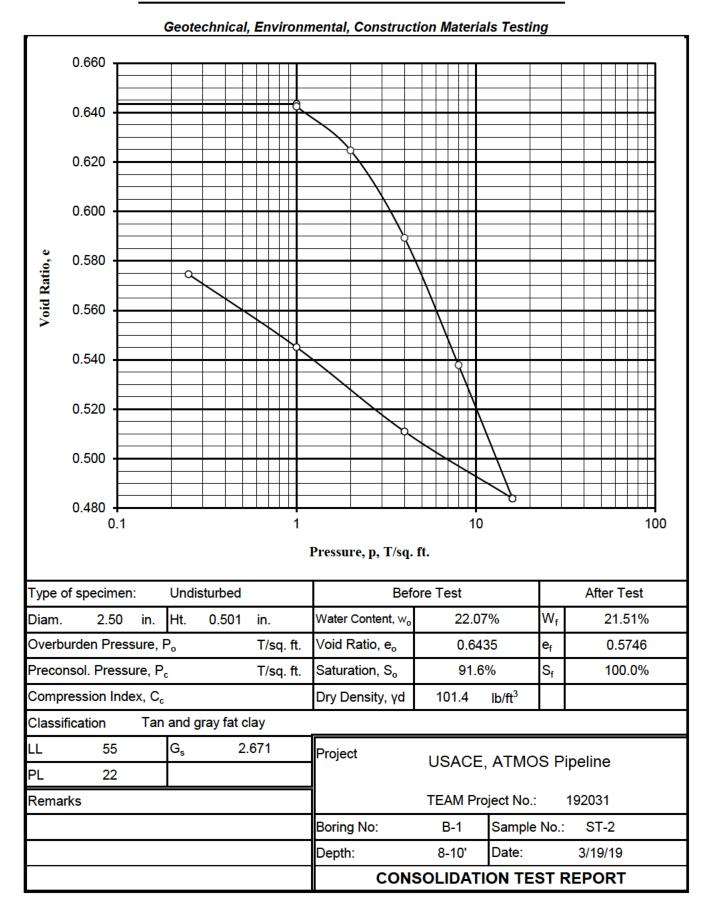
				AM C							
		Ge	eotechnica	l, Environn CONSO	-			Materia	ls Testing		
				(Time - C	onsolida	ation Da	ta)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	g No.:		B-1	Sample No	.: S	<u>Г-1</u> De	epth:	2-4'	Consol.No.:	5	
										1	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/20	8	9:05	0	2219	20	3/21	16	8:50	0	2388.8	20
3/20	8	9:05	0.05	2240		3/21	16	8:50	0.05	2408	
3/20	8	9:05	0.1	2242.5		3/21	16	8:50	0.1	2410	
3/20	8	9:05	0.2	2244.5		3/21	16	8:50	0.2	2412	
3/20	8	9:05	0.33	2246.8		3/21	16	8:50	0.33	2414	
3/20 3/20	8 8	9:05 9:05	0.5	2249		3/21 3/21	16 16	8:50 8:50	0.5	2416.5	
3/20	8	9:05	0.75	2251.2 2253		3/21	16	8:51	0.75 1	2418.8 2420.8	
3/20	8	9:00	1 2	2255		3/21	16	8:52	2	2420.8	
3/20	8	9:09	4	2266.8		3/21	16	8:54	4	2420.5	
3/20	8	9:13	8	2200.0		3/21	16	8:58	8	2434	
3/20	8	9:20	15	2292.8		3/21	16	9:05	15	2458.8	
3/20	8	9:35	30	2312		3/21	16	9:20	30	2481	
3/20	8	10:05	60	2336		3/21	16	9:50	60	2510	
3/20	8	10:45	100	2353		3/21	16	10:30	100	2530	
3/20	8	12:25	200	2369.8		3/21	16	12:10	200	2557.5	
3/20	8	14:05	300	2376.2		3/21	16	13:50	300	2568	
3/20	8	17:45	520	2383.5		3/21	16	19:00	610	2578.8	
3/21	8	8:50	1425	2388.8	20	3/22	16	9:25	1475	2584.5	20
						<u> </u>					
						<u> </u>					
						Te	echnicia	n Jaso	n Young		


			TE	AM C	Cons	sulta	ants	, In	С.		
		G	eotechnica	l, Environn	nental,	Constru	uction	Materia	ls Testing		
				CONSO							
				(Time - C	onsolida	ation Da	ta)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	ng No.:		B-1	Sample No	.: <u>S</u> T	<u>-1</u> D€	epth:	2-4'	Consol.No.:	5	
	Deces		E 1 1	Dial Deading	Tomp		Deres		E 1 1	Dial Deading	Temp.
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	°C
								RFBO)S	
						2/22	4				20
						3/22 3/24	4	9:25 14:15	Rebound 3170	2584.5 2469.2	20 20
						5/24	-+	14.13	5170	2409.2	20
						3/24	1	14:15	Rebound	2469.2	20
						3/25	1	17:30	1635	2348.8	21
						2/25	0.05	47.00	D.I.	00.40.0	24
						3/25 3/26	0.25	17:30 15:30	Rebound 1320	2348.8 2260	21 20
						3/20	0.25	15.50	1320	2200	20
							M	achine D	eflection Re	eadings	
							0.25			2003	
							0.75			2012	
							2			2029	
							4			2041	
							8			2054	
							16			2067	
							4			2050 2028	
							0.25			2028	
							0.20			2010	
						Te	echniciar	n <u>Jaso</u>	n Young		


Geotechnical, Environmental, Construction Materials Testing


CONSOLIDATION TEST


(Computation of Void Ratio)

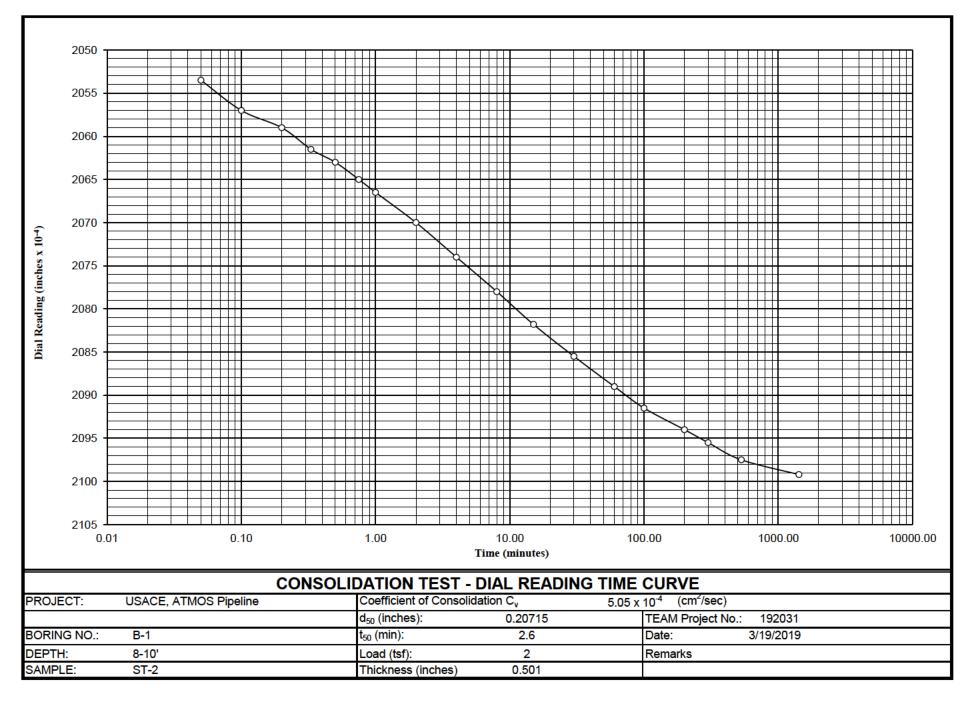

PROJECT	USACE, A	TMOS Pipeline	TEA	M Job No.:	192031	DATE:	3/15/19
	B-1	SAMP	PLE NO. ST-1	DEPTH	2-4'	CONSOLIDOMETER NO.	5
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Change Height, Δ 10 ⁻⁴ in.	H Voids, H _V	Void Ratio, e
0.1	3/15	Zero Point	2000	2000	0	2047	0.6911
0.75	3/15	Initial Load	2012	2012	0	2047	0.6911
0.75	3/15	4140	2020	2012	-8	2039	0.6884
2	3/18	1445	2098.8	2029	-69.8	1978	0.6675
4	3/19	1455	2219	2041	-178	1869	0.6310
8	3/20	1425	2388.8	2054	-334.8	1713	0.5781
16	3/21	1475	2584.5	2067	-517.5	1530	0.5164
4	3/22	3170	2469.2	2050	-419.2	1628	0.5496
1	3/24	1635	2348.8	2028	-320.8	1727	0.5828
0.25	3/25	1320	2260	2010	-250	1797	0.6067
Note:							
	bids, $H_V = (H - H_S)$ $e = \frac{H_V}{H_S}$		H _S = 0.2963		hv. Jason Youn	g Checked by James	Hutt

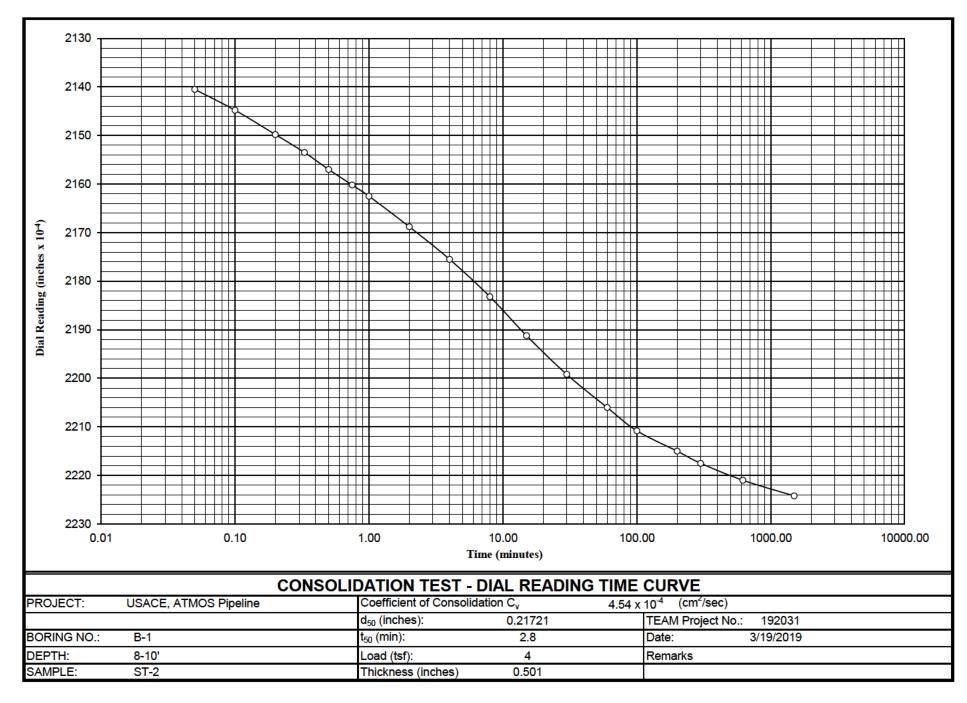
Geotechnical, Environmental, Construction Materials Testing

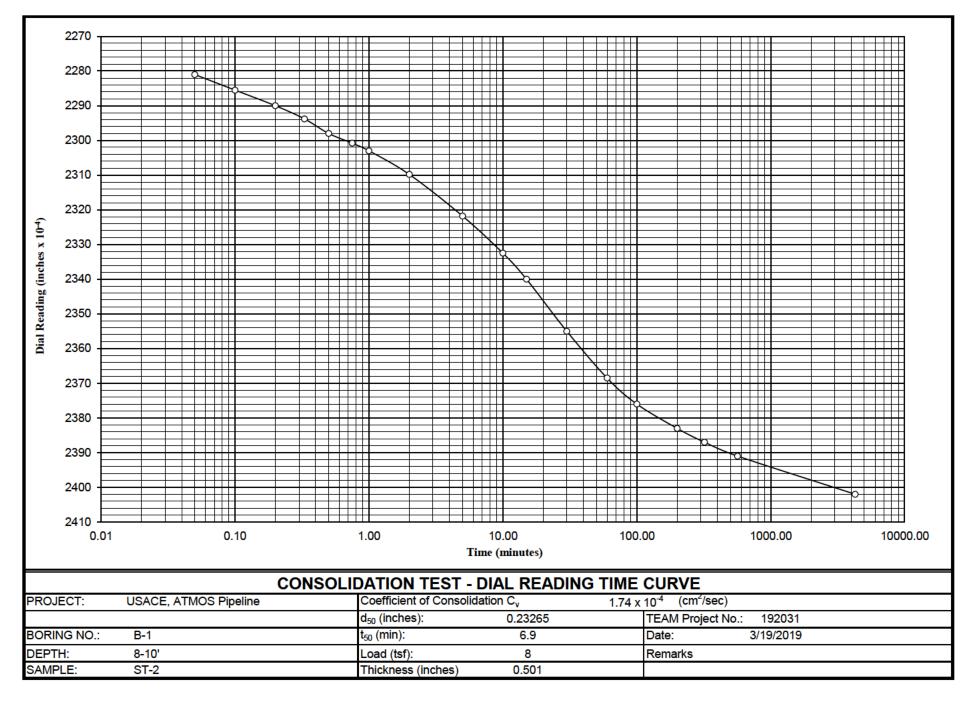
				SOLIDATION TE Specimen Data)	EST			
Project: USACE, ATMOS Pipeline TEAM Job No.:							192031	
		-1	Sample No.: <u>ST-2</u> Depth: <u>8-10'</u> Dat					
Class	sification Tan	and drav	/ fat clay					
01033		and gray	lat day	Before Test			After Test	
			Specimen	Delote rest	Trimmings		Specimen	
Tare No.			Ring and Plates		626		430	
Weight in grams	Tare plus wet soil		189.96		532.47		114.99	
	Tare plus dry soil		175.50		472.29		100.90	
	Water	Ww	W _{WO} 14.46			Wwf	14.09	
aight	Tare		110.00		199.63		35.40	
Ň	Dry soil	Ws	65.50		272.66		65.50	
Water Content w		W ₀ 22.07%		22.07%		21.51%		
Consolidometer No .:			3	Area	Area of specimen, A, (sq. c		31.67	
Weight of ring, g			N/A	Heig	Height of specimen, H, (in.)		0.501	
Weight of plates, g			N/A	Spec	Specific Gravity of solids, (Gs)		2.671	
Final height of water, $H_{Wf} = \frac{W_{Wf}}{A \times \gamma_W} = \frac{14.09}{31.67 \times 1 \times 2.54} = 0.1752$ in. Net change in height of specimen at end of test, $\Delta H = -0.02100$ in. Height of specimen at end of test, $H_f = H - \Delta H = 0.4800$ in.								
Void ratio before test, $e_0 = = \frac{H - H_s}{H_s} = \frac{0.501 - 0.3048}{0.3048} = 0.6435$ Void ratio after test, $e_f = \frac{H_f - H_s}{H_s} = \frac{0.48 - 0.3048}{0.3048} = 0.5746$								
			$H_{\rm WO} = \frac{H_{\rm WO}}{H - H_{\rm S}} =$.6%		
Degr	ee of saturation af	ter test,	$S_{f} = \frac{H_{wf}}{H_{f} - H_{S}} = -$	0.1752	3048 = 100.0	%		
			$\frac{W_s}{H x A} = \frac{65}{0.507}$			4 lb./cu	ı.ft.	
Rema	arks							
Tech	nician Jas	on Your	g Computed by	Jason	Young Che	cked by	James Hutt	

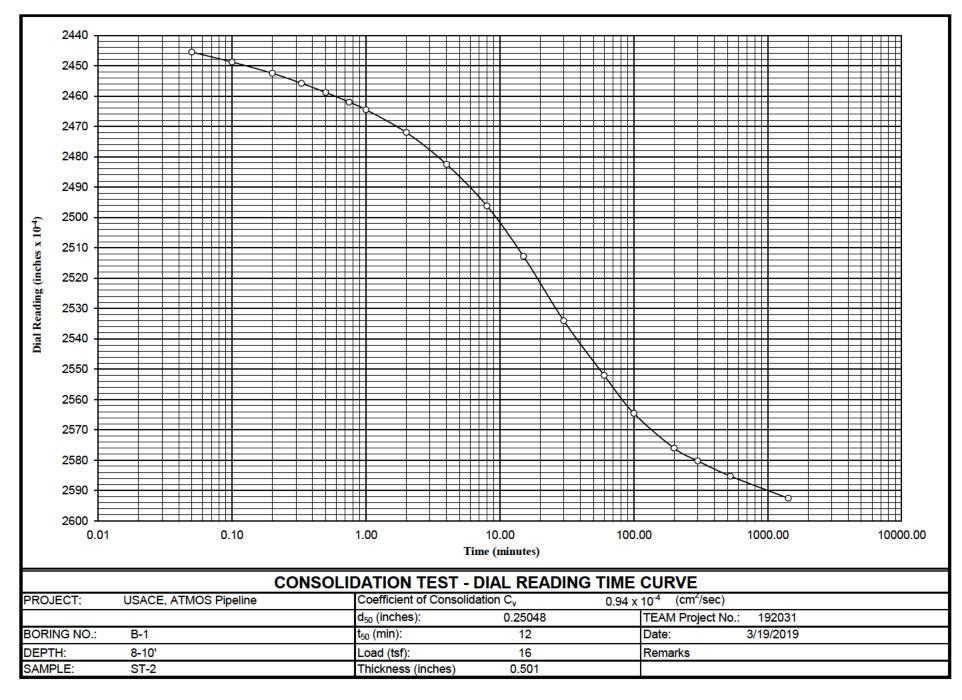
Projec	at:	Ge	eotechnica	l, Environn	nental,	Consta		1 4	1 T		
-	st:							Maleria	ls Testing		
-	et:			CONSO		ON TES					
-	ot:			(Time - C	onsolida	ation Da	ta)				
-	et:										
		USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Boring	No.:		B-1	Sample No	.: S1	[-2 De	epth: 8	8-10'	Consol.No.:	3	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/19	0.125	10:30	0	2003	20	3/21	4	8:40	0	2099.2	
3/19	0.25	10:31	1	1998		3/21	4	8:40	0.05	2140.5	
3/19	0.5	10:32	2	2006		3/21	4	8:40	0.1	2144.8	
3/19	0.75	12:00	90	2008		3/21	4	8:40	0.2	2149.8	
3/19	1	12:30	120	2019		3/21	4	8:40	0.33	2153.5	
3/20	1	8:55	1345	2031	20	3/21	4	8:40	0.5	2157	
						3/21	4	8:40	0.75	2160.2	
						3/21	4	8:41	1	2162.5	
3/20	2	8:55	0	2031	20	3/21	4	8:42	2	2168.8	
3/20	2	8:55	0.05	2053.5		3/21	4	8:44	4	2175.5	
3/20	2	8:55	0.1	2057		3/21	4	8:48	8	2183.2	
3/20	2	8:55	0.2	2059		3/21	4	8:55	15	2191.2	
3/20	2	8:55	0.33	2061.5		3/21	4	9:10	30	2199.2	
3/20	2	8:55	0.5	2063		3/21	4	9:40	60	2206	
3/20	2	8:55	0.75	2065		3/21	4	10:20	100	2210.8	
3/20	2	8:56	1	2066.5		3/21	4	12:00	200	2215	
3/20	2	8:57	2	2070		3/21	4	13:40	300	2217.5	
3/20 3/20	2	8:59 9:03	4	2074		3/21 3/22	4	19:00 9:35	620	2221	20
3/20	2	9:03 9:10	8 15	2078		3/22	4	9.35	1495	2224.2	20
3/20	2	9:10	30	2081.8 2085.5							
3/20	2	9.25 9:55	<u> </u>	2085.5							
3/20	2	9.33 10:35	100	2009							
3/20	2	12:15	200	2091.5							
3/20	2	13:55	300	2094							
3/20	2	17:45	530	2093.5							
3/21	2	8:40	1425	2097.3	20						
	-	0.10	1720	2000.2							
						Te	echnicia	n Jasoi	n Young		

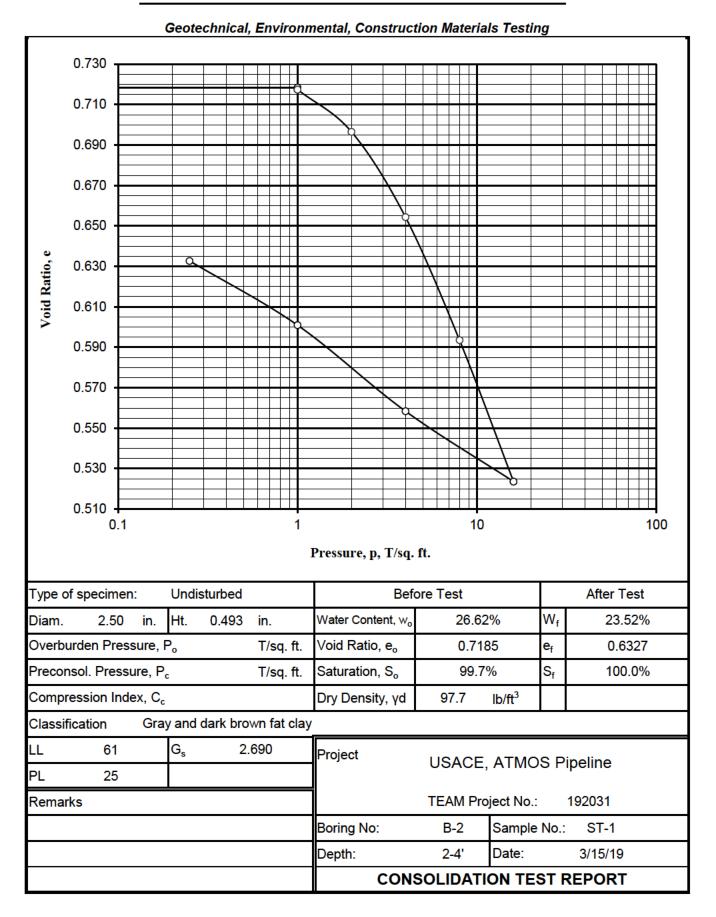
				AM C				-			
		Ge	eotechnica	l, Environn	_			Materia	ls Testing		
				CONSO							
				(Time - C	onsolid	ation Da	ta)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	ng No.:		B-1	Sample No	.: <u>S</u>	Г <u>-2</u> De	epth: 8	8-10'	Consol.No.:	3	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/22	8	9:35	0	2224.2	20	3/25	16	8:45	0	2402	21
3/22	8	9:35	0.05	2281		3/25	16	8:45	0.05	2445.5	
3/22	8	9:35	0.1	2285.5		3/25	16	8:45	0.1	2448.8	
3/22	8	9:35	0.2	2290		3/25	16	8:45	0.2	2452.5	
3/22	8	9:35	0.33	2293.8		3/25	16	8:45	0.33	2455.8	
3/22	8 8	9:35 9:35	0.5	2298		3/25 3/25	16 16	8:45 8:45	0.5	2458.8	
3/22 3/22	8	9:35 9:36	0.75 1	2300.8 2303		3/25	16	8:45 8:46	0.75 1	2462 2464.5	
3/22	8 8	9:30	1	2303		3/25	16	8:46	2	2464.5	
3/22	0 8	9.37 9:40	2 5	2309.8		3/25	16	8:49	4	2472	
3/22	8	9:45	10	2321.0		3/25	16	8:53	8	2496.2	
3/22	8	9:50	15	2332.5		3/25	16	9:00	15	2512.8	
3/22	8	10:05	30	2355		3/25	16	9:15	30	2534	
3/22	8	10:35	60	2368.5		3/25	16	9:45	60	2552	
3/22	8	11:15	100	2376		3/25	16	10:25	100	2564.5	
3/22	8	12:55	200	2383		3/25	16	12:05	200	2576	
3/22	8	14:55	320	2387		3/25	16	13:45	300	2580.2	
3/22	8	19:00	565	2391		3/25	16	17:30	525	2585.2	
3/25	8	8:45	4270	2402	21	3/26	16	8:30	1425	2592.5	20
						Т.	obnisis		n Voung		
						16	cnnicial	n Jaso	n Young		


			TE	AM C	Cons	sulta	ants	, In	С.		
		G	eotechnica	l, Environn	iental,	Constru	uction 1	Materia	ls Testing		
				CONSO							
				(Time - C	onsolida	ation Da	ta)				
				,			,				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
-										3	•
	<u> </u>						<u> </u>				·
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^O C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^O C
								REBO	DUND LOAD		
									-		
						3/26	4	8:30	Rebound	2592.5	20
						3/27	4	7:30	1380	2475	20
						3/27	1	7:30	Rebound	2475	20
						3/28	1	8:45	1515	2343	20
						0/00	0.05	0.45			
						3/28 3/29	0.25	8:45 12:30	Rebound	2343 2232	20 20
						3/29	0.25	12.30	1665	2232	20
							Ma	achine D	Deflection Re	adings	
							0.125			2003	
							1			2028	
							2			2042	
							4			2059	
							8 16			2080 2106	
							4			2106	
							1			2043	
							0.25			2022	
						Τe	echniciar	n <u>Jaso</u>	n Young		


Geotechnical, Environmental, Construction Materials Testing


CONSOLIDATION TEST


(Computation of Void Ratio)

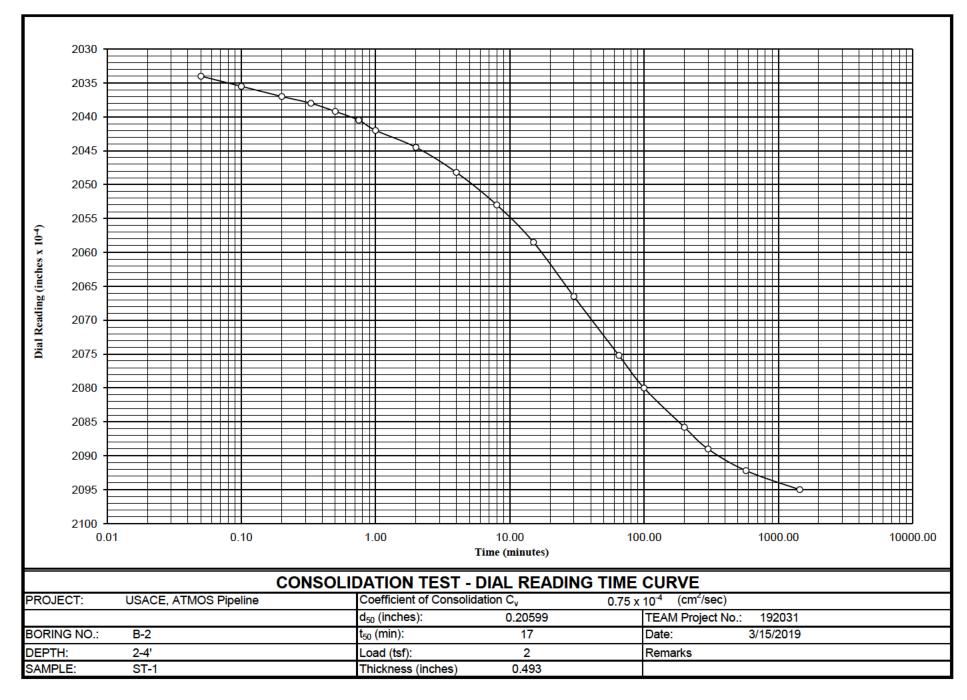

PROJECT	USACE, AT	TMOS Pipeline	TEA	M Job No.:	192031	DATE:	3/19/19
	B-1	SAMP	LE NO. ST-2	DEPTH	8-10'	CONSOLIDOMETER NO.	. 3
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Chang Height 10 ⁻⁴	t, ∆H Voids, H _V	Void Ratio, e
0.1	3/19	Zero Point	2000	2000	0		0.6435
1	3/19	Initial Load	2028	2028	0	1962	0.6435
1	3/19	1345	2031	2028	-3	3 1959	0.6425
2	3/20	1425	2099.2	2042	-57	.2 1904	0.6247
4	3/21	1495	2224.2	2059	-16	5.2 1796	0.5893
8	3/22	4270	2402	2080	-32	22 1640	0.5379
16	3/25	1425	2592.5	2106	-486	6.5 1475	0.4839
4	3/26	1380	2475	2071	-40	04 1 558	0.5110
1	3/27	1515	2343	2043	-30	00 1662	0.5451
0.25	3/28	1665	2232	2022	-21	10 1752	0.5746
Note:							
	pids, H _V = (H - H _S) e = $\frac{H_V}{H_T}$		H _S = 0.3048	Computed	by Jason Vo	ung Checked by Jame	se Hutt

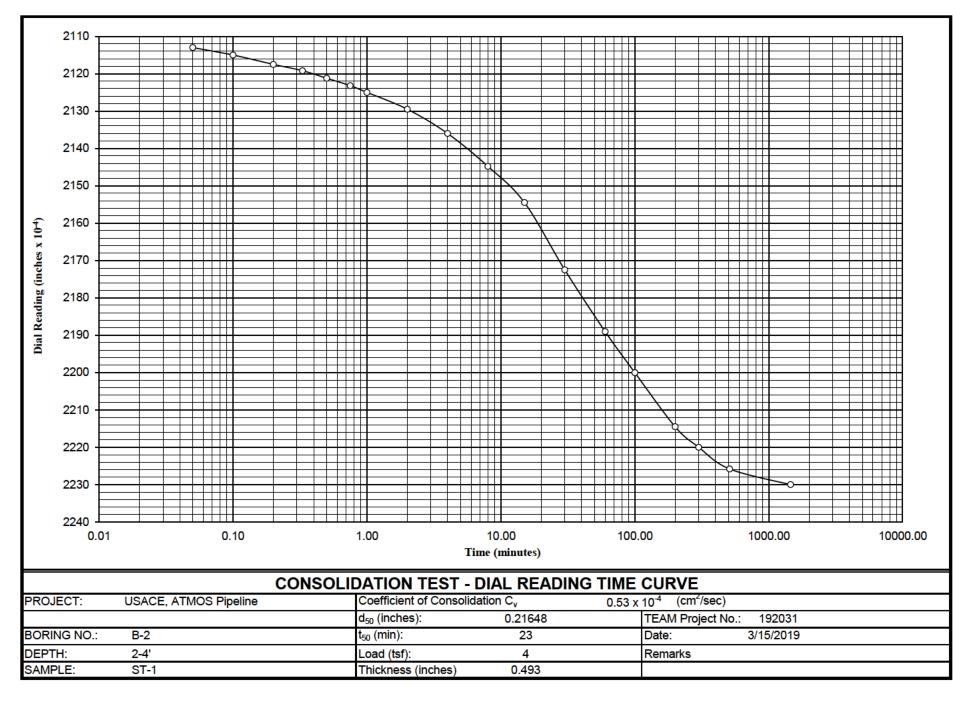
Geotechnical, Environmental, Construction Materials Testing

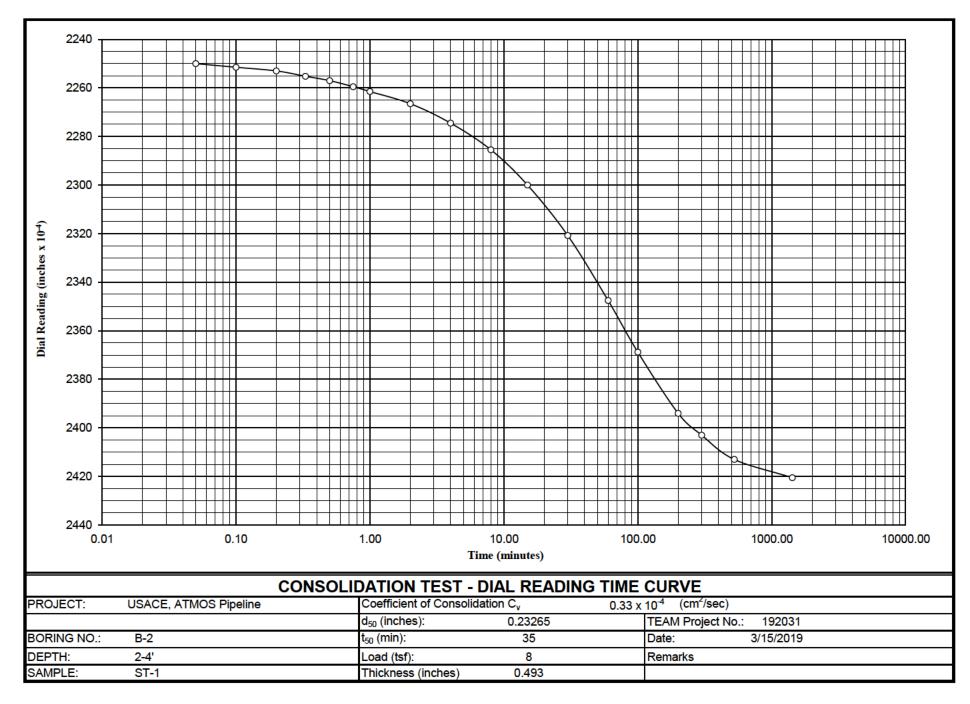
				DLIDATION TE ecimen Data)	ST				
Pr	oject: USAC	E ATM	OS Pipeline		TEAM Job No.:	192	031		
	-	-2	Sample No.: ST-1	Depth:	2-4' Date				
Class	sification Gray	and da	k brown fat clay						
				Before Test			After Test		
			Specimen		Trimmings		Specimen		
	Tare No.		Ring and Plates		632		409		
ns	Tare plus wet	soil	183.08		566.37		111.10		
gran	Tare plus dry	soil	166.56		491.19		96.50		
Weight in grams	Water	Ww	W _{WO} 16.52		75. <mark>1</mark> 8	W _{wf}	14.60		
eigh	Tare		104.49		208.78		34.43		
8	Dry soil	Ws	62.07		282.41		62.07		
W	ater Content	w	W _O 26.62%		26.62%	W _f	23.52%		
Consolidometer No.: 4 Area of specimen, A, (sq. cm.) 31.67									
Weight of ring, g N/A Height of specimen, H, (in.) 0.493									
	Weight of plates, g		N/A	Spec	ific Gravity of solids,	(Gs)	2.690		
Net o Heigl	change in height of ht of specimen at e	specime	en at end of test, ΔH =).4684 ii	n. = 0.7185	5 in.			
Void	ratio after test, e _f	= H	$\frac{H_{s}}{H_{s}} = \frac{0.4684}{0.280}$	0.2869 59					
			$t, S_0 = \frac{H_{WO}}{H - H_S} = \frac{H_{WO}}{H}$.7%			
			$S_{f} = \frac{H_{wf}}{H_{f} - H_{S}} = \frac{0}{0}$ $\frac{W_{S}}{H \times A} = \frac{62.0}{0.493}$				I.ft.		
Rem	arks								
Tech	nician Jas	on Youn	g Computed by	Jason	Young Che	cked by	James Hutt		

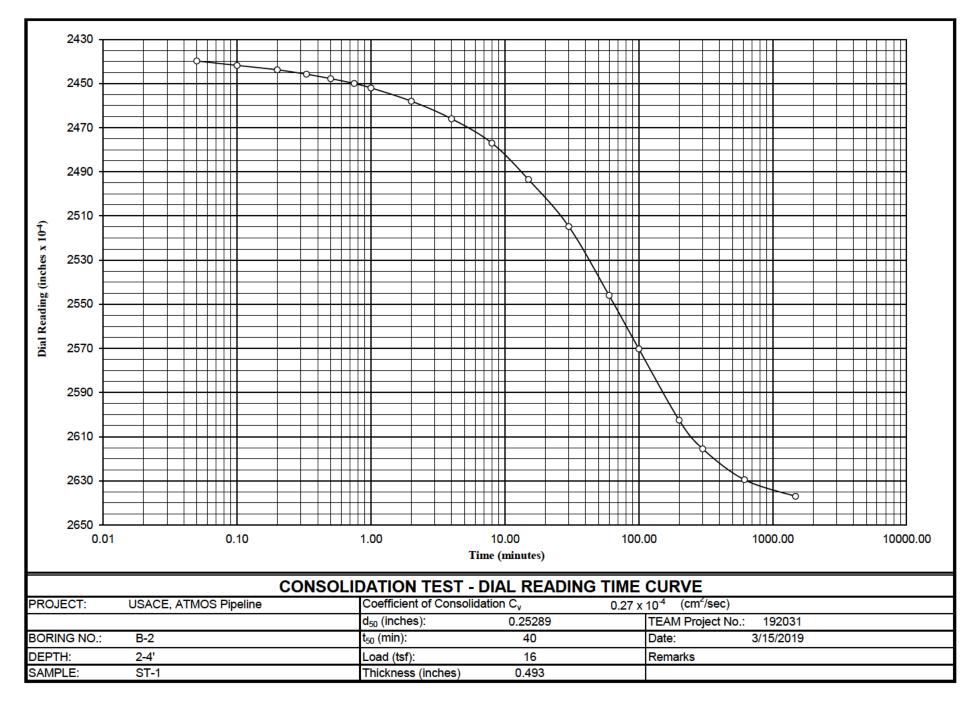
			TE	AM C	Cons	sulte	ants	s, In	с.		
		Ge	eotechnica	l, Environn				Materia	ls Testing		_
				CONSO	LIDATI	ON TES	Т				
				(Time - C	onsolida	ation Da	ta)				
Proje	ct:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
-				Sample No			anth:				•
Donn	y No		D-2	Sample No		<u>-1</u> _D	-pui	2-4	CONSOLINO	4	•
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/15	0.25	10:15	0	2003.0	20	3/19	4	8:45	0	2095	
3/15	0.5	10:20	5	2005.0		3/19	4	8:45	0.05	2113	
3/15	1	11:15	60	2017.0		3/19	4	8:45	0.1	2115	
3/18	1	8:00	4185	2021.0	19	3/19	4	8:45	0.2	2117.5	
						3/19	4	8:45	0.33	2119.2	
						3/19	4	8:45	0.5	2121.2	
						3/19	4	8:45	0.75	2123.2	
						3/19	4	8:46	1	2125	
3/18	2	8:40	0	2021	19	3/19	4	8:47	2	2129.5	
3/18	2	8:40	0.05	2034		3/19	4	8:49	4	2136	
3/18	2	8:40	0.1	2035.5		3/19	4	8:53	8	2144.8	
3/18	2	8:40	0.2	2037		3/19	4	9:00	15	2154.5	
3/18	2	8:40	0.33	2038		3/19	4	9:15	30	2172.5	
3/18	2	8:40	0.5	2039.2		3/19	4	9:45	60	2189	
3/18	2	8:40	0.75	2040.5		3/19	4	10:25	100	2200	
3/18	2	8:41	1	2042		3/19	4	12:05	200	2214.5	
3/18	2	8:42	2	2044.5		3/19	4	13:45	300	2220	
3/18	2	8:44	4	2048.2		3/19	4	17:15	510	2225.8	
3/18	2	8:48	8	2053		3/20	4	9:00	1455	2230	20
3/18	2	8:55	15	2058.5							
3/18	2	9:10	30	2066.5							
3/18 3/18	2	9:45 10:20	65	2075.2							
3/18	2	10:20	100 200	2080							
3/18	2	12:00	300	2085.8 2089							
3/18	2	13:40	300 575								
3/10	2	8:45	1445	2092.2 2095	20						
5/18	2	0.40	1440	2080	20						
						Τe	echnicia	n <u>Jaso</u>	n Young	•	
						Te	echnicia	n Jaso	n Young		•

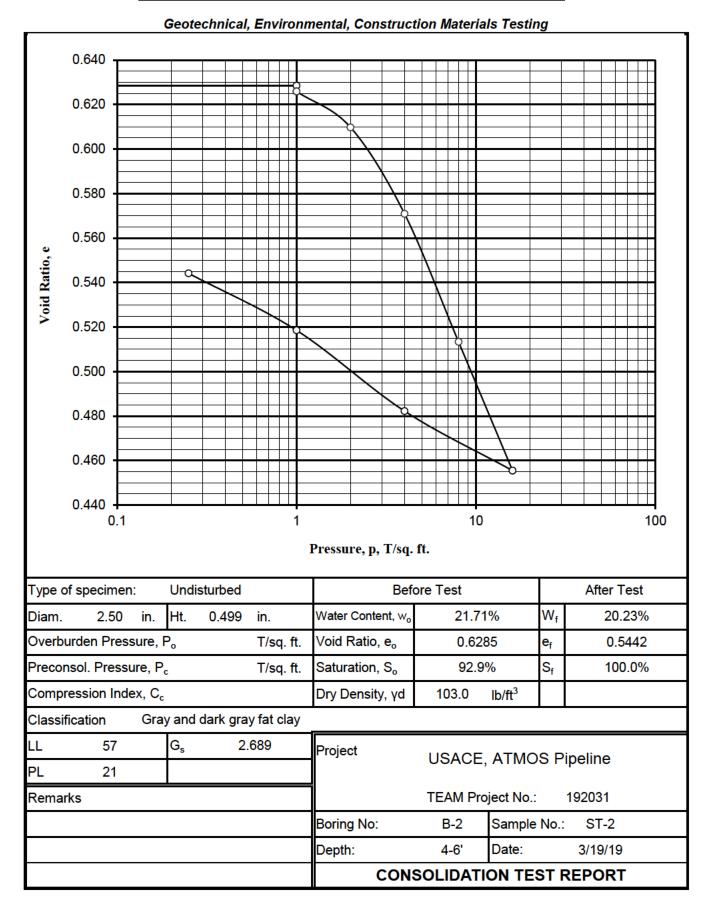
Projec Boring Date		USA	CE, ATMOS		CIDATI	ON TES	Т	Muteriu	is Testing		
Boring	g No.: Press.			(Time - C	onsolida						
Boring	g No.: Press.			Pipeline		ation Da	ita)				
Boring	g No.: Press.										
Boring	g No.: Press.										
	Press.		B-2	Sample No					M Job No.:		
Date		Time		_ Sample No.: <u>ST-1</u> Depth: _				2-4'	Consol.No.:	4	ı
Date	(tsf)	lime	Elapsed	Dial Reading	Temp.	Dete	Press.	T i	Elapsed	Dial Reading	Temp.
			Time, (min)	(10 ⁻⁴ in.)	°C	Date	(tsf)	Time	Time, (min)	(10 ⁻⁴ in.)	°C
3/20	8	9:00	0	2230	20	3/21	16	8:45	0	2420.5	20
3/20	8	9:00	0.05	2250		3/21	16	8:45	0.05	2439.8	
3/20	8	9:00	0.1	2251.5		3/21	16	8:45	0.1	2441.8	
3/20	8	9:00	0.2	2253		3/21	16	8:45	0.2	2443.8	
3/20	8	9:00	0.33	2255.2		3/21	16	8:45	0.33	2445.8	
3/20	8	9:00	0.5	2257		3/21	16	8:45	0.5	2447.8	
3/20	8	9:00	0.75	2259.5		3/21	16	8:45	0.75	2450	
3/20	8	9:01	1	2261.5		3/21	16	8:46	1	2452	
3/20	8	9:02	2	2266.5		3/21	16	8:47	2	2458	
3/20	8	9:04	4	2274.5		3/21	16	8:49	4	2466	
3/20	8	9:08	8	2285.5		3/21	16	8:53	8	2477	
3/20 3/20	8 8	9:15 9:30	15	2300		3/21	16 16	9:00 9:15	15	2493.5	
3/20	0 8	9.30	30 60	2320.8 2347.5		3/21 3/21	16	9:15	30 60	2514.8 2546	
3/20	8	10:00	100	2368.8		3/21	16	9.45 10:25	100	2540	
3/20	8	12:20	200	2308.8		3/21	16	12:05	200	2602.5	
3/20	8	14:00	300	2403		3/21	16	13:45	300	2615.5	
3/20	8	17:45	525	2403		3/21	16	19:00	615	2629.5	
3/21	8	8:45	1425	2420.5	20	3/22	16	9:25	1480	2637	20
0,21	<u> </u>	0.40	1420	2420.0	20	0,22	10	0.20	1400	2007	20
						Те	echnicia	n Jasoi	n Young		


			TE	AM C	Cons	sulta	ints	, In	с.		
		G	eotechnica	l, Environn	iental,	Constru	uction	Materia	ls Testing		
				CONSO		ON TES	Т				
				(Time - C	onsolida	ation Da	ta)				
-			CE, ATMOS						M Job No.:		
Borin	ng No.:		B-2	Sample No	.: <u>S</u> T	<u>Γ-1</u> D€	epth:	2-4'	Consol.No.:	4	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C
								REBO		DS	
						3/22	4	9:25	Rebound	2637	20
						3/24	4	14:15	3170	2514.2	20
						3/24	1	14:15	Rebound	2514.2	20
						3/25	1	17:30	1635	2369.2	21
						2/25	0.05	47.00	Delevel	0000.0	24
						3/25 3/26	0.25	17:30 15:30	Rebound 1320	2369.2 2257	21 20
						0,20	0.20	10.00	1320	2251	20
							M	achine D	eflection Re	eadings	
							0.25			2003	
							1			2018	
							2			2032	
							4			2046	
							8 16			2062 2078	
							4			2078	
							1			2032	
							0.25			2011	
						Τe	echniciar	n <u>Jaso</u>	n Young		


Geotechnical, Environmental, Construction Materials Testing


CONSOLIDATION TEST


(Computation of Void Ratio)

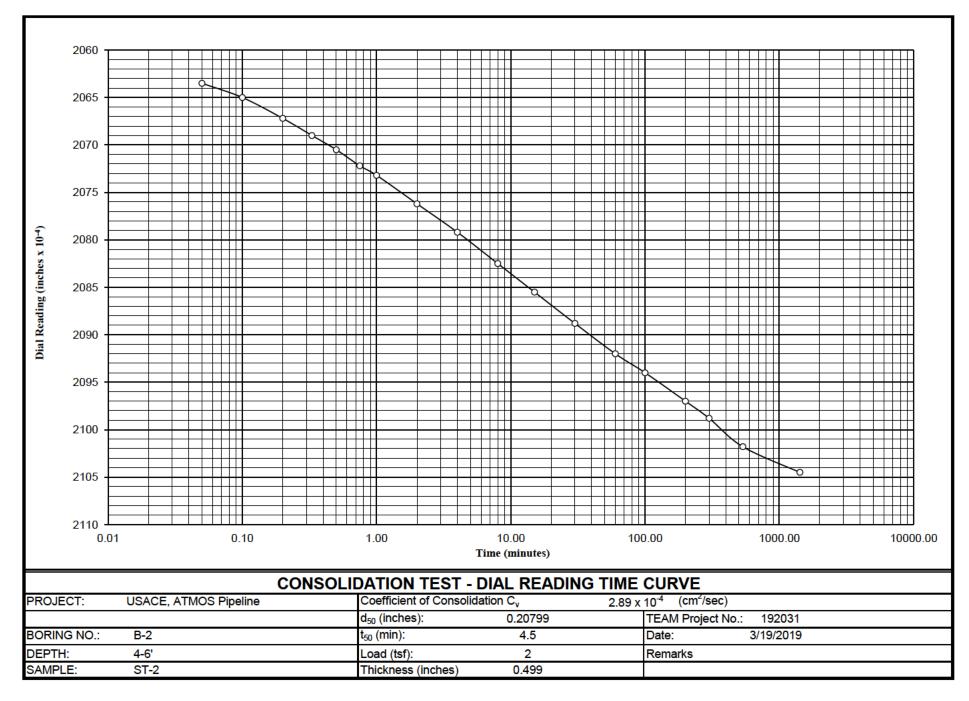

PROJECT	USACE, A	TMOS Pipeline	TEA	M Job No.:	192031	DATE:	3/15/19
BORING NO.	B-2	SAMP	LE NO. ST-1	DEPTH	2-4'	CONSOLIDOMETER NO	0. 4
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Heigh	the second sec	Void Ratio, e
0.1	3/15	Zero Point	2000	2000		2061	0.7185
1	3/15	Initial Load	2018	2018	(2061	0.7185
1	3/15	4185	2021	2018		3 2058	0.7174
2	3/18	1445	2095	2032	-6	53 1998	0.6965
4	3/19	1455	2230	2046	-1	84 1877	0.6543
8	3/20	1425	2420.5	2062	-35	8.5 1703	0.5935
16	3/21	1480	2637	2078	-5	59 1502	0.5236
4	3/22	3170	2514.2	2055	-45	9.2 1602	0.5584
1	3/24	1635	2369.2	2032	-33	7.2 1724	0.6009
0.25	3/25	1320	2257	2011	-24	46 1815	0.6327
Note: Height of vo	oids, H_V = (H - H_S)	- ΔH	H _S = 0.2869				
Void Ratio, ₀	$e = \frac{H_V}{H_S}$	Tech	nician Jason Young	computed	by Jason Yo	oung Checked by Jan	nes Hutt

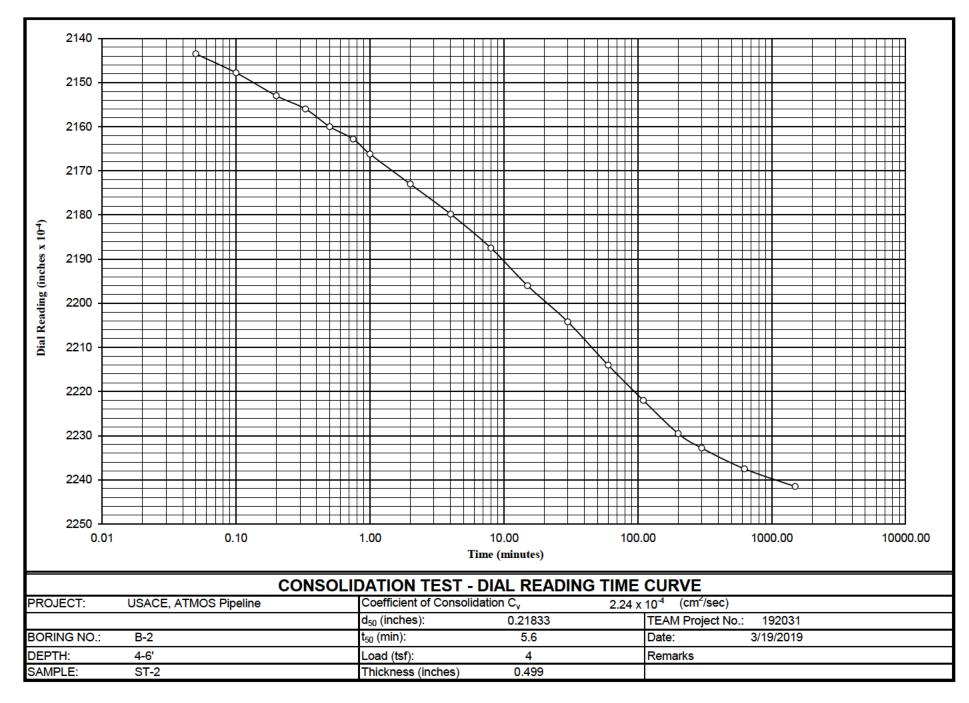
Geotechnical, Environmental, Construction Materials Testing

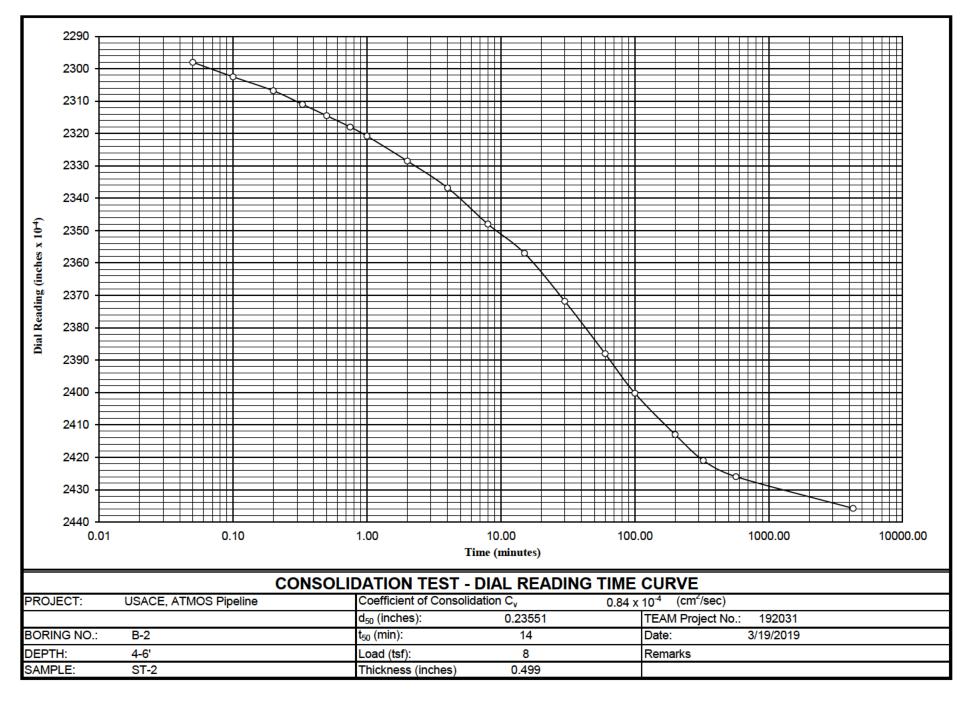
				DATION TEST men Data)							
	oject: USAC		OS Pipeline Sample No.: ST-2	TEAM Job No.: Depth: 4-6' Date:	192						
Class	Silication Gray	anu uai	rk gray fat clay Befo	pre Test		After Test					
			Specimen	Trimmings		Specimen					
	Tare No.		Ring and Plates	663		417					
ns	Tare plus wet	soil	190.67	569.55		114.75					
grar	Tare plus dry	soil	176.28	505.23		101.34					
Weight in grams	Water	Ww	W _{WO} 14.39	64.32	W _{wf}	13.41					
/eigh	Tare		110.00	209.00		35.06					
-	Dry soil	Ws	66.28	296.23		66.28					
W	ater Content	W	W ₀ 21.71%	21.71%	W _f	20.23%					
Consolidometer No.: 2 Area of specimen, A, (sq. cm.) 31.67											
Weight of ring, g N/A Height of specimen, H, (in.) 0.499											
	Weight of plates, g		N/A	Specific Gravity of solids, (Gs)	2.689					
Final Net o Heigl	height of water, H _v change in height of ht of specimen at e	wf = specime nd of te	st, $H_f = H - \Delta H = 0.47$	$\frac{13.41}{7 \times 1 \times 2.54} = 0.166$ 0.02585 in. 32 in.	7 in.						
Void	ratio after test, e _f	= <u>H</u>	$\frac{H_{s}}{H_{s}} = \frac{0.3064}{0.47315 - 0.0000}$ $\frac{H_{s}}{H_{s}} = \frac{0.47315 - 0.0000}{0.3064}$								
Degree of saturation before test, $S_0 = \frac{H_{WO}}{H - H_S} = \frac{0.1789}{0.4990 - 0.3064} = 92.9\%$											
Degree of saturation after test, $S_f = \frac{H_{wf}}{H_f - H_S} = \frac{0.1667}{0.4732 - 0.3064} = 100.0\%$ Dry density before test, $\gamma_d = \frac{W_S}{H \times A} = \frac{66.28 \times 62.4}{0.499 \times 31.67 \times 2.54} = 103.0$ lb./cu.ft.											
Rem	Remarks										
Tech	Technician Jason Young Computed by Jason Young Checked by James Hutt										

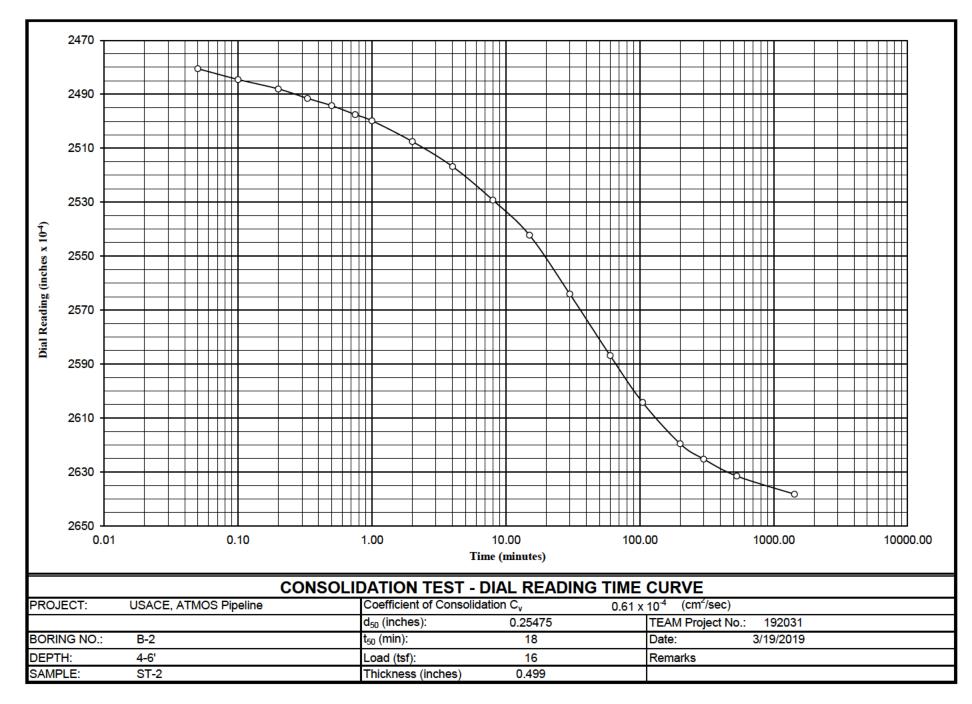
				AM C				-			
		Ge	eotechnica	l, Environn	-			Materia	ls Testing		
				CONSO	LIDATI	ON TES	T				
				(Time - C	onsolida	ation Da	ta)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	ng No.:		B-2	Sample No	.: <u>S</u> T	<u>-2</u> De	epth:	4-6'	Consol.No.:	2	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/19	0.125	10:10	0	2003	20	3/21	4	8:35	0	2104.5	20
3/19	0.25	10:11	1	1996		3/21	4	8:35	0.05	2143.5	
3/19	0.5	10:12	2	2007		3/21	4	8:35	0.1	2147.8	
3/19	0.75	11:20	70	2015		3/21	4	8:35	0.2	2153	
3/19	1	13:00	170	2028		3/21	4	8:35	0.33	2156	
3/20	1	8:50	1360	2039	20	3/21	4	8:35	0.5	2160	
						3/21	4	8:35	0.75	2162.8	
						3/21	4	8:36	1	2166.2	
3/20	2	8:50	0	2039	20	3/21	4	8:37	2	2173	
3/20	2	8:50	0.05	2063.5		3/21	4	8:39	4	2179.8	
3/20	2	8:50	0.1	2065		3/21	4	8:43	8	2187.5	
3/20	2	8:50	0.2	2067.2		3/21	4	8:50	15	2196	
3/20	2	8:50	0.33	2069		3/21	4	9:05	30	2204.2	
3/20	2	8:50	0.5	2070.5		3/21	4	9:35	60	2214	
3/20	2	8:50	0.75	2072.2		3/21	4	10:25	110	2222	
3/20	2	8:51	1	2073.2		3/21	4	11:55	200	2229.5	
3/20	2	8:52	2	2076.2		3/21	4	13:35	300	2232.8	
3/20	2	8:54	4	2079.2		3/21	4	19:00	625	2237.5	
3/20	2	8:58	8	2082.5		3/22	4	9:30	1495	2241.5	20
3/20	2	9:05	15	2085.5							
3/20	2	9:20	30	2088.8							
3/20	2	9:50	60	2092							
3/20	2	10:30	100	2094							
3/20	2	12:10	200	2097							
3/20 3/20	2	13:50 17:45	300	2098.8							
			535	2101.8	20						
3/21	2	8:35	1425	2104.5	20						
						Te	echnicia	n Jaso	n Young		

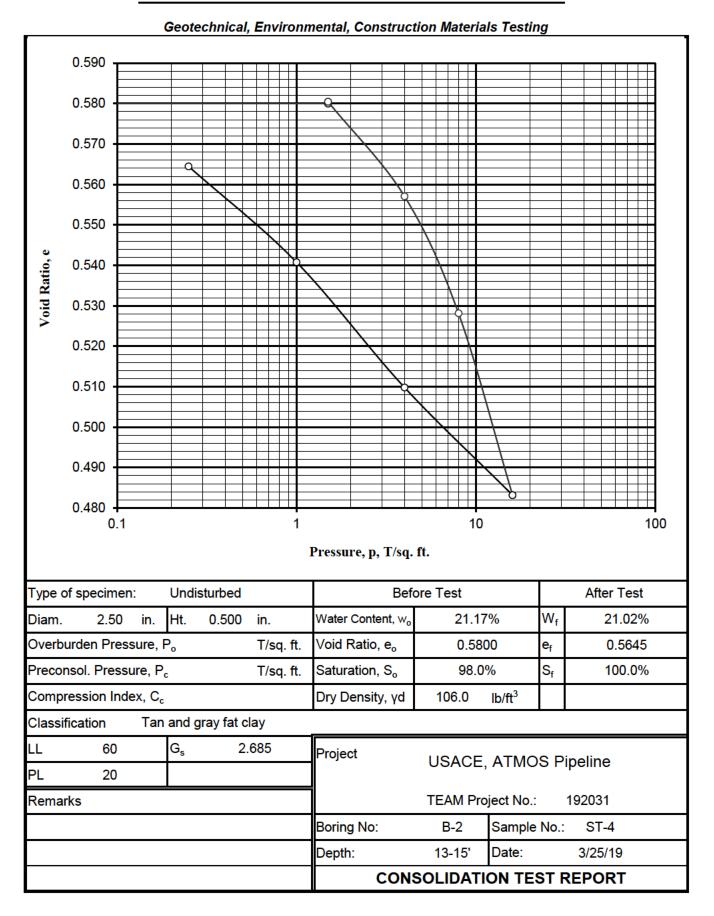
				AM C							
		Ge	eotechnica	l, Environn	_			Materia	ls Testing		
				CONSO							
				(Time - C	onsolid	ation Da	ta)				
Proje	ct:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	g No.:		B-2	Sample No	.: ST	Г-2 De	epth:	4-6'	Consol.No.:	2	_
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/22	8	9:30	0	2241.5	20	3/25	16	8:40	0	2437.5	21
3/22	8	9:30	0.05	2298		3/25	16	8:40	0.05	2480.5	
3/22	8	9:30	0.1	2302.5		3/25	16	8:40	0.1	2484.5	
3/22	8	9:30	0.2	2306.8		3/25	16	8:40	0.2	2488	
3/22	8	9:30	0.33	2311		3/25	16	8:40	0.33	2491.5	
3/22 3/22	8 8	9:30 9:30	0.5	2314.5		3/25 3/25	16 16	8:40 8:40	0.5	2494.2 2497.5	
3/22	о 8	9.30 9:31	0.75 1	2318 2320.8		3/25	16	8:41	0.75 1	2497.5	
3/22	8	9:32	2	2320.8		3/25	16	8:42	2	2499.8	
3/22	8	9:34	4	2326.5		3/25	16	8:44	4	2516.8	
3/22	8	9:38	8	2330.0		3/25	16	8:48	8	2529.2	
3/22	8	9:45	15	2357		3/25	16	8:55	15	2542.2	
3/22	8	10:00	30	2371.8		3/25	16	9:10	30	2564	
3/22	8	10:30	60	2388		3/25	16	9:40	60	2586.8	
3/22	8	11:10	100	2400.2		3/25	16	10:25	105	2604.2	
3/22	8	12:50	200	2413		3/25	16	12:00	200	2619.5	
3/22	8	14:55	325	2421		3/25	16	13:40	300	2625.2	
3/22	8	19:00	570	2426		3/25	16	17:30	530	2631.5	
3/25	8	8:40	4270	2435.8	21	3/26	16	8:30	1430	2638.2	20
						<u> </u>					
						<u> </u>					
						Τe	echnicia	n <u>Jaso</u>	n Young	_	

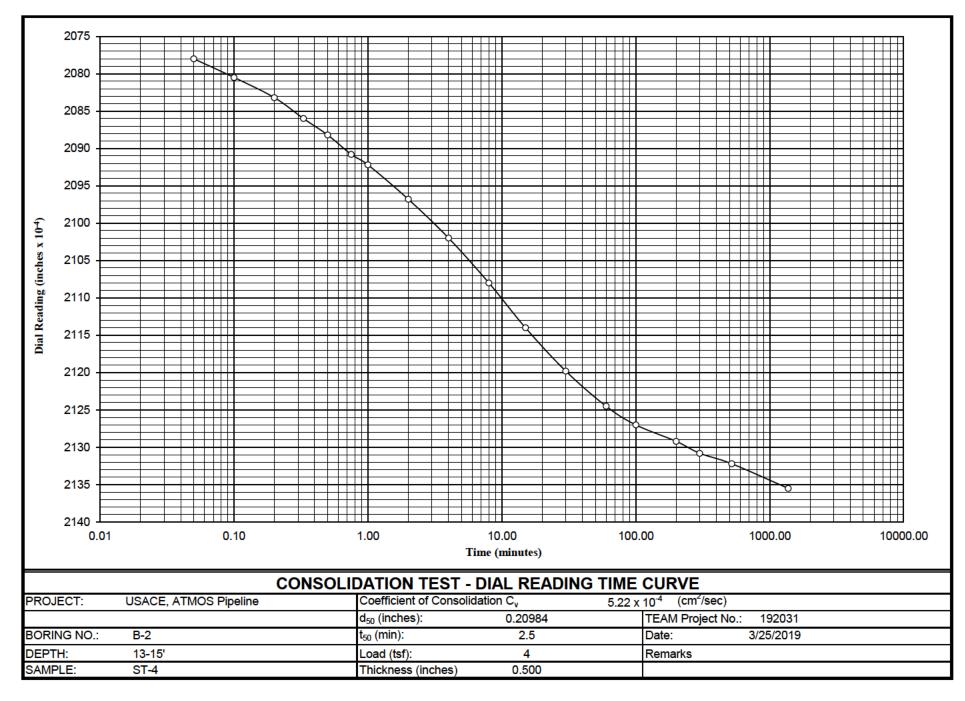

			TE	AM C	Cons	sulta	ints	, In	с.			
		G	eotechnica	l, Environn	nental,	Constr	uction 1	Materia	ls Testing			
				CONSO								
				(Time - C	onsolid	ation Da	ta)					
				()					
Proie	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031		
-										2		
	.g											
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	
	()			(10 11.)	Ŭ		()				•	
								REBO		DS		
						3/26	4	8:30	Rebound	2638.2	20	
						3/27	4	7:30	1380	2522.2	20	
						3/27	1	7:30	Rebound	2522.2	20	
						3/28	1	8:45	1515	2382	20	
						3/28	0.25	8:45	Rebound	2382	20	
						3/29	0.25	12:30	1665	2278.5	20	
							Ma	achine D	eflection Re	adings		
							0.125			2003		
							1			2031		
							2			2047		
							4			2065		
							8 16			2083		
							4		ļ	2108 2074		
							1		L	2074		
							0.25			2020		
						Te	chniciar	n Jaso	n Young			

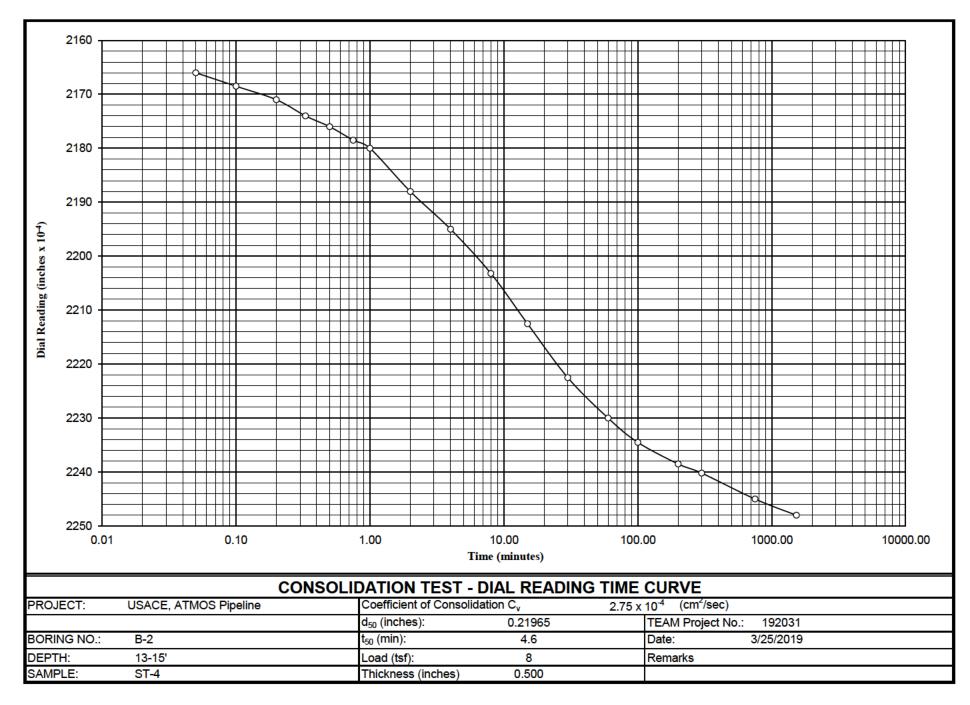

Geotechnical, Environmental, Construction Materials Testing

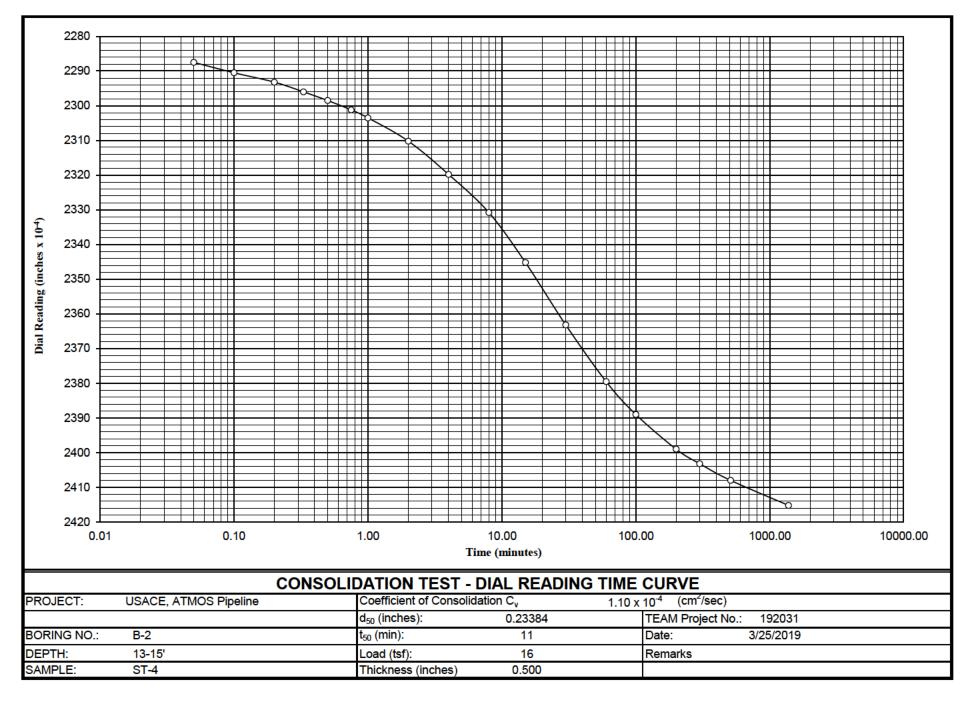

CONSOLIDATION TEST

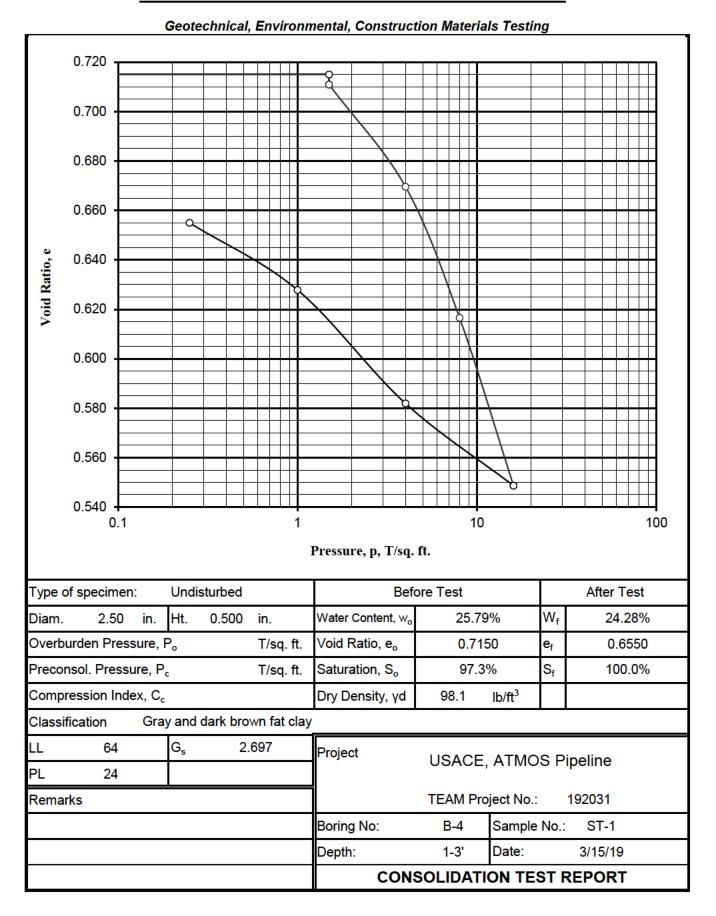

(Computation of Void Ratio)


				M Job No.:	192031	DATE:	3/19/19
	B-2	SAMP	LE NO. ST-2	DEPTH	4-6'	CONSOLIDOMETER NO.	2
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Change Height, <i>I</i> 10 ⁻⁴ in.	LH Voids, H _V	Void Ratio, e
0.1	3/19	Zero Point	2000	2000	0	1926	0.6285
1	3/19	Initial Load	2031	2031	0	1926	0.6285
1	3/19	1360	2039	2031	-8	1918	0.6259
2	3/20	1425	2104.5	2047	-57.5	1868	0.6098
4	3/21	1495	2241.5	2065	-176.5	1749	0.5709
8	3/22	4270	2435.8	2083	-352.8	1573	0.5134
16	3/25	1430	2638.2	2108	-530.2	1396	0.4555
4	3/26	1380	2522.2	2074	-448.2	. 1478	0.4823
1	3/27	1515	2382	2045	-337	1589	0.5186
0.25	3/28	1665	2278.5	2020	-258.5	1667	0.5442
Note:							

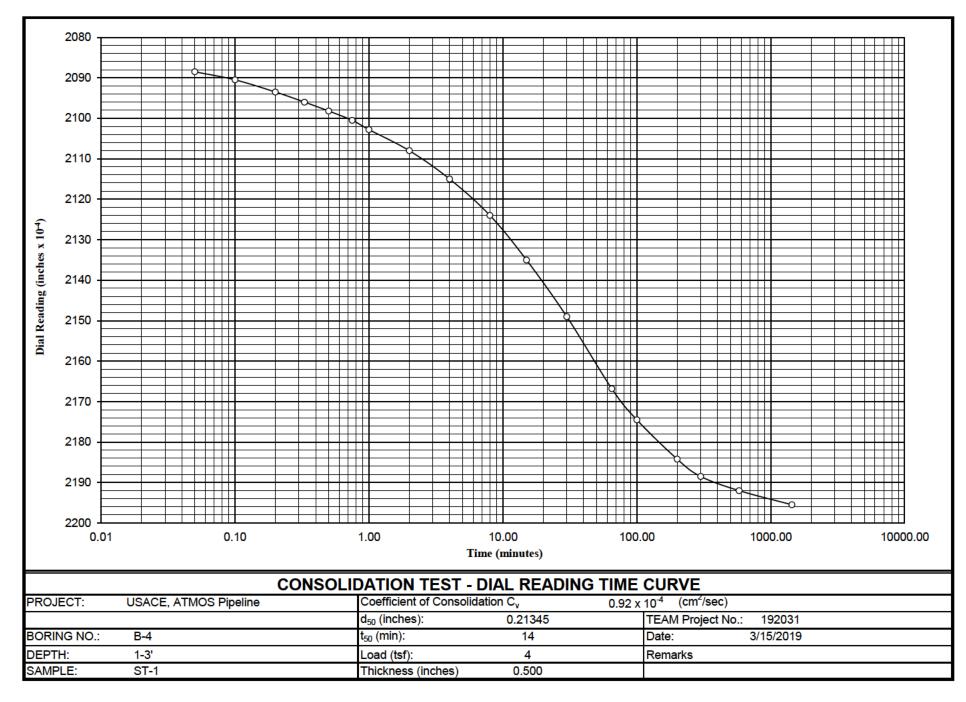

Geotechnical, Environmental, Construction Materials Testing

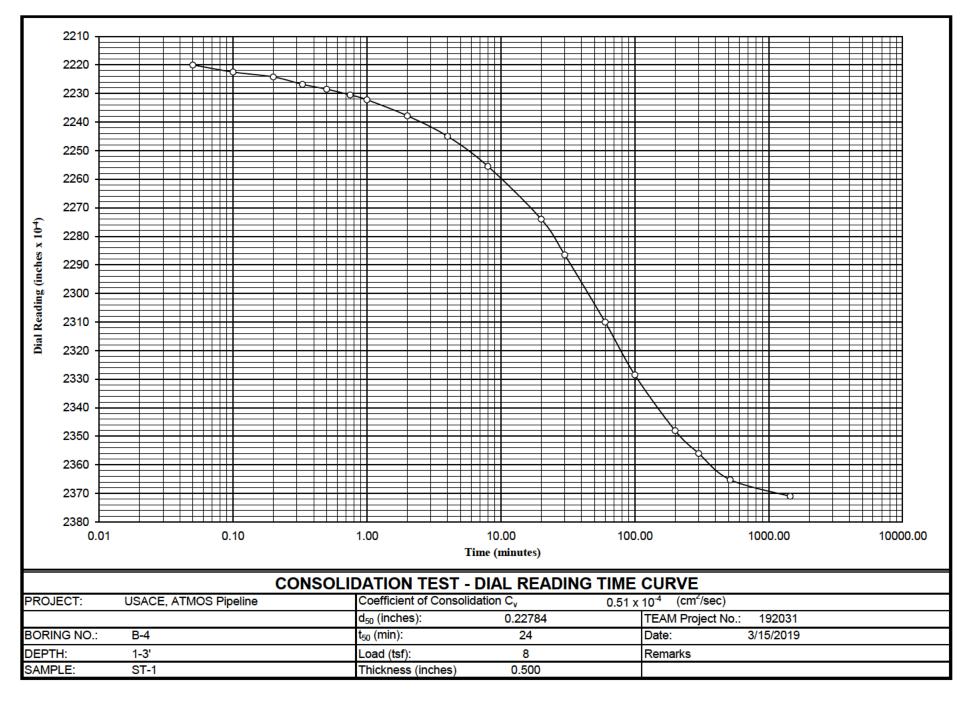

				NSOLIDATION T (Specimen Data			
		се, атм -2	OS Pipeline Sample No.: <u>ST</u> -	4 Depth:	TEAM Job No.: 13-15' Date:	192	031 25/19
Class	ification Tan	and drav	/ fat clay				
01000		and gray	lationary	Before Test			After Test
			Specimen		Trimmings		Specimen
	Tare No.		Ring and Plates	;	662		404
su	Tare plus wet	soil	192.81		504.45		116.39
graı	Tare plus dry	soil	178.34		453.49		102.02
Weight in grams	Water	Ww	W _{WO} 14.47		50.96	Wwf	14.37
Veigl	Tare		109.99		212.80		33.67
-	Dry soil	Ws	68.35		240.69		68.35
W	ater Content	W	W _O 21.17%		21.17%	W _f	21.02%
C	Consolidometer No	.:	1	Are	a of specimen, A, (sq.	cm.)	31.67
	Weight of ring, g		N/A			(in.)	0.500
	Weight of plates, <u>c</u> ht of solids, H _s =		N/A	Spe	cific Gravity of solids, (Gs)	2.685
Net c Heigl	change in height of ht of specimen at e	specime	$\frac{W_{Wf}}{A \times \gamma_W} = -\frac{1}{2}$ en at end of test, $\Delta H =$ st, $H_f = H - \Delta H =$ $\frac{H - H_s}{H_s} = -\frac{0.5}{0.5}$	-0.00490 0.4951	2.54 = 0.178 in. in. = 0.5800	6 in.	
Void	ratio after test, e _f	= H	$\frac{H_{s}}{H_{s}} = \frac{0.4951}{0.0000}$	- 0.3165 3165			
			$H_{WO} = \frac{H_{WO}}{H - H_S} =$		0.3165 = 98. 0.3165 = 100.09	.0%	
					0.3165 = 100.0 62.4 = 106.0 2.54		.ft.
Rema	arks						
Tech	nician Jas	on Your	g Computed by	y Jaso	n Young Cheo	cked by	James Hutt

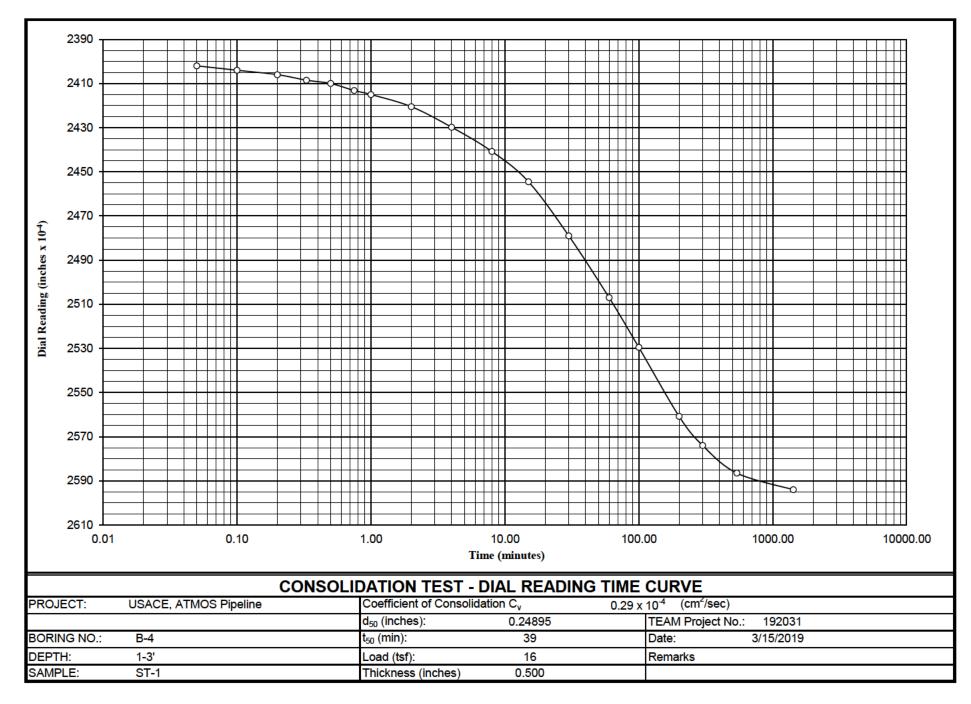

			TE	AM C	Cons	sulte	ants	, In	с.		
		Ge	eotechnica	l, Environn	-			Materia	ls Testing		
				CONSO	LIDATI	ON TES	Т				
				(Time - C	onsolida	ation Da	ta)				
Proje	t.			Dinalina				ТЕЛ	M. Joh No.	102021	
-			CE, ATMOS	-					M Job No.:		•
Borin	ig No.:		B-2	Sample No	.: <u>S</u>	<u>-4</u> De	epth: 1	3-15	Consol.No.:	1	•
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/25	0.25	11:30	0	2009	21	3/27	8	7:15	0	2135.5	20
3/25	0.5	11:35	5	2003		3/27	8	7:15	0.05	2166	
3/25	1	11:38	8	2018		3/27	8	7:15	0.1	2168.5	
3/25	1.5	12:00	30	2029		3/27	8	7:15	0.2	2171	
3/26	1.5	8:20	1250	2038.5	20	3/27	8	7:15	0.33	2174	
						3/27	8	7:15	0.5	2176	
						3/27	8	7:15	0.75	2178.5	
						3/27	8	7:16	1	2180	
3/26	4	8:20	0	2038.5	20	3/27	8	7:17	2	2188	
3/26	4	8:20	0.05	2078		3/27	8	7:19	4	2195	
3/26	4	8:20	0.1	2080.5		3/27	8	7:23	8	2203.2	
3/26	4	8:20	0.2	2083.2		3/27	8	7:30	15	2212.5	
3/26	4	8:20	0.33	2086		3/27	8	7:45	30	2222.5	
3/26	4	8:20	0.5	2088.2		3/27	8	8:15	60	2230	
3/26	4	8:20	0.75	2090.8		3/27	8	8:55	100	2234.5	
3/26	4	8:21	1	2092.2		3/27	8	10:35	200	2238.5	
3/26	4	8:22	2	2096.8		3/27	8	12:15	300	2240.2	
3/26	4	8:24	4	2102		3/27	8	19:45	750	2245	
3/26	4	8:28	8	2108		3/28	8	8:45	1530	2248	20
3/26 3/26	4	8:35 8:50	15	2114							
3/26	4	9:20	30	2119.8							
3/26	4	9.20	60 100	2124.5							
3/26	4	11:40	200	2127 2129.2							
3/26	4	13:20	300	2129.2							
3/26	4	17:00	300 520	2130.8							
3/27	4	7:15	1375	2132.2	20						
JIZI	4	7.15	1375	2155.5	20						
						T4	chnicia		n Young		
						16	conicial	Jaso	n roung		•

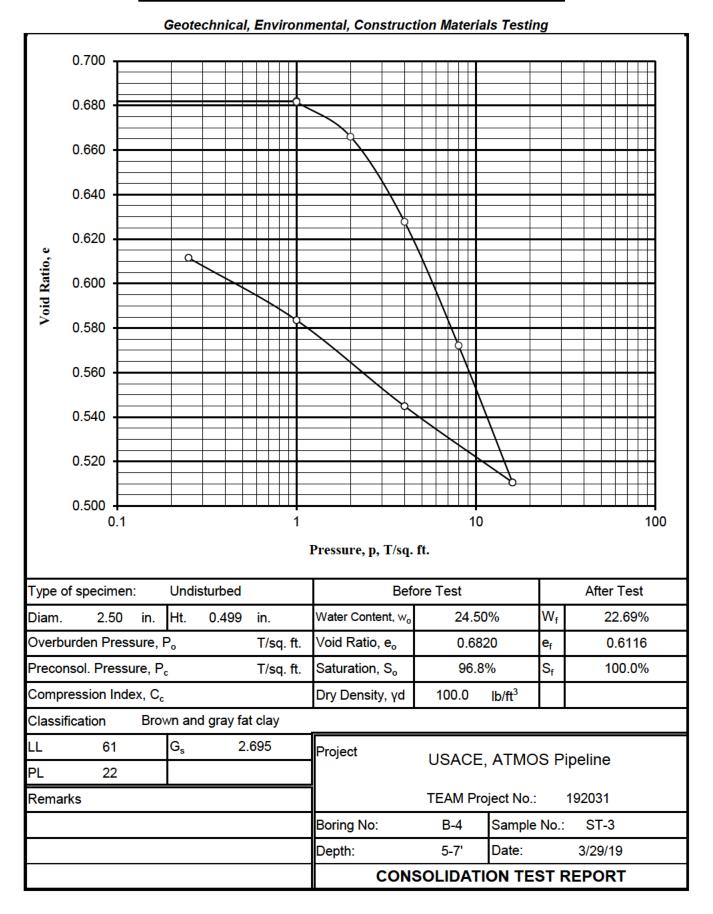

				AM C							-
		Ge	eotechnica	l, Environn	-			Materia	ls Testing		
				CONSO		ON TES					
				(Time - C	onsolida	ation Da	ta)				
Proje	ct:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
-				Sample No	· s	[-4 De	onth: 1				1
Dona	g 110		02	- campie ne		<u> </u>			0011001.110		•
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/28	16	8:45	0	2248	20			REBO		20	
3/28	16	8:45	0.05	2287.5						-	
3/28	16	8:45	0.1	2290.5		3/29	4	7:45	Rebound	2415.2	20
3/28	16	8:45	0.2	2293.2		3/30	4	21:30	2265	2295	20
3/28	16	8:45	0.33	2296							
3/28	16	8:45	0.5	2298.5		0.10.0		01.00		0005	
3/28	16	8:45	0.75	2301.2		3/30	1	21:30	Rebound	2295	20
3/28 3/28	16 16	8:46 8:47	1	2303.5		4/1	1	8:15	2085	2170	19
3/28	16	8:49	4	2310.2 2319.8							
3/28	16	8:53	8	2319.8		4/1	0.25	8:15	Rebound	2170	19
3/28	16	9:00	15	2345.2		4/2	0.25	8:00	1425	2075	20
3/28	16	9:15	30	2363.2		-112	0.20	0.00	1420	2015	20
3/28	16	9:45	60	2379.5							
3/28	16	10:25	100	2389							
3/28	16	12:05	200	2399							
3/28	16	13:45	300	2403.2							
3/28	16	17:15	510	2408							
3/29	16	7:45	1380	2415.2	20		М	achine [Deflection Re	adinas	
							0.25			2009	
							1.5			2040	
							4			2063	
							8			2084	
							16 4			2109	
							4			2073 2046	
							0.25			2046	
							0.20			2020	
						Te	echnicia	n <u>Jaso</u>	n Young		

		Geotechni	cal, Environmen	tal, Constructio	on Materials Tes	sting		
			CONSOLI	DATION TEST				
			(Computatio	on of Void Ratio)				
PROJECT	USACE, A	TMOS Pipeline	TEA	M Job No.:	192031	DATE:	3/25/19	
	B-2	SAMP	LE NO. ST-4	DEPTH 1	3-15' CONS	OLIDOMETER NO.	1	
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Change in Height, ΔH 10 ⁻⁴ in.	Height of Voids, H_V 10 ⁻⁴ in.	Void Ratio, e	
0.1	3/25	Zero Point	2000	2000	0	1835	0.5800	
1.5	3/25	Initial Load	2040	2040	0	1835	0.5800	
1.5	3/25	1250	2038.5	2040	1.5	1837	0.5804	
4	3/26	1375	2135.5	2063	-72.5	1763	0.5571	
8	3/27	1530	2248	2084	-164	1671	0.5281	
16	3/28	1380	2415.2	2109	-306.2	1529	0.4832	
4	3/29	2265	2295	2073	-222	1613	0.5098	
1	3/30	2085	2170	2046	-124	1711	0.5408	
0.25	4/1	1425	2075	2026	-49	1786	0.5645	
Note: Height of vo	pids, H_V = (H - H _S)	- ΔH	H _s = 0.3165		1 1			




				DATION TEST imen Data)		
		E, ATMO -4	S Pipeline Sample No.: <u>ST-1</u>	TEAM Job No.: Depth:1-3' Date:		031 15/19
Class	ification Gray	and dark	brown fat clay			
01400	inclution oray			ore Test		After Test
			Specimen	Trimmings		Specimen
	Tare No.		Ring and Plates	630		440
ns	Tare plus wet	soil	189.56	522.45		114.13
grar	Tare plus dry	soil	173.25	457.91		98.77
Weight in grams	Water	Ww	W _{WO} 16.31	64.54	Wwf	15.36
leigh	Tare		110.00	207.61		35.52
3	Dry soil	Ws	63.25	250.30		63.25
W	ater Content	w	W ₀ 25.79%	25.79%	Wf	24.28%
(Consolidometer No	.:	1	Area of specimen, A, (sq.	cm.)	31.67
	Weight of ring, g		N/A	Height of specimen, H,	(in.)	0.500
	Weight of plates, g		N/A	Specific Gravity of solids, (Gs)	2.697
Final Net c Heigl Void	height of water, H _t change in height of ht of specimen at e ratio before test, e _t	$w_f = \frac{V}{F}$ specimen nd of test	, H _f = H - ΔH = 0.48	$\frac{15.36}{37 \times 1 \times 2.54} = 0.190$ 0.01750in. 325in. $0.2915 = 0.7150$	9 in.	
Degr Degr	ee of saturation be ee of saturation aft	fore test, s er test, S _f	$S_{0} = \frac{H_{WO}}{H - H_{S}} = \frac{-1}{0}$ $= \frac{H_{wf}}{H_{f} - H_{S}} = \frac{-1}{0.48}$			ı.ft.
Rem	arks					
	nician Jas					


Date (tsf) Time Time, (min) (10^4 in.) °C Date (tsf) Time Time, (min) (10^4 in.) °C				TE.	AM C	Cons	sulte	ants	s, In	с.		
Time - Consolidation Data) Project: USACE, ATMOS Pipeline TEAM Job No.: 192031 Boring No.: B-4 Sample No.: ST-1 Depth: 1-3' Consol.No.: 1 Date Press. (tst) Time Elapsed Time, (min) Dial Reading (10 ⁴ in.) Temp. Press. Time Elapsed Time, (min) Dial Reading (10 ⁴ in.) Temp. Press. 3/15 0.125 9:55 0 2004 20 3/19 8 8:40 0.2220 2201 3/15 0.15 9:57 2 2003 3/19 8 8:40 0.22 2224.2 1 3/15 1.5 11:40 105 2035 3/19 8 8:40 0.2 2224.2 1 3/18 1.5 8:00 4205 2052 19 3/19 8 8:40 0.75 2230.5 1 3/18 4 8:35 0.2 2093.5 3/19 8 8:41 1 2232.2 1			Ge	eotechnica	-	-			Materia	ls Testing		-
Project: USACE, ATMOS Pipeline TEAM Job No.: 192031 Boring No.: B-4 Sample No.: ST-1 Deth: 1-3' Consol.No.: 1 Date Press. (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ in.) Temp. 0°C Date Press. (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ in.) Temp. 0°C 3/15 0.25 9:55 0 2004 20 3/19 8 8:40 0.21 22205 2 3/15 0.25 9:56 1 1992 3/19 8 8:40 0.21 2224.2 3/19 1 8:8:40 0.22 2224.2 3/19 1 1:5 1:0 1:0 105 2035 3/19 8 8:40 0.25 2220.5 1 3/19 8 8:40 0.75 2230.5 1 3/19 8 8:41 1 2232.2 1 3/18 4 8:35 0.2 2095.5 3/19 8 8:44					CONSO	LIDATI	ON TES	Т				
Boring No.: B-4 Sample No.: ST-1 Depth: 1-3' Consol.No.: 1 Date Press. (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ n.) Temp. OC Date Press.(tsf) Time ElapsedTime, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Time, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Date Press.(tsf) Time, (min) Date Press.(tsf) Date Date <tdd< td=""><td></td><td></td><td></td><td></td><td>(Time - C</td><td>onsolida</td><td>ation Da</td><td>ta)</td><td></td><td></td><td></td><td></td></tdd<>					(Time - C	onsolida	ation Da	ta)				
Boring No.: B-4 Sample No.: ST-1 Depth: 1-3' Consol.No.: 1 Date Press. (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ n.) Temp. OC Date Press.(tsf) Time ElapsedTime, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Time, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Date Press.(tsf) Time, (min) Date Press.(tsf) Date Date <tdd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tdd<>												
Boring No.: B-4 Sample No.: ST-1 Depth: 1-3' Consol.No.: 1 Date Press. (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ n.) Temp. OC Date Press.(tsf) Time ElapsedTime, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Time, (min) Temp.(104 n.) Date Press.(tsf) Time, (min) Date Press.(tsf) Time, (min) Date Press.(tsf) Date Date <tdd< td=""><td>Proie</td><td>ct:</td><td>USA</td><td>CE. ATMOS</td><td>Pipeline</td><td></td><td></td><td></td><td>TEA</td><td>M Job No.:</td><td>192031</td><td></td></tdd<>	Proie	ct:	USA	CE. ATMOS	Pipeline				TEA	M Job No.:	192031	
Date Press, (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ in.) Temp. oC Date Press. (tsf) Time Elapsed Time, (min) Dial Reading (10 ⁴ in.) Temp. oC 3/15 0.125 9:55 0 2004 20 3/19 8 8:40 0 2195.5 20 3/15 0.25 9:56 1 1992 3/19 8 8:40 0.01 2222.5 20 3/15 1 9:59 4 2021 3/19 8 8:40 0.2 2224.2 2 3/15 1.5 11:40 105 2035 3/19 8 8:40 0.33 2226.8 3/18 1.5 8:00 4205 2052 19 3/19 8 8:40 0.75 2230.5 - - - 3/19 8 8:44 4 2245 3/18 4 8:35 0.1 2090.5 3/19 8 9:40 60 23	-						[_1 D4	anth:				•
	Donin	y No		0-4					1-0	0011301.140	I	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date		Time				Date		Time			Temp. °C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/15	0.125	9:55	0	2004	20	3/19	8	8:40	0	2195.5	20
3/15 1 9:59 4 2021 3/19 8 8:40 0.2 2224.2 3/15 1.5 11:40 105 2035 3/19 8 8:40 0.33 2226.8 3/18 1.5 8:00 4205 2052 19 3/19 8 8:40 0.5 2228.5 3/18 4 8:35 0 2052 19 3/19 8 8:40 0.75 2230.5 3/18 4 8:35 0 2052 19 3/19 8 8:41 1 2232.2 3/18 4 8:35 0.1 2090.5 3/19 8 8:44 4 2245 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.5 2098.2 3/19 8 9:10 30 2286.5 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:37<	3/15	0.25	9:56	1	1992		3/19	8	8:40	0.05	2220	
3/15 1.5 11:40 105 2035 3/19 8 8:40 0.33 2226.8 3/18 1.5 8:00 4205 2052 19 3/19 8 8:40 0.5 2228.5 3/18 4 8:35 0 2052 19 3/19 8 8:40 0.75 2230.5 3/18 4 8:35 0 2052 19 3/19 8 8:41 1 2232.2 3/18 4 8:35 0.05 2088.5 3/19 8 8:42 2 2237.8 3/18 4 8:35 0.1 2090.5 3/19 8 8:48 8 2255.5 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.5 2098.2 3/19 8 9:10 30 2286.5 3/18 4 8:36 1 2102.8 3/19 8 10:20 100 2328.5 3/18 4 8:3		0.5	9:57	2	2003		3/19	8	8:40	0.1	2222.5	
3/18 1.5 $8:00$ 4205 2052 19 $3/19$ 8 $8:40$ 0.5 2228.5 1.5 $8:00$ 4205 2052 19 $3/19$ 8 $8:40$ 0.75 2223.5 $3/18$ 4 $8:35$ 0 2052 19 $3/19$ 8 $8:41$ 1 2232.2 $3/18$ 4 $8:35$ 0.05 2088.5 $3/19$ 8 $8:44$ 4 22455 $3/18$ 4 $8:35$ 0.1 2090.5 $3/19$ 8 $8:48$ 8 2255.5 $3/18$ 4 $8:35$ 0.2 2093.5 $3/19$ 8 $9:00$ 20 2274 $3/18$ 4 $8:35$ 0.5 2098.2 $3/19$ 8 $9:00$ 20 2274 $3/18$ 4 $8:35$ 0.5 2098.2 $3/19$ 8 $10:20$ 100 2328.5 $3/19$ 8 $10:20$ 100 2328.5 $3/18$	3/15	1	9:59	4	2021		3/19	8	8:40	0.2	2224.2	
Image: state of the s	3/15	1.5	11:40	105	2035		3/19	8	8:40	0.33	2226.8	
3/19 8 8:41 1 2232.2 3/18 4 8:35 0 2052 19 3/19 8 8:42 2 2237.8 3/18 4 8:35 0.05 2088.5 3/19 8 8:44 4 2245 3/18 4 8:35 0.1 2090.5 3/19 8 8:44 4 2245 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.33 2096 3/19 8 9:00 20 2286.5 3/18 4 8:35 0.5 2098.2 3/19 8 9:40 60 2310 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:37 2 2108 3/19 8 13:40 300 2365.2 3/18 <t< td=""><td>3/18</td><td>1.5</td><td>8:00</td><td>4205</td><td>2052</td><td>19</td><td></td><td>8</td><td></td><td>0.5</td><td>2228.5</td><td></td></t<>	3/18	1.5	8:00	4205	2052	19		8		0.5	2228.5	
3/18 4 8:35 0 2052 19 3/19 8 8:42 2 2237.8 3/18 4 8:35 0.05 2088.5 3/19 8 8:44 4 2245 3/18 4 8:35 0.1 2090.5 3/19 8 8:48 8 2255.5 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.3 2096 3/19 8 9:00 20 2274 3/18 4 8:35 0.5 2098.2 3/19 8 9:10 30 2286.5 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:37 2 2108 3/19 8 13:40 300 2365.2 3/18 4 8:33 4 2115							3/19	8	8:40	0.75	2230.5	
3/18 4 8:35 0.05 2088.5 3/19 8 8:44 4 2245 3/18 4 8:35 0.1 2090.5 3/19 8 8:48 8 2255.5 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.33 2096 3/19 8 9:00 20 2274 3/18 4 8:35 0.5 2098.2 3/19 8 9:40 60 2310 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 1445 2371 20 3/18 4 8:43 8 2124 3/20									8:41		2232.2	
3/18 4 8:35 0.1 2090.5 3/19 8 8:48 8 2255.5 3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.33 2096 3/19 8 9:10 30 2286.5 3/18 4 8:35 0.5 2098.2 3/19 8 9:40 60 2310 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 9:05 30 2149		4		0	2052	19		-	8:42	2	2237.8	
3/18 4 8:35 0.2 2093.5 3/19 8 9:00 20 2274 3/18 4 8:35 0.33 2096 3/19 8 9:10 30 2286.5 3/18 4 8:35 0.5 2098.2 3/19 8 9:40 60 2310 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 9:05 30 2149 3/18 4 10:15 100 2174.5		4										
3/18 4 8:35 0.33 2096 3/19 8 9:10 30 2286.5 3/18 4 8:35 0.5 2098.2 3/19 8 9:40 60 2310 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:50 15 2135 - - - - - 3/18 4 9:05 30 2149 - - - - - - 3/18 4 10:15 100 2174.5 <												
3/18 4 8:35 0.5 2098.2 3/19 8 9:40 60 2310 3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:50 15 2135 3/18 4 9:05 30 2149 <td></td>												
3/18 4 8:35 0.75 2100.5 3/19 8 10:20 100 2328.5 3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:50 15 2135 - - - - - 3/18 4 9:05 30 2149 - - - - - - 3/18 4 9:40 65 2166.8 - <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-										
3/18 4 8:36 1 2102.8 3/19 8 12:00 200 2348 3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 9:05 30 2149 3/18 4 9:05 30 2174.5 3/18 4 10:15 100 2174.5 3/18 4 13:35 300 2188.5		-										
3/18 4 8:37 2 2108 3/19 8 13:40 300 2356 3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:50 15 2135												
3/18 4 8:39 4 2115 3/19 8 17:15 515 2365.2 3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:50 15 2135 -												
3/18 4 8:43 8 2124 3/20 8 8:45 1445 2371 20 3/18 4 8:50 15 2135 -												
3/18 4 8:50 15 2135 15 2135 3/18 4 9:05 30 2149 10 10 3/18 4 9:40 65 2166.8 10 10 3/18 4 10:15 100 2174.5 10 10 2174.5 3/18 4 11:55 200 2184.2 10 10 2184.2 3/18 4 13:35 300 2188.5 10 10 10 3/18 4 18:15 580 2192 10 10 10												
3/18 4 9:05 30 2149 Image: constraint of the stress of the stres							3/20	8	8:45	1445	2371	20
3/18 4 9:40 65 2166.8 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
3/18 4 10:15 100 2174.5												
3/18 4 11:55 200 2184.2												
3/18 4 13:35 300 2188.5 <												
3/18 4 18:15 580 2192												
3/19 4 6.33 1440 2193.5 20 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						20						
	5/19	4	0.55	1440	2195.5	20						
Technician Jason Young							Τe	echnicia	n <u>Jaso</u>	n Young		

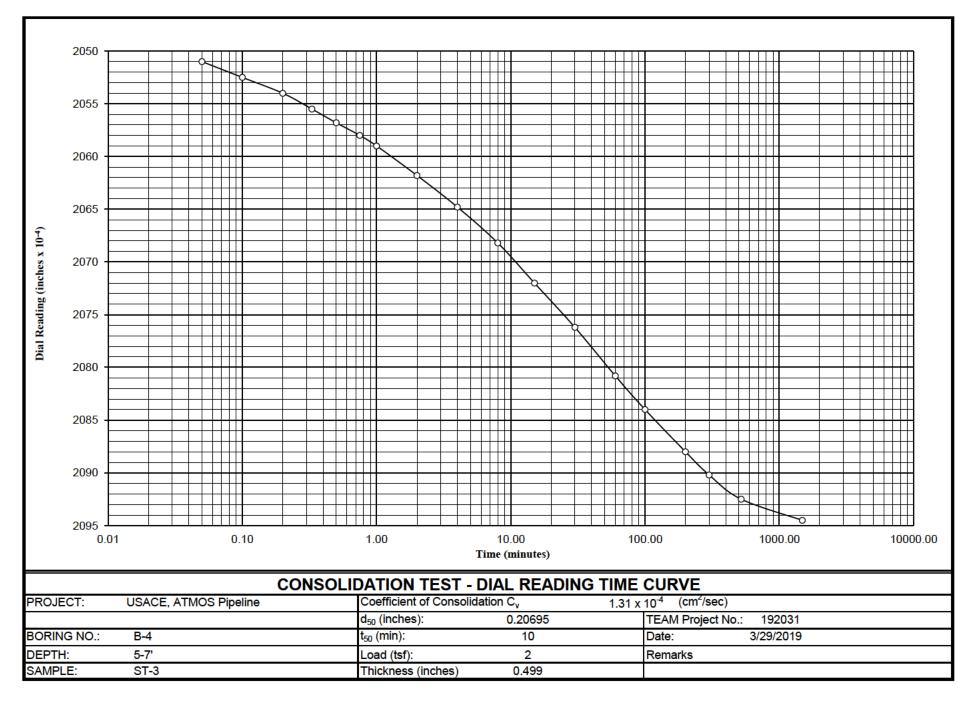

		Ge		AM C							
				CONSO							
				/Time C		tion Do	t a)				
				(Time - C	onsolida	ation Da	ta)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	g No.:		B-4	Sample No	.: S	[-1De	epth:	1-3'	Consol.No.:	1	
										1	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/20	16	8:45	0	2371	20			RFB)S	
3/20	16	8:45	0.05	2402							
3/20	16	8:45	0.1	2404		3/21	4	8:30	Rebound	2594	20
3/20	16	8:45	0.2	2406		3/22	4	9:20	1490	2461	20
3/20	16	8:45	0.33	2408.5							
3/20	16	8:45	0.5	2410		2/22	4	0.00		0.404	20
3/20 3/20	16	8:45	0.75	2413.2		3/22 3/24	1	9:20	Rebound	2461	20
3/20	16 16	8:46 8:47	1	2415 2420.5		3/24	1	14:15	3175	2300.2	20
3/20	16	8:49	4	2420.3							
3/20	16	8:53	8	2440.8		3/24	0.25	14:15	Rebound	2300.2	20
3/20	16	9:00	15	2454.5		3/25	0.25	17:30	1635	2200	21
3/20	16	9:15	30	2479							
3/20	16	9:45	60	2507							
3/20	16	10:25	100	2529.5							
3/20	16	12:05	200	2560.8							
3/20	16	13:45	300	2574							
3/20	16	17:45	540	2586.5							
3/21	16	8:30	1425	2594	20		M	achine D	eflection Re	adinas	
										-	
							0.125			2004	
							1.5 4			2040 2063	
							4 8			2083	
							16			2109	
							4			2073	
							1			2046	
							0.25			2026	
						Te	echniciar	n Jaso	n Young		

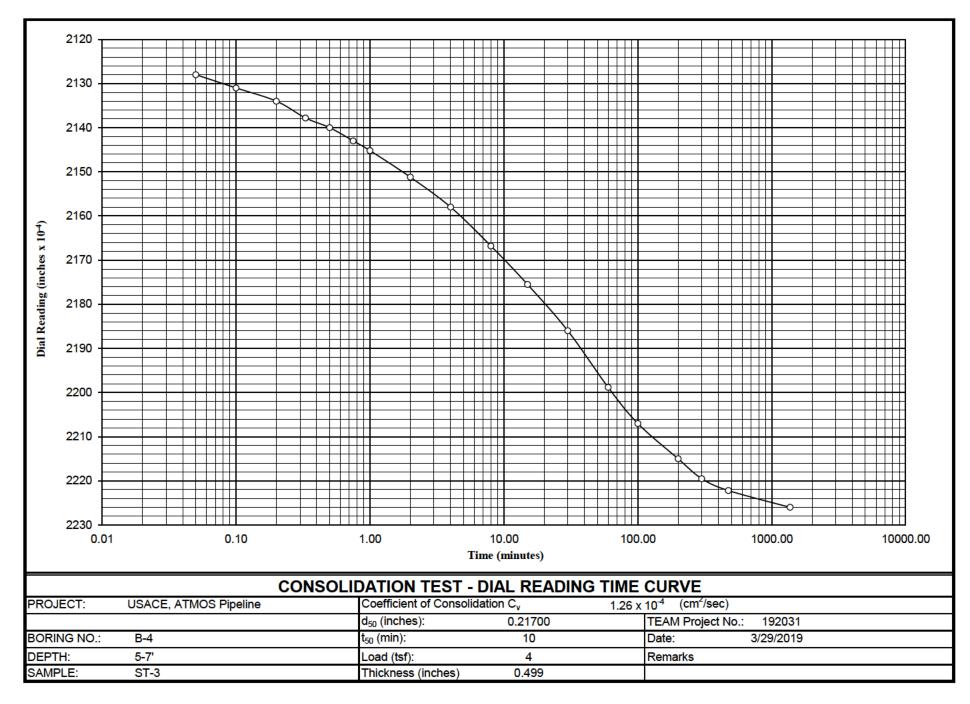
		Geotechni	cal, Environmen	ntal, Constructio	on Materials Te	sting	
			CONSOLI	DATION TEST			
			(Computatio	on of Void Ratio)			
ROJECT	USACE, A	TMOS Pipeline	TEA	M Job No.:	192031	DATE:	3/15/19
BORING NO.	B-4	SAMP	LE NO. ST-1	DEPTH	1-3' CONS		1
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Change in Height, ΔH 10 ⁻⁴ in.	Height of Voids, H _V 10 ⁻⁴ in,	Void Ratio, e
0.1	3/15	Zero Point	2000	2000	0	2085	0.7150
1.5	3/15	Initial Load	2040	2040	0	2085	0.7150
1.5	3/15	4205	2052	2040	-12	2073	0.7109
4	3/18	1440	2195.5	2063	-132.5	1952	0.6696
8	3/19	1445	2371	2084	-287	1798	0.6166
16	3/20	1425	2594	2109	-485	1600	0.5487
4	3/21	1490	2461	2073	-388	1697	0.5819
1	3/22	3175	2300.2	2046	-254.2	1830	0.6278
0.25	3/24	1635	2201	2026	-175	1910	0.6550
Note: Height of v	roids, $H_V = (H - H_S)$	- ΔH	H _s = 0.2915				

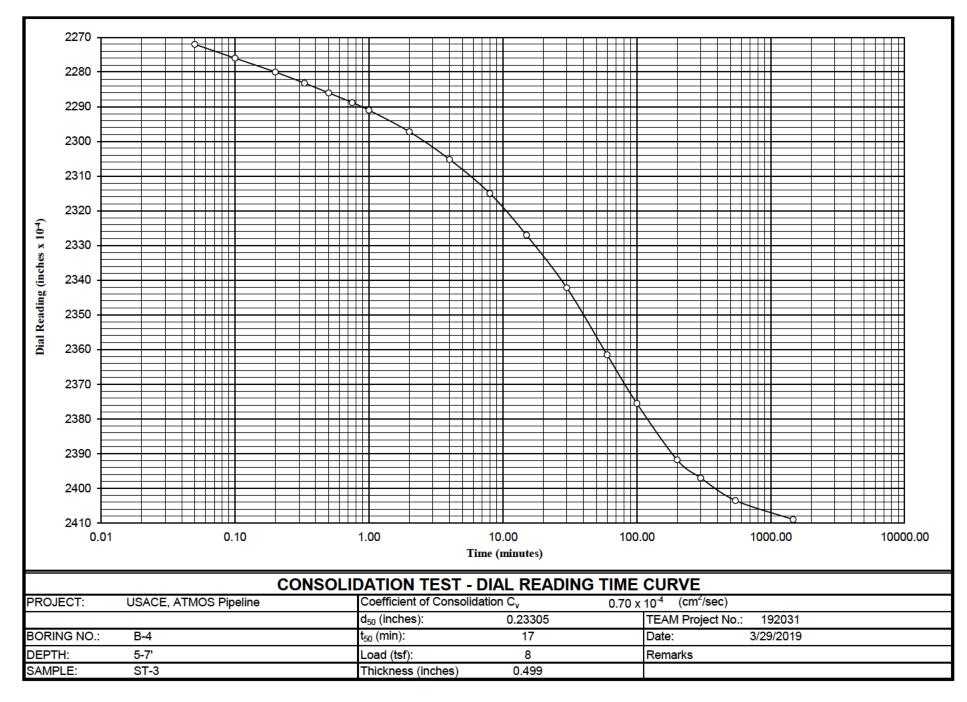
					IDATION TE cimen Data)	ST			
Р	roject: USAC	E. ATM	OS Pipeline			TEAM Job	No.:	192	031
		-4	Sample No.:	ST-3	Depth:	5-7'	Date:		
Class	sification Brow	/n and o	ray fat clay						
Chaot	Bron	in and g	aj lat olaj	Be	fore Test				After Test
			Spec	imen		Trimmings			Specimen
	Tare No.			d Plates		662			440
ns	Tare plus wet	soil	190).06		602.15			114.42
gran	Tare plus dry	soil	174	4.30		524.51			99.83
Weight in grams	Water	Ww	W _{WO} 15.	76		77.64		W _{wf}	14 .59
eigh	Tare		110	0.00		207.64			35.53
3	Dry soil	Ws	64	.30		316.87			64.30
N	Vater Content	w	W ₀ 24.5	50%		24.50%		W _f	22.69%
(Consolidometer No		2	2	Area	of specimen,	A, (sq. c	cm.)	31.67
	Weight of ring, g		N	/A	Heig	ht of specimer	i, H, (in.)	0.499
	Weight of plates, g	ļ	N	/A	Speci	fic Gravity of s	olids, (Gs)	2.695
Final Net o Heig Void	inal height of water I height of water, H change in height of ht of specimen at e I ratio before test, e I ratio after test, e _f	wr = specime end of te o = =	st, H _f = H - ΔH = H - H _S =	31. 31. , ΔH = 0.4 0.499 - 0.2967	14.59 67 x 1 x 2 -0.02090 781 ir 0.2967 =	in. n. = 0.6820	= 0.19		in.
	ree of saturation be ree of saturation aff	ter test,		- = - 0.4	0.1814 781 - 0.1	2967 =	100.0%	6	
		Yd -							.tt.
Dry (aarks								.tt.

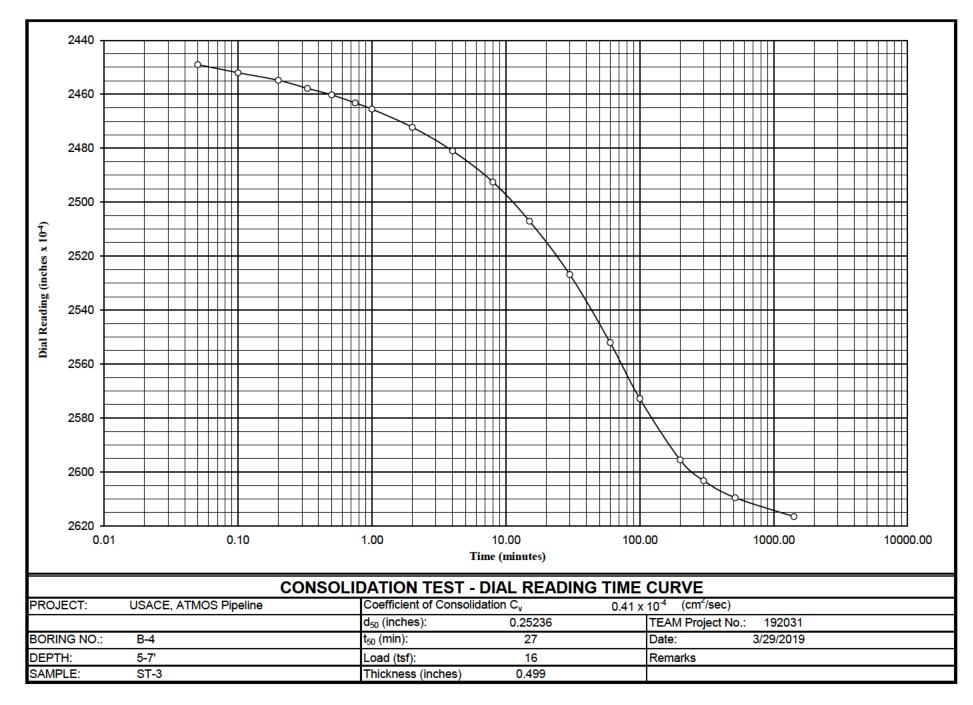
-			IE	AM C	ons	sult	ants	5, In	С.		
		Ge	eotechnica	l, Environn	-			Materia	ls Testing		
				CONSO		ON TES	Т				
				(Time - C	onsolida	ation Da	ita)				
Proje	ct:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	g No.:		B-4	Sample No	.: <u>S</u> T	<u>-3</u> D	epth:	5-7'	Consol.No.:	2	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/29	0.25	13:10	0	2008	20	4/2	4	9:05	0	2094.5	20
3/29	0.5	13:15	5	2005		4/2	4	9:05	0.05	2128	
3/29	0.75	14:00	50	2010		4/2	4	9:05	0.1	2131	
3/29	1	16:00	170	2023		4/2	4	9:05	0.2	2134	
4/1	1	8:20	4030	2032	19	4/2	4	9:05	0.33	2137.8	
						4/2	4	9:05	0.5	2140	
						4/2	4	9:05	0.75	2143	
						4/2	4	9:06	1	2145.2	
4/1	2	8:20	0	2032	19	4/2	4	9:07	2	2151.2	
4/1	2	8:20	0.05	2051		4/2	4	9:09	4	2158	
4/1	2	8:20	0.1	2052.5		4/2	4	9:13	8	2166.8	
4/1	2	8:20	0.2	2054		4/2	4	9:20	15	2175.5	
4/1	2	8:20	0.33	2055.5		4/2	4	9:35	30	2186	
4/1	2	8:20	0.5	2056.8		4/2	4	10:05	60	2198.8	
4/1	2	8:20	0.75	2058		4/2	4	10:45	100	2207	
4/1	2	8:21	1	2059		4/2	4	12:25	200	2215	
4/1	2	8:22	2	2061.8		4/2	4	14:05	300	2219.5	
4/1	2	8:24	4	2064.8		4/2	4	17:00	475	2222.2	
4/1	2	8:28	8	2068.2		4/3	4	7:55	1370	2226	20
4/1 4/1	2	8:35 8:50	15	2072							
4/1	2	9:20	30 60	2076.2 2080.8							
4/1	2	9.20 10:00	100	2080.8							
4/1	2	11:40	200	2084							
4/1	2	13:20	300	2000							
4/1	2	17:00	520	2090.2							
4/2	2	9:05	1485	2092.5	20						
	-	0.00	100	2007.0							
								1			
						Te	echnicia	n <u>Jaso</u>	n Young		

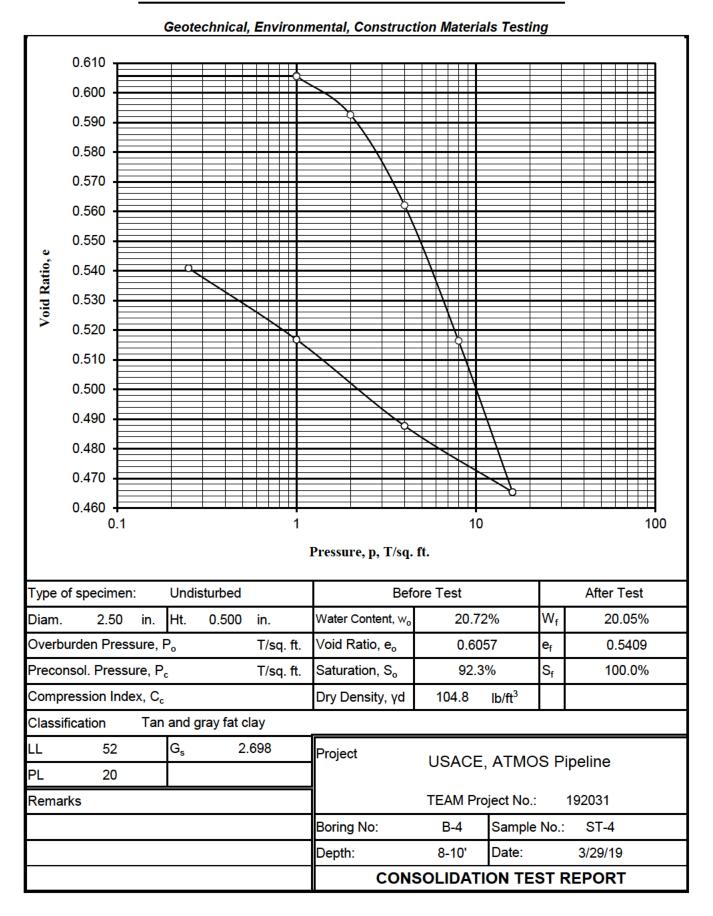
				AM C							
		Ge	eolechnica	<i>l, Environn</i> CONSO	-			Materia	ls Testing		
				(Time - C	onsolida	ation Da	ita)				
Proje			CE, ATMOS						M Job No.:		•
Borir	ng No.:		B-4	Sample No	.: <u>S</u>	<u>-3</u> De	epth:	5-7'	Consol.No.:	2	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
4/3	8	7:55	0	2226	20	4/4	16	8:25	0	2409	21
4/3	8	7:55	0.05	2272		4/4	16	8:25	0.05	2449	
4/3	8	7:55	0.1	2276		4/4	16	8:25	0.1	2452	
4/3	8	7:55	0.2	2280		4/4	16	8:25	0.2	2454.8	
4/3	8	7:55	0.33	2283.2		4/4	16	8:25	0.33	2457.8	
4/3	8	7:55	0.5	2286		4/4	16	8:25	0.5	2460.2	
4/3	8	7:55	0.75	2288.8		4/4	16	8:25	0.75	2463.2	
4/3 4/3	8 8	7:56 7:57	1	2291 2297.2		4/4 4/4	16 16	8:26 8:27	1 2	2465.5 2472.2	
4/3	8	7:59	4	2305.2		4/4	16	8:29	4	2472.2	
4/3	8	8:03	8	2303.2		4/4	16	8:33	8	2492.5	
4/3	8	8:10	15	2327		4/4	16	8:40	15	2507	
4/3	8	8:25	30	2342.2		4/4	16	8:55	30	2526.8	
4/3	8	8:55	60	2361.5		4/4	16	9:25	60	2552	
4/3	8	9:35	100	2375.5		4/4	16	10:05	100	2572.8	
4/3	8	11:15	200	2391.8		4/4	16	11:45	200	2595.5	
4/3	8	12:55	300	2397		4/4	16	13:25	300	2603.2	
4/3	8	17:00	545	2403.5		4/4	16	17:00	515	2609.5	
4/4	8	8:25	1470	2409	21	4/5	16	8:00	1415	2616.5	21
						<u> </u>					
						<u> </u>					
						Te	echnicia	n <u>Jaso</u>	n Young		


			TE	AM C	ons	sulta	ants	, In	С.		
		G	eotechnica	l, Environn	nental,	Constru	uction	Materia	ls Testing		
				CONSO							
				(Time - C	onsolida	ation Da	ta)				
				(
Proie	et.	USA	CE, ATMOS	Pineline				TFΔ	M Job No.:	192031	
-							anth:			2	
BOH	ig No		D-4	Sample No		<u>-5</u> D6	-pui	5-7	CONSOI.110	2	
Date	Press.	Time	Elapsed	Dial Reading	Temp.	Date	Press.	Time	Elapsed	Dial Reading	Temp.
Dute	(tsf)	Time	Time, (min)	(10 ⁻⁴ in.)	°C	Date	(tsf)	Time	Time, (min)	(10 ⁻⁴ in.)	°C
								REBO		DS	
						4/5	4	8:00	Rebound	2616.5	21
						4/6	4	11:10	1630	2480.8	21
						4/6	1	11:10	Rebound	2480.8	21
						4/7	1	13:30	1580	2337.2	21
							-				
						4/7	0.25	13:30	Rebound	2337.2	21
						4/8	0.25	13:30	1440	2229	21
							М	achine D	eflection Re	eadings	
							0.25			2008	
							1			2031	
							2			2047	
							4			2065	
							8 16			2083	
							4		ļ	2108 2074	
							1		L	2074	
							0.25			2020	
						Τe	echniciar	n <u>Jaso</u>	n Young		


Geotechnical, Environmental, Construction Materials Testing


CONSOLIDATION TEST

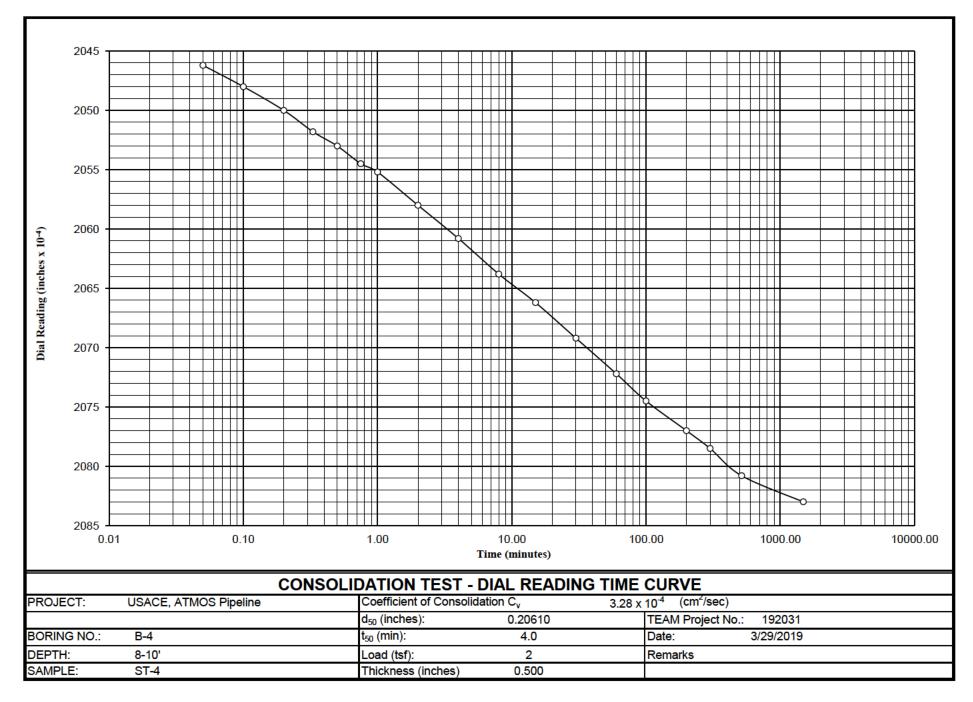

(Computation of Void Ratio)

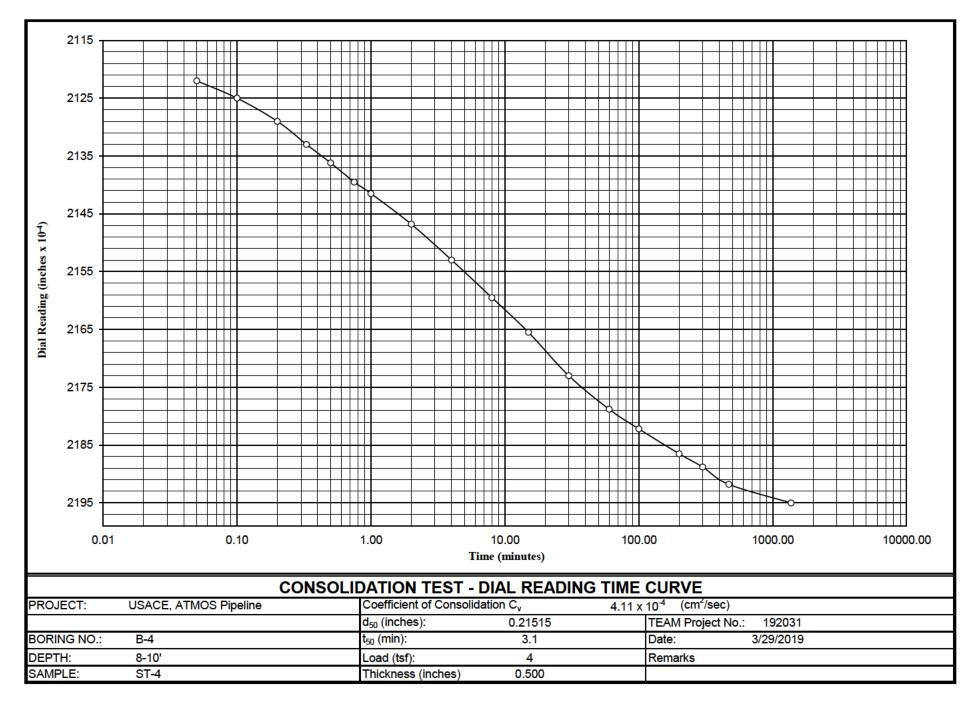

PROJECT	USACE, AT	TMOS Pipeline	TEA	M Job No.:	192031	DATE:	3/29/19
	B-4	SAMF	PLE NO. ST-3	DEPTH	5-7'	CONSOLIDOMETER NO	. 2
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Heigh	the second sec	Void Ratio, e
0.1	3/29	Zero Point	2000	2000		2023	0.6820
1	3/29	Initial Load	2031	2031	(2023	0.6820
1	3/29	4030	2032	2031	-	1 2022	0.6817
2	4/1	1485	2094.5	2047	-47	7.5 1976	0.6660
4	4/2	1370	2226	2065	-1	61 1862	0.6278
8	4/3	1470	2409	2083	-3	26 1697	0.5722
16	4/4	1415	2616.5	2108	-50	8.5 1515	0.5106
4	4/5	1630	2480.8	2074	-40	6.8 1617	0.5449
1	4/6	1580	2337.2	2045	-29	2.2 1731	0.5836
0.25	4/7	1440	2229	2020	-2	09 1814	0.6116
Note: Height of vi Void Ratio,	oids, $H_V = (H - H_S)$ e = $\underline{H_V}$		H _S = 0.2967			oung Checked by Jam	

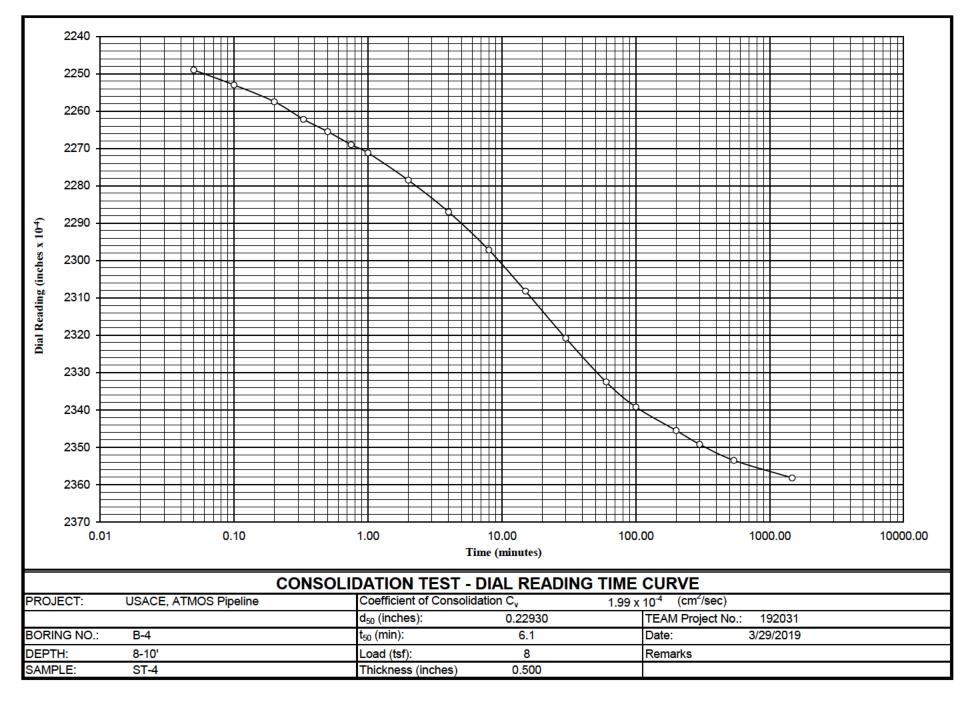
					IDATION TE cimen Data)	ST		
		E, ATM-4	OS Pipeline Sample No.:	ST-4	Depth:	TEAM Job No.: 8-10' Date	192 : 3/29	
		and gray	fat clay					
Class		anu yray	Tat Clay	Be	fore Test		1	After Test
			Specir			Trimmings		Specimen
	Tare No.		Ring and			623		411
ns	Tare plus wet	soil	191.	58		620.28		116.55
grar	Tare plus dry	soil	177.	58		551.10		103.00
Weight in grams	Water	Ww	W _{wo} 14.0	0		69.18	Wwf	13.55
/eigł	Tare		110.	00		217.16		35.42
-	Dry soil	Ws	67.5			333.94	<u> </u>	67.58
W	ater Content	W	W ₀ 20.72	2%		20.72%	W _f	20.05%
C	Consolidometer No.	.:	3		Area	of specimen, A, (sq.	cm.)	31.67
	Weight of ring, g		N//			ht of specimen, H,	(in.)	0.500
	Weight of plates, g		N/A	4	Spec	ific Gravity of solids,	(Gs)	2.698
Net c	height of water, H _t change in height of ht of specimen at e	specime	en at end of test, <i>i</i>	∆H =	-0.02020	2.54 = 0.168 in. n.	34 in.	
	ratio before test, e _r ratio after test, e _f					= 0.6057 = 0.5409		
	ee of saturation be						2.3%	
						3114 = 100.0 2.4 = 104. 54		ı.ft.
Rema	arks							
Tech	nician Jaso	on Youn	g Comp	uted by	Jason	Young Che	cked by	James Hutt

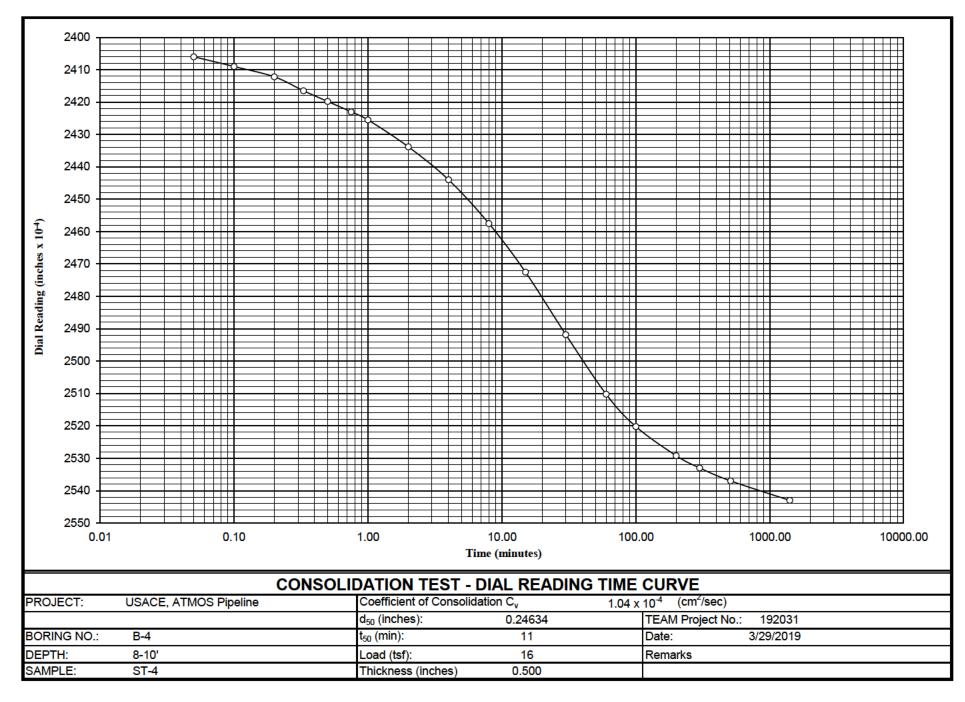
				AM C				-			
		Ge	eotechnica	l, Environn				Materia	ls Testing		
				CONSO		ON TES	T				
				(Time - C	onsolida	ation Da	ita)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borin	ng No.:		B-4	Sample No	.: <u>S</u>	<u>Г-4</u> De	epth: 8	8-10'	Consol.No.:	3	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
3/29	0.25	13:50	0	2008	20	4/2	4	9:10	0	2083	20
3/29	0.5	14:00	10	2005		4/2	4	9:10	0.05	2122	-
3/29	1	14:05	15	2020		4/2	4	9:10	0.00	2125	
4/1	1	8:25	3995	2028.5	19	4/2	4	9:10	0.2	2129	
						4/2	4	9:10	0.33	2133	
						4/2	4	9:10	0.5	2136.2	
						4/2	4	9:10	0.75	2139.5	
						4/2	4	9:11	1	2141.5	
4/1	2	8:25	0	2028.5	19	4/2	4	9:12	2	2146.8	
4/1	2	8:25	0.05	2046.2		4/2	4	9:14	4	2153	
4/1	2	8:25	0.1	2048		4/2	4	9:18	8	2159.5	
4/1	2	8:25	0.2	2050		4/2	4	9:25	15	2165.5	
4/1	2	8:25	0.33	2051.8		4/2	4	9:40	30	2173	
4/1	2	8:25	0.5	2053		4/2	4	10:10	60	2178.8	
4/1	2	8:25	0.75	2054.5		4/2	4	10:50	100	2182.2	
4/1	2	8:26	1	2055.2		4/2	4	12:30	200	2186.5	
4/1	2	8:27	2	2058		4/2	4	14:10	300	2188.8	
4/1	2	8:29	4	2060.8		4/2	4	17:00	470	2191.8	
4/1	2	8:33	8	2063.8		4/3	4	8:00	1370	2195	20
4/1	2	8:40	15	2066.2							
4/1	2	8:55	30	2069.2							
4/1	2	9:25	60	2072.2							
4/1	2	10:05	100	2074.5							
4/1	2	11:45	200	2077							
4/1	2	13:25	300	2078.5							
4/1	2	17:00	515	2080.8							
4/2	2	9:10	1485	2083	20						
						1					
						Те	echnicia	n Jaso	n Young		

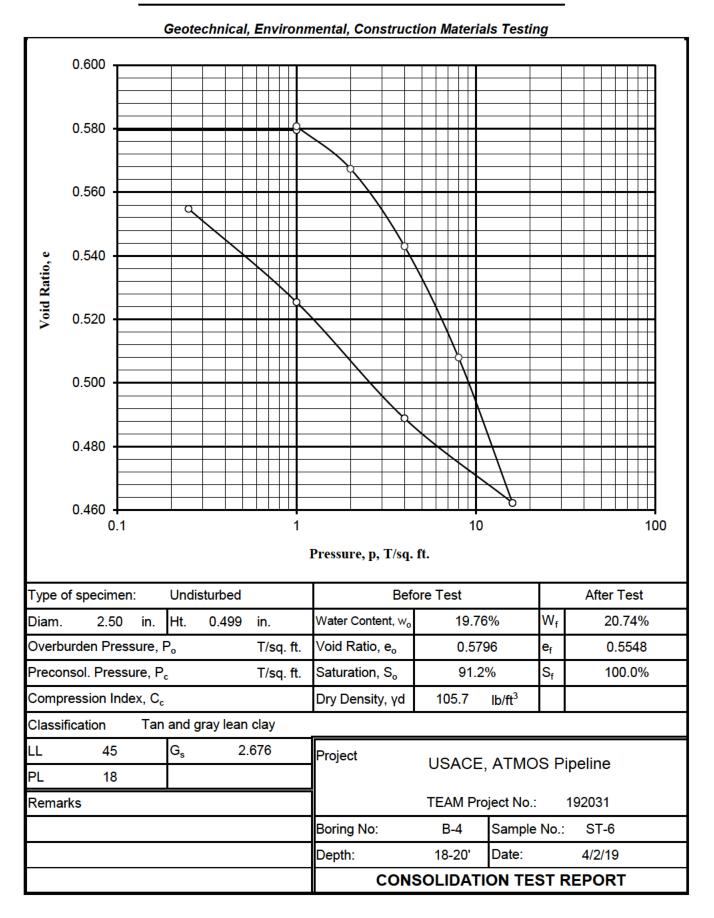
				AM C							
		G	eotechnica	l, Environn				Materia	ls Testing		
				CONSO		ON TES					
				(Time - C	onsolid	ation Da	ta)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borir	ng No.:		B-4	Sample No	.: S	<u>Г-4</u> De	epth: 8	3-10'	Consol.No.:	3	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
4/3	8	8:00	0	2195	20	4/4	16	8:30	0	2358.2	21
4/3	8	8:00	0.05	2249		4/4	16	8:30	0.05	2406	
4/3	8	8:00	0.1	2253		4/4	16	8:30	0.1	2409	
4/3	8	8:00	0.2	2257.5		4/4	16	8:30	0.2	2412.2	
4/3 4/3	8 8	8:00 8:00	0.33	2262.2 2265.5		4/4 4/4	16 16	8:30 8:30	0.33 0.5	2416.5 2419.8	
4/3	8	8:00	0.5	2265.5		4/4	16	8:30	0.5	2419.8	
4/3	8	8:01	1	2209		4/4	16	8:31	1	2425	
4/3	8	8:02	2	2278.5		4/4	16	8:32	2	2433.8	
4/3	8	8:04	4	2287		4/4	16	8:34	4	2444	
4/3	8	8:08	8	2297.2		4/4	16	8:38	8	2457.5	
4/3	8	8:15	15	2308.2		4/4	16	8:45	15	2472.5	
4/3	8	8:30	30	2320.8		4/4	16	9:00	30	2491.8	
4/3	8	9:00	60	2332.5		4/4	16	9:30	60	2510.2	
4/3	8	9:40	100	2339.2		4/4	16	10:10	100	2520.2	
4/3	8	11:20	200	2345.5		4/4	16	11:50	200	2529.2	
4/3	8	13:00	300	2349.2		4/4	16	13:30	300	2533	
4/3	8	17:00	540	2353.5		4/4	16	17:00	510	2537	
4/4	8	8:30	1470	2358.2	21	4/5	16	8:00	1410	2543	21
						Te	echnicia	n <u>Jaso</u>	n Young		


	TEAM Consultants, Inc.											
		G	eotechnica	l, Environn	nental,	Constr	uction	Materia	ls Testing			
				CONSO								
				(Time - C	onsolida	ation Da	ta)					
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031		
Borir	ng No.:		B-4							3	•	
	-											
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C	
	REBOUND LOADS											
						4/5	4	8:00	Rebound	2543	21	
						4/6	4	11:10	1630	2438.5	21	
						4/6	1	11:10	Rebound	2438.5	21	
						4/7	1	13:30	1580	2320	21	
						4/7	0.25	13:30	Rebound	2320	21	
						4/8	0.25	13:30	1440	2224	21	
							Μ	achine D	eflection Re	eadings		
							0.25			2008		
							1			2028		
							2			2042		
							4			2059		
							8 16			2080 2106		
							4			2071		
							1			2043		
							0.25			2022		
						Te	echniciar	n <u>Jaso</u>	n Young		•	


Geotechnical, Environmental, Construction Materials Testing


CONSOLIDATION TEST

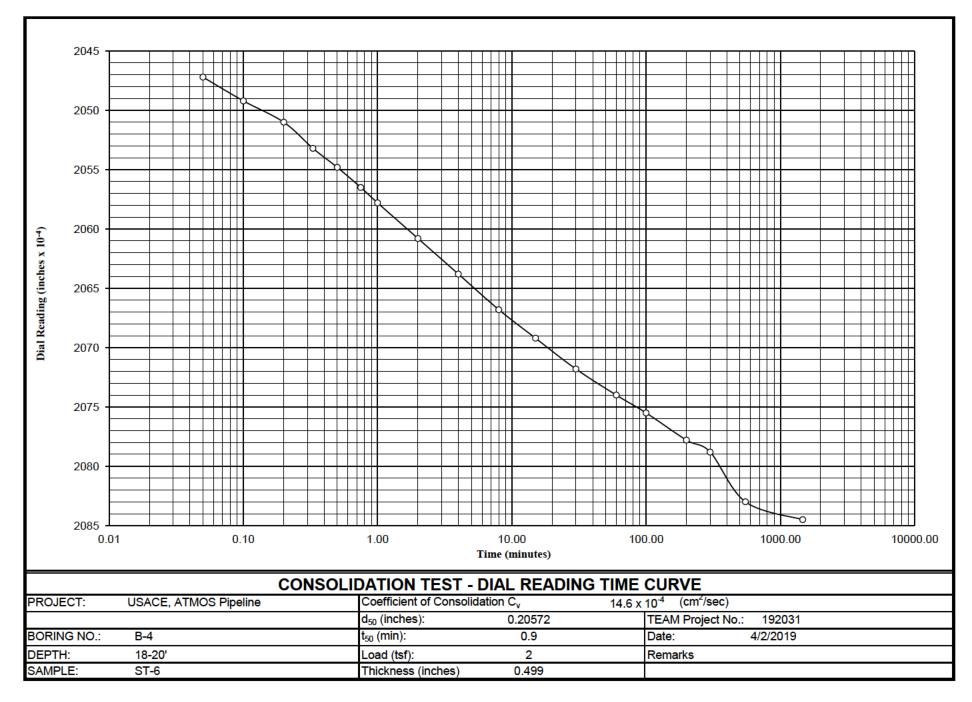

(Computation of Void Ratio)

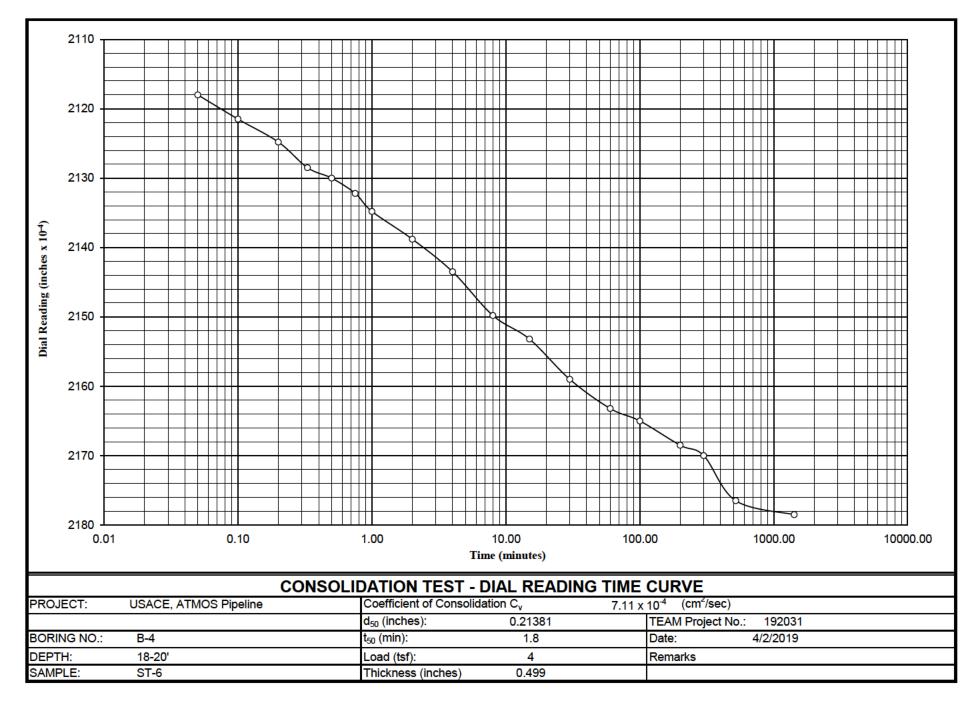

PROJECT	USACE, AT	MOS Pipeline	TEA	M Job No.:	192031	DATE:	3/29/19
	B-4	SAMP	PLE NO. ST-4	DEPTH	8-10'	CONSOLIDOMETER NO.	3
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Chang Height 10 ⁻⁴	t, ΔH Voids, H _V	Void Ratio, e
0.1	3/29	Zero Point	2000	2000	0		0.6057
1	3/29	Initial Load	2028	2028	0	1886	0.6057
1	3/29	3995	2028.5	2028	-0.	5 1886	0.6056
2	4/1	1485	2083	2042	-4	1 1845	0.5926
4	4/2	1370	2195	2059	-13	36 1750	0.5621
8	4/3	1470	2358.2	2080	-278	3.2 1608	0.5164
16	4/4	1410	2543	2106	-43	37 1449	0.4654
4	4/5	1630	2438.5	2071	-367	7.5 1519	0.4877
1	4/6	1580	2320	2043	-27	7 1609	0.5168
0.25	4/7	1440	2224	2022	-20	1684	0.5409
Note: Height of vo Void Ratio, o	pids, H _V = (H - H _S) e = $\frac{H_V}{H_C}$		H _S = 0.3114	Computed	hy Jason Vo	ung Checked by Jame	s Hutt

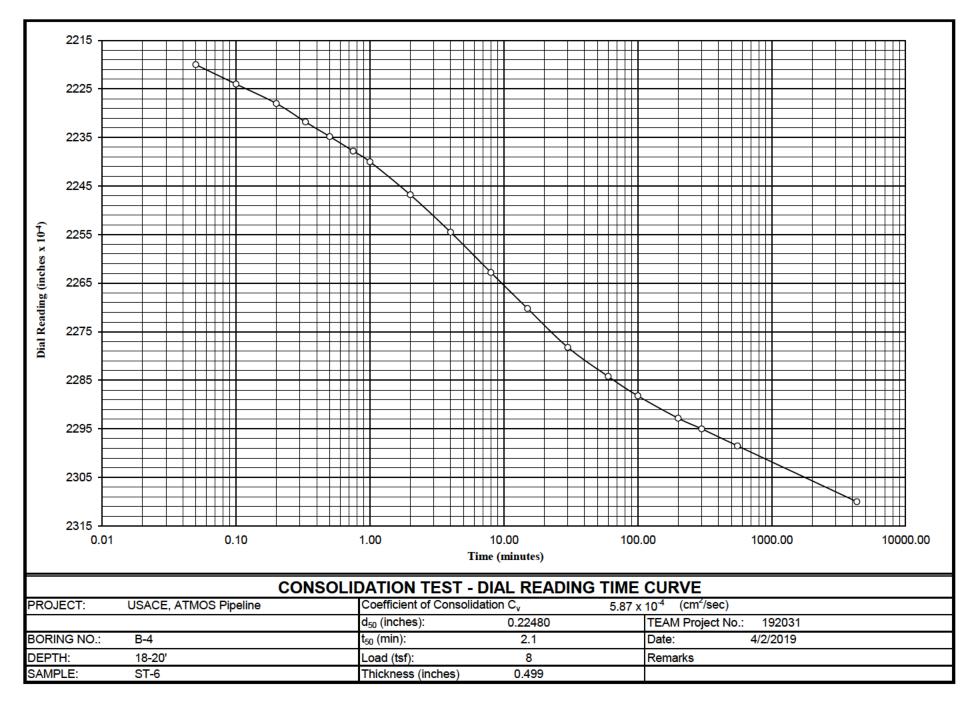
				DATION TEST men Data)		
	oject: USAC pring No.: B		OS Pipeline Sample No.: ST-6	TEAM Job No.: Depth: 18-20' Date:	192	
		and drav	/ lean clay			
01035		and gray		ore Test		After Test
			Specimen	Trimmings		Specimen
	Tare No.		Ring and Plates	625		412
su	Tare plus wet	soil	191.44	634.10		117.52
grar	Tare plus dry	soil	178.00	562.60		103.42
Weight in grams	Water	Ww	W _{WO} 13.44	7 1 .50	W _{wf}	14.10
/eigh	Tare		110.00	200.80		35.42
3	Dry soil	Ws	68.00	361.8		68.00
W	ater Content	w	W _O 19.76%	19.76%	W _f	20.74%
C	Consolidometer No.	.:	1	Area of specimen, A, (sq. o	cm.)	31.67
	Weight of ring, g		N/A	Height of specimen, H, ((in.)	0.499
	Weight of plates, g		N/A	Specific Gravity of solids, (Gs)	2.676
Final Net c Heigl	height of water, H _t change in height of ht of specimen at e	wf = specime nd of tes	st, $H_f = H - \Delta H = 0.49$	14.10 7 x 1 x 2.54 0.00782 in. 12 in.		in.
			$\frac{H - H_{s}}{H_{s}} = \frac{0.499 - 0.3159}{0.3159}$ $\frac{H_{s}}{H_{s}} = \frac{0.49118 - 0.3159}{0.3159}$	= 0.5796		
			$H_{\rm WO} = \frac{H_{\rm WO}}{H - H_{\rm S}} = 0.$			
				$\frac{0.1753}{12 - 0.3159} = 100.09$ $\frac{x 62.4}{31.67 x 2.54} = 105.7$.ft.
Rema	arks					
Tech	nician Jaso	on Youn	g Computed by	Jason Young Chec	ked by	James Hutt

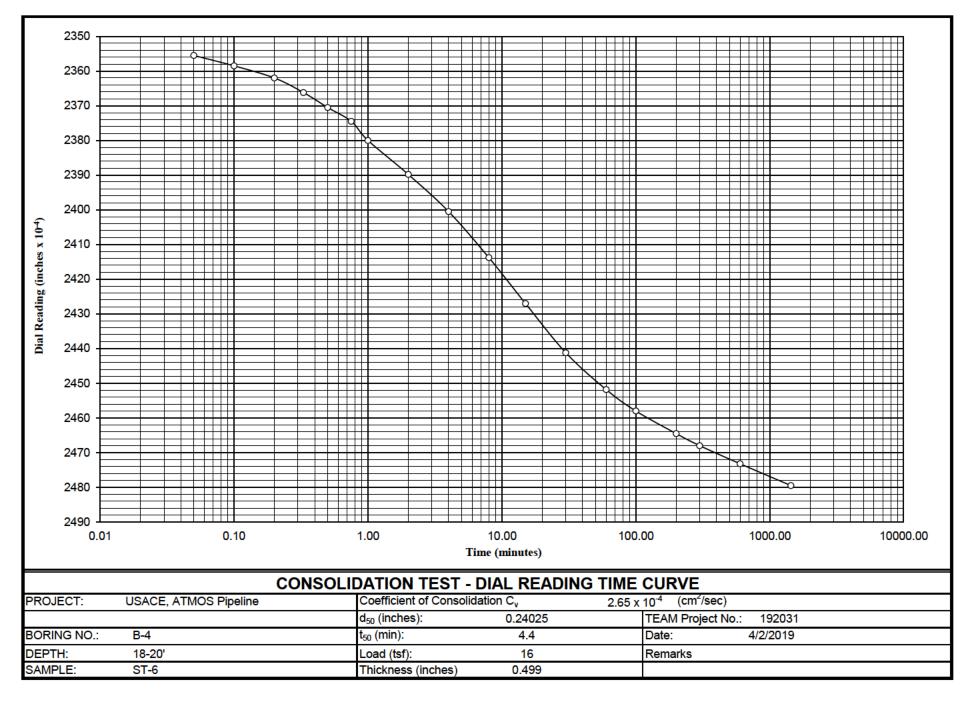
		<u> </u>						-			
		Ge	eolecnnica	<i>l, Environn</i> CONSO	-			Materia	is Testing		
				(Time - C	onsolida	ation Da	ita)				
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031	
Borir	ng No.:		B-4	Sample No	.: S1	-6 De	epth: 1	8-20'	Consol.No.:	1	_
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C
4/2	0.25	10:30	0	2009	20	4/4	4	8:20	0	2084.5	21
4/2	0.50	10:35	5	2008		4/4	4	8:20	0.05	2118	
4/2	1.00	11:30	60	2017		4/4	4	8:20	0.1	2121.5	
4/3	1.00	7:50	1280	2028.2	20	4/4	4	8:20	0.2	2124.8	
						4/4	4	8:20	0.33	2128.5	
						4/4	4	8:20	0.5	2130	
						4/4	4	8:20	0.75	2132.2	
						4/4	4	8:21	1	2134.8	
4/3	2	7:50	0	2028.2	20	4/4	4	8:22	2	2138.8	
4/3	2	7:50	0.05	2047.2		4/4	4	8:24	4	2143.5	
4/3	2	7:50	0.1	2049.2		4/4	4	8:28	8	2149.8	
4/3	2	7:50	0.2	2051		4/4	4	8:35	15	2153.2	
4/3	2	7:50	0.33	2053.2		4/4	4	8:50	30	2159	
4/3	2	7:50	0.5	2054.8		4/4	4	9:20	60	2163.2	
4/3	2	7:50	0.75	2056.5		4/4	4	10:00	100	2165	
4/3	2	7:51	1	2057.8		4/4	4	11:40	200	2168.5	
4/3	2	7:52	2	2060.8		4/4	4	13:20	300	2170	
4/3 4/3	2	7:54 7:58	4	2063.8		4/4 4/5	4	17:00 8:00	520	2176.5	21
4/3	2	8:05	8 15	2066.8		4/5	4	0.00	1420	2178.5	21
4/3	2	8:20	30	2069.2 2071.8							
4/3	2	8:50	60	2071.8							
4/3	2	9:30	100	2074							
4/3	2	11:10	200	2073.3							
4/3	2	12:50	300	2077.8							
4/3	2	17:00	550	2078.8							
4/4	2	8:20	1470	2084.5	21						
	-	0.20	VITI	2007.0							
						Te	echnicia	n Jaso	n Young		

		Ge		AM C							
				CONSO	_						
				(Time - C	onsolid	ation Da	ta)				
				(11116-0	onsonua		ita)				
Proje	vot:		CE, ATMOS	Dipolino					M Job No.:	102021	
-							neth: 1				
DOUL	ig ino		D-4	Sample No	3	<u>1-0</u> D6	epin. <u>1</u>	0-20	Consol.No	I	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. ^o C
4/5	8	8:00	0	2178.5	21	4/8	16	8:00	0	2310	21
4/5	8	8:00	0.05	2220		4/8	16	8:00	0.05	2355.5	
4/5	8	8:00	0.1	2224		4/8	16	8:00	0.1	2358.5	
4/5	8	8:00	0.2	2228		4/8	16	8:00	0.2	2362	
4/5	8	8:00	0.33	2231.8		4/8	16	8:00	0.33	2366.2	
4/5 4/5	8 8	8:00 8:00	0.5	2234.8		4/8 4/8	16 16	8:00 8:00	0.5	2370.5	
4/5	8	8:00	0.75 1	2237.8 2240		4/8	16	8:00	0.75 1	2374.5 2380	
4/5	8	8:02	2	2240		4/8	16	8:02	2	2389.8	
4/5	8	8:04	4	2240.0		4/8	16	8:04	4	2400.5	
4/5	8	8:08	8	2262.8		4/8	16	8:08	8	2413.8	
4/5	8	8:15	15	2270.2		4/8	16	8:15	15	2427	
4/5	8	8:30	30	2278.2		4/8	16	8:30	30	2441.2	
4/5	8	9:00	60	2284.2		4/8	16	9:00	60	2451.8	
4/5	8	9:40	100	2288.2		4/8	16	9:40	100	2458	
4/5	8	11:20	200	2292.8		4/8	16	11:20	200	2464.5	
4/5	8	13:00	300	2295		4/8	16	13:00	300	2468	
4/5	8	17:15		2298.5		4/8	16	18:00	600	2473.2	
4/8	8	8:00	4320	2310	21	4/9	16	8:00	1440	2479.5	21
											L
						Τe	echnicia	n Jaso	n Young		
						Τe	echnicia	n <u>Jaso</u>	n Young		


	TEAM Consultants, Inc.											
		G	eotechnica	l, Environn	nental,	Constru	uction]	Materia	ls Testing			
				CONSO								
				(Time - C	onsolida	ation Da	ta)					
Proje	ect:	USA	CE, ATMOS	Pipeline				TEA	M Job No.:	192031		
Borin	Boring No.: <u>B-4</u> Sample No.: <u>ST-6</u> Depth: <u>18-20'</u> Consol.No.: <u>1</u>											
		1			Tama						Tama	
Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	Date	Press. (tsf)	Time	Elapsed Time, (min)	Dial Reading (10 ⁻⁴ in.)	Temp. °C	
								REB)S		
						4/9	4	8:00	Rebound	2479.5	21	
						4/9	4	8:00	1440	2359.5	21	
								5.50				
						4/10	1	8:00	Rebound	2359.5	21	
						4/11	1	8:00	1440	2217	21	
						4/11	0.25	8:00	Rebound	2217	21	
						4/12	0.25	7:30	1410	2104.2	21	
							M	achine [Deflection Re	adings		
							0.25			2009		
							1			2032		
							2			2046		
							4			2063		
							8 16			2084 2109		
							4			2109		
							1			2046		
							0.25			2026		
						Τe	echniciar	n <u>Jaso</u>	n Young			


Geotechnical, Environmental, Construction Materials Testing


CONSOLIDATION TEST


(Computation of Void Ratio)

PROJECT	USACE, AT	MOS Pipeline	TEA	M Job No.:	192031	DATE:	4/2/19
	B-4	SAMP	LE NO. ST-6	DEPTH	18-20'	CONSOLIDOMETER NO.	1
Pressure, P T./sq.ft.	Date Increment Applied	Time in Min. Increment Effective	Dial Reading 10 ⁻⁴ in.	Correction 10 ⁻⁴ in.	Change Height, 10 ⁻⁴ ir	∆H Voids, H _V	Void Ratio, e
0.1	4/2	Zero Point	2000	2000	0	<mark>1</mark> 831	0.5796
1	4/2	Initial Load	2032	2032	0	1831	0.5796
1	4/2	1280	2028.2	2032	3.8	1835	0.5808
2	4/3	1470	2084.5	2046	-38.5	5 1792	0.5674
4	4/4	1420	2178.5	2063	-115.	5 1 715	0.5430
8	4/5	4320	2310	2084	-226	6 1605	0.5080
16	4/8	1440	2479.5	2109	-370.	5 1460	0.4623
4	4/9	1440	2359.5	2073	-286.	5 1544	0.4889
1	4/10	1440	2217	2046	-171	1660	0.5254
0.25	4/11	1410	2104.2	2026	-78.2	2 1753	0.5548
Note: Height of vo Void Ratio, o	bids, $H_V = (H - H_S)$ $e = H_V$	- ΔH	H _S = 0.3159				
	H _s	Tech	nician Jason Young	Computed	by Jason You	ng Checked by Jame	s Hutt

