Client Name: Contract: Launch/Receive: Diameter: Length: Strain Report Date: Reporting Threshold: Enbridge Inc. 451191_M30 (2018 LI 450455_30J) OWSV_10 Owingsville CS to Wheelersburg CS 30 in 62.1 miles 7/19/2019 0.125 % Bending strain reporting threshold 0.04 % Strain change reporting threshold

Pipeline & ILI Information

Client Name Contract Launch/Receive	Enbridge Inc. 451191_M30 (2018 ILI 4504 OWSV_10 Owingsville CS to	55_30J) o Wheelersburg CS
Current ILI Run Date Current ILI Report Date Current ILI Tool	17-Apr-18 14-Jun-18 MFL+CLP+IMU	
Previous ILI Run Date Previous ILI Report Date Previous ILI Tool	05-Jun-07 07-Sep-07 MFL+CLP+IMU	
Diameter Length Product	30.00 62.1 Natural Gas	inch miles
Strain Report Date Report Issue Number	19-Jul-19 1	
Reporting Thresholds Bending Strain Magnitude Bending strain Change	0.125 0.040	% %
Authors Checked by Project Manager	Lautaro Ganim Holly Plummer Todd Trammell	

Bending Strain and Strain Change Assessment Report

Bending strain features greater or equal to the bending strain reporting threshold and length greater than 40ft (nominal pipe spool length)

Strain Reporting Threshold

The strain values summarized below represent axial bending strain only and do not include any additional axial strain due to other loading mechanisms

Strain Feature or Strain Change ID	16	17	18
Abs Dist (ft)	40180 8	41042.9	44445.4
Velocity (ft/s)	8.7	9.1	8.8
Strain Magnitude (%)	0.132	0 926	0.184
Peak Strain Distance (ft)	40173 6	41021.3	44655.5
Strain Orientation	11:46	7:47	6:28
Horizontal Strain At Peak Strain (%)	-0.016	-0.745	-0.045
Vertical Strain At Peak Strain (%)	0.131	-0 551	-0.178
Max Horizontal Strain (%)	0.033	-0.750	0.075
Max Vertical Strain (%)	0.131	-0 558	-0.178
Strain Direction	Vertical	orizontal / Vertic	Vertical
Strain Change Abs Dist (ft)		41022.1	44336.3
Strain Change Magnitude (%)		0 593	0.211
Strain Change Orientation (hh mm)		7:50	6:00
Strain Change Horizontal (%)		0 525	-0.050
Strain Change Vertical (%)		-0 338	-0.211
U/S Weld	11060	11250	12210
D/S Weld	11080	11390	12370
Altitude (ft)	647.6	802.9	732 5
Start Abs Dist (ft)	40146 6	40817.0	44208.0
Start U/S Weld	11060	11250	12210
Start Rel Dist (ft)	6.3	3.5	0.6
End Abs Dist (ft)	40215 0	41268.7	44682.7
End U/S Weld	11070	11380	12360
End Rel Dist (ft)	34.7	14 5	42
Girth Weld	11070	11310	12340
GW Strain Horizontal (%)	-0.008	-0.424	-0.053
GW Strain Vertical (%)	0.107	-0.103	0.116
GW Strain Magnitude (%)	0.107	0.436	0.128
Diameter (inch)	30.00	30.00	30 00
Wall Thickness (inch)	0.375	0 375	0.375
Grade	X52	X52	X52
MAOP (psi)	936	936	936
Comment			Associated with repair shells
Peak Movement (ft)		4 219	2.491

ASSUMPTIONS	
1	In the strain and strain change analysis, described in the report, the pipeline curvature is calculated along the whole pipeline route. Initial pipe shape is assumed to be straight at manufacture for both sets of the IMU data. Strain change values are calculated as the difference in the out-of-straightness curvatures measured by two consecutive inspections.
2	Strain and strain change values, provided in the report, represent bending loading only and do not include potential additional axial strains due to any other loading mechanisms (thermal elongation/contraction and Poisson's effects in pipeline restrained by anchors or soil interaction; axial forces due to free spanning or buoyancy).
3	True tensile axial strain cannot be determined by means of an IMU inspection. Structural responses such as lateral buckling or upheaval buckling cannot be predicted by the IMU data analysis.
4	The strain and strain change analysis is based on the supplied input data and ILI findings; consequently, it is subject to the detection and reporting limits of the IMU and LI tools used (Appendix A) and any derogation from that specification, including but not limited to missing or degraded data due to pipeline cleanliness or operating conditions not meeting the MU tool operating specification. The strain analysis does not account for any inaccuracies, incompleteness or misclassifications in the supplied input data, ILI data or the referenced IMU data.
5	Only features reported by the ILI have been aligned with the strain events. No other data from any previous inspections or surveys by any methods are part of the analysis, i.e. additional coincident features present in the pipeline are not part of the scope for this study.
6	Accordingly, it cannot be assumed that all defects present on the pipeline are identified in this assessment, e.g., pin- hole corrosion, narrow axial corrosion, narrow axial or circumferential grooves may be outside the detection and reporting limits of the ILI tool and consequently such undetectable features cannot be aligned with strain events as part of this analysis.
7	Due to constant improvements in calculating strain, the values of strain, presented in the report, may vary slightly from the previous report.
8	Strain values, provided in this report, reflect the bending strain at time of the inspections and does not account for variations in the external loading, pipeline position or other factors that might have happened before or after the inspection.

All work undertaken in this study has been conducted in accordance with the BHGE Quality Management System and associated documentation as certified by ISO9001: 2015 (certificate number 10038575).

Client Name
Contract
Launch/Receive
Diameter
Length
Issue Number

Enbridge Inc. 451191_M30 (2018 ILI 450455_30J) OWSV_10 Owingsville CS to Wheelersburg CS 30 in 62.1 miles 1

Strain Feature Detailed Information

Feature No	17	Wall Thickness (inch)	0.375
Feature Type	Deformation Change	Steel Grade	X52
Direction	Horizontal / Vertical	Vehicle Speed (ft/s)	9.1
Upstream Weld	11250	Maximum Overall Strain Magnitude (%)	0.926
Downstream Weld	11390	Length (ft)	451 8
		Maximum Overall Horizontal Strain (%)	-0.750
		Maximum Overall Vertical Strain (%)	-0.558
		Maximum Strain Change Magnitude (%)	0.593
		Maximum Strain Change Horizontal (%)	0.525
		Maximum Strain Change Vertical (%)	-0.338
Start-Point Co-ordinates	Latitude:	degrees Longitude: degrees Altitude: 745.5ft	
Mid-Point Co-ordinates	Latitude:	degrees Longitude: degrees Altitude: 802 9ft	
End-Point Co-ordinates	Latitude:	degrees Longitude: degrees Altitude: 863.7ft	

Girth Weld	Horizontal Strain (%)	Vertical Strain (%)	Strain Magnitude (%)
11260	-0.009	-0.033	0.034
*11270	-0.029	0.101	0.106
*11280	-0.129	0.163	0.208
11290	0.009	0.017	0.019
11300	0.011	0.070	0.071
11310	-0.424	-0.103	0.436
11320	0.238	0.050	0.243
11330	0.156	0.317	0.353
11340	0.022	0.110	0.112
11350	0.001	-0.116	0.116
*11360	-0.172	-0.057	0.181
11370	-0.028	0.104	0.108
11380	-0.035	0.003	0.035

* The strain value can be affected by tool ride over the girth weld or an adjacent construction bend / fitting. Where this is the case the girth weld strain is not considered in the selection of the maximum girth weld strain detailed below.

Feature	Chainage (ft)	Weld Number	Horizontal Strain (%)	Vertical Strain (%)	Strain Magnitude (%)
Maximum Overall Strain Magnitude	41021 3	11310	-0.745	-0.551	0 926
Maximum Girth Weld Strain	41011 8	11310	-0.424	-0.103	0.436

All the coincident features identified in the vicinity of the strain event are described in the table below

Girth Weld No	Rel Dist (ft)	Comment	Peak Depth (%WT)	Orientation (hrs:mins)
11240	32.5	Girth Weld Misalignment		
11260	0 0	NWT 0.3750/0 3850IN		
11260	06	Under bend		
11280	0 0	NWT 0.3850/0 3750IN		
11290	4.7	Ext Metal Loss	10	11:49
11290	53	Ext Metal Loss	16	11 56
11290	6.1	Ext Metal Loss	14	11 26
11290	14.1	Ext Metal Loss	12	5:41
11290	14.5	Ext Metal Loss	14	5:24
11290	14.8	Ext Metal Loss	14	5:31
11290	15.0	Ext Metal Loss	10	5:24
11290	16.7	Ext Metal Loss	19	7:04
11290	20.9	Ext Metal Loss	13	5:24
11290	21.0	Ext Metal Loss	11	5:58
11290	21.0	Ext Metal Loss	13	5:18
11290	22.0	Ext Metal Loss	10	5:56
11290	23.1	Ext Metal Loss	11	6:32
11290	26.6	Ext Metal Loss	10	5:48
11290	33.7	Ext Metal Loss	10	11 39
11290	34.0	Ext Metal Loss	13	11 54
11300	3.4	Ext Metal Loss	17	7:08
11300	90	Over bend		
11300	22.4	Ext Metal Loss	17	7:15
11310	20.6	Over bend		
11310	25.5	Ext Metal Loss	15	5:39
11310	26.5	Ext Metal Loss	11	12 37
11310	34.5	Ext Metal Loss	18	5:48
11320	32	Ext Metal Loss	10	8:11
11320	17.0	Under bend		
11320	20.0	Ext Metal Loss	16	5:57
11320	22.1	Ext Metal Loss	11	8:03
11320	24.5	Ext Metal Loss	11	8:17
11320	25.3	Ext Metal Loss	10	6:10
11320	26.0	Ext Metal Loss	10	6:33
11320	26.4	Ext Metal Loss	13	6:11

11320	27.3	Ext Metal Loss	10	6:18
11320	28.0	Ext Metal Loss	10	5:28
11320	28.8	Ext Metal Loss	14	5:55
11320	29.2	Ext Metal Loss	10	5:17
11320	29.8	Ext Metal Loss	13	5:55
11320	30.5	Ext Metal Loss	10	4:39
11320	30.6	Ext Metal Loss	14	6:22
11320	32.0	Dent Assoc. Seam Weld		12 00
11320	32.5	Ext Metal Loss	10	5:15
11320	33.1	Ext Metal Loss	12	5:49
11340	22.4	Under bend		
11350	35.5	Girth Weld Misalignment		
11360	1.4	Under bend		
11370	45	Under bend		
11380	16	Ext Metal Loss	11	9:04
11380	30	Close Metal Object		6:45
11380	3.4	Close Metal Object		6:30
11380	3.7	Close Metal Object		6:45
11380	4.1	Close Metal Object		6:45
11380	4.4	Close Metal Object		7:00
11380	85	Over bend		

Client Name: Contract: Launch/Receive: Diameter: Length: Strain Report Date: Reporting Threshold: Enbridge Inc. 451191_V30 OWSV 10 - Wheelersburg CS to Owingsville CS 30 in 62.2 miles 9/23/2019 0.125 % Bending strain reporting threshold 0.04 % Strain change reporting threshold

Pipeline & ILI Information

Client Name: Contract: Launch/Receive:	Enbridge Inc. 451191_V30 OWSV 10 - Wheelersb	ourg CS to Owingsville CS
Current ILI Run Date: Current ILI Report Date: Current ILI Tool:	7-Jun-19 24-Jul-19 CLP + IMU	
Previous ILI Run Date: Previous ILI Report Date: Previous ILI Tool:	5-Jun-07 7-Sep-07 MFL + IMU	
Diameter: Length: Product:	30.00 62.2 Natural Gas	inch miles
Strain Report Date: Report Issue Number:	23-Sep-19 1	
Reporting Thresholds: Bending Strain Magnitude Bending strain Change	0.125 0.040	% %
Authors: Checked by: Project Manager:	Rafael Tunon Vacun Virk Todd Trammell	

Bending Strain and Strain Change Assessment Report

Strain Reporting Threshold:

Bending strain features greater or equal to the bending strain reporting threshold and length greater than 40ft (nominal pipe spool length) The strain values summarized below represent axial bending strain only and do

not include any additional axial strain due to o her loading mechanisms

Strain Feature or Strain Change ID	16	17	18
Abs Dist (ft)	40155 3	40964.9	44424.5
Velocity (ft/s)	8.4	9.0	8.6
Strain Magnitude (%)	0.129	1.050	0.185
Peak Strain Distance (ft)	40140 9	40999.2	44635.0
Strain Orientation	11:59	7:51	6:37
Horizontal Strain At Peak Strain	0.000	-0.865	-0 060
Vertical Strain At Peak Strain (%)	0.129	-0.595	-0.175
Max Horizontal Strain (%)	0.052	-0.868	0.073
Max Vertical Strain (%)	0.129	-0.617	-0.175
Strain Direction	Vertical	rizontal / Vertic	Vertical
Strain Change Abs Dist (ft)		40999.2	44260.3
Strain Change Magnitude (%)		0.724	0.226
Strain Change Orientation		7:55	12:03
(hh:mm)			
Strain Change Horizontal (%)		-0.617	-0.070
Strain Change Vertical (%)		-0.400	0.226
U/S Weld	11070	11230	12220
D/S Weld	11090	11400	12380
Altitude (ft)	761.7	903.0	841.7
Start Abs Dist (ft)	40127.1	40687.7	44184.6
Start U/S Weld	11070	11230	12220
Start Rel Dist (ft)	8.7	0.3	0.5
End Abs Dist (ft)	40183.4	41242.1	44664.5
End U/S Weld	11080	11390	12370
End Rel Dist (ft)	25.0	9.7	9.2
Girth Weld	11080	11320	12260
GW_Strain Horizontal (%)	-0.031	-0.404	0.026
GW Strain Vertical (%)	0.115	-0.091	0.163
GW Strain Magnitude (%)	0.119	0.414	0.165
Diameter (inch)	30.00	30.00	30.00
Wall Thickness (inch)	0.404	0.404	0.404
Grade	X65	X65	X65
MAOP (psi)	1050	1050	1050
	ID16 in 2018v2009 strain	ID17 in	ID18 in
	comparison report	2018v2007	2018v2007
		strain	strain
Comment		comparison	comparison
comment		report	report /
			Associated
			with repair
			shells
Peak Movement (ft)		5.187	2.104

Weld Strain Listing

Weld Strain List:

GW ID	Abs Dist	Strain Magnitude	Horizontal	Vertical	Altitude
11260	40791.4	0.121	-0 032	-0.117	857,415
11270	40830 8	0.043	-0 015	-0.040	861.263
11280	40869.6	0.113	-0 021	0.111	868.874
11290	40896 2	0.239	-0.117	0.209	877.903
11300	40910.7	0.043	0.043	-0.002	883.163
11310	40949 5	0.057	0.019	0.054	897.335
11320	40989.7	0.414	-0.404	-0.091	910.315
11330	41030 0	0.208	0.206	0.032	917.095
11340	41070 2	0.375	0.186	0.326	923.253
11350	41085 2	0.108	0.034	0.102	926.865
11360	41125 3	0.135	-0 009	-0.135	936.718
11370	41164.4	0.185	-0.175	-0.058	946.821
11380	41193 3	0.109	-0 061	0.091	955.472
11390	41232.4	0.044	-0 042	-0.014	970.331
11400	41272.4	0.036	-0 012	0.034	986.742

ASSUMPTIONS

1	In the strain and strain change analysis, described in the report, the pipeline curvature is calculated along the whole pipeline route. Initial pipe shape is assumed to be straight at manufacture for bo h sets of the IMU data. Strain change values are calculated as the difference in the out-of-straightness curvatures measured by two consecutive inspections.
2	Strain and strain change values, provided in the report, represent bending loading only and do not include potential additional axial strains due to any other loading mechanisms (thermal elongation/contraction and Poisson's effects in pipeline restrained by anchors or soil interac ion; axial forces due to free spanning or buoyancy).
3	True tensile axial strain cannot be determined by means of an MU inspection. Structural responses such as lateral buckling or upheaval buckling cannot be predicted by the IMU data analysis.
4	The strain and strain change analysis is based on he supplied input data and ILI findings; consequently, it is subject to the detection and reporting limits of the MU and ILI tools used (Appendix A) and any derogation from that specification, including but not limited to missing or degraded data due to pipeline cleanliness or operating conditions not meeting the MU tool opera ing specification. The strain analysis does not account for any inaccuracies, incompleteness or misclassifications in the supplied input data, ILI data or the referenced IMU data.
5	Only features reported by the ILI have been aligned with the strain events. No other data from any previous inspections or surveys by any methods are part of the analysis, i.e. additional coincident features present in the pipeline are not part of the scope for this study.
6	Accordingly, it cannot be assumed that all defects present on the pipeline are identified in this assessment, e.g., pin-hole corrosion, narrow axial corrosion, narrow axial or circumferential grooves may be outside the detection and repor ing limits of he ILI tool and consequently such undetectable features cannot be aligned with strain events as part of this analysis.
7	Due to constant improvements in calculating strain, the values of strain, presented in the report, may vary slightly from the previous report.
8	Strain values, provided in this report, reflect the bending strain at time of the inspections and does not account for variations in the external loading, pipeline position or other factors that might have happened before or after the inspection.

All work undertaken in this study has been conducted in accordance with the BHGE Quality Management System and associated documentation as certified by ISO9001: 2015 (certificate number 10038575).

Client Name Contract Launch/Receive Diameter Length Strain Report Date Reporting Threshold Enbridge Inc. 451191_V30 OWSV_10 - Owingsville CS to Wheelersburg CS 30 in 62.2 miles 10/21/2021 0.125 % Bending strain reporting threshold 0 04 % Strain change reporting threshold

Pipeline & ILI Information

Checked by

Project Manager

Client Name Contract Launch/Receive	Enbridge Inc. 451191_V30 OWSV_10 - Owingsville CS to Wheelersburg CS		
Current ILI Run Date Current ILI Report Date Current ILI Tool	7-Jun-19 7-Sep-19 CLP+ MU		
Previous ILI Run Date Previous ILI Report Date Previous ILI Tool	5-Jun-07 7-Sep-07 MFL+ MU		
Diameter Length Product	30 00 62 2 Natural Gas	inch miles	
Strain Report Date Report Issue Number	21-Oct-21 2 - Weld numbering has be	en updated	
Reporting Thresholds Bending Strain Magnitude Bending strain Change	0.125 0 040	% %	
Authors	Varun Virk		

Lautaro Ganim

Todd Trammell

PHMSA - FLEMING003219

Bending Strain and Strain Change Assessment Report

Strain Reporting Threshold

Bending strain features greater or equal to the bending strain reporting threshold and length greater than 12 m (nominal pipe spool length). Bending strain features greater or equal to the bending strain reporting threshold and length greater than 40ft (nominal pipe spool length) The strain values summarized below represent axial bending strain only and do not include any additional axial strain due to other loading mechanisms

Strain Feature or Strain Change ID	16	17	18	
Abs Dist (ft)	40155 3	40964.9	44424.5	1
Velocity (ft/s)	8.4	9.0	8.6	
Strain Magnitude (%)	0.129	1.050	0.185	1
Peak Strain Distance (ft)	40141 6	40999.2	44635.0	1
Strain Orientation	11:57	07:51	06:37	1
Horizontal Strain At Peak Strain (%)	-0.003	-0.867	-0 060	
Vertical Strain At Peak Strain (%)	0.128	-0.590	-0.175	
Max Horizontal Strain (%)	0.052	-0.867	0 073	1
Max Vertical Strain (%)	0.128	-0.615	-0.175	1
Strain Direction	Vertical	rizontal / Vertic	Vertical	1
Strain Change Abs Dist (ft)		40999.2	44260.3	
Strain Change Magnitude (%)		0.712	0 232	
Strain Change Orientation (hh mm)		7 55	12:05	Change from 20
Strain Change Horizontal (%)		-0.604	0.063	
Strain Change Vertical (%)		-0.396	0 232	
U/S Weld	11060	11220	12210	
D/S Weld	11080	11390	12370	1
Mid Point Altitude (ft)	761 7	903.3	841.6	1
Start Abs Dist (ft)	40127.1	40687.7	44184.6	1
Start U/S Weld	11060	11220	12210	1
Start Rel Dist (ft)	8.7	0.3	0.5	1
End Abs Dist (ft)	40183.4	41242.1	44664.5	1
End U/S Weld	11070	11380	12360	1
End Rel Dist (ft)	25.0	9.7	9.2	1
Girth Weld	11070	11310	12230	1
GW Strain Horizontal (%)	-0.031	-0.397	-0 064	1
GW Strain Vertical (%)	0.114	-0.086	-0 206	1
GW Strain Magnitude (%)	0.119	0.406	0 216	1
Diameter (inch)	30.00	30.00	30.00	1
Wall Thickness (inch)	0.375	0.375	0.485	1
Grade	X52	X52	X65	1
MAOP (psi)	936	936	936	1
	D16 in 2018v2009 strain	D17 in	D18 in	
	comparison report	2018v2007	2018v2007	
		strain	strain	
Comment		comparison	comparison	
Comment		report	report /	
			Associated	
			with repair	
			shells	
Peak Movement (ft)		52	21	1

ASSUMPTIONS

- In the strain and strain change analysis, described in the report, the pipeline curvature is calculated along the whole pipeline route. Initial pipe shape is assumed to be straight at manufacture for both sets of the IMU data. Strain change values are calculated as the difference in the out-of-straightness curvatures measured by two consecutive inspections.
 Strain and strain change values, provided in the report, represent bending loading only and do not include potential additional axial strains due to any other loading mechanisms (thermal elongation/contraction and Poisson's effects in pipeline restrained by anchors or soil interaction; axial forces due to free spanning or buoyancy).
 True tensile axial strain cannot be determined by means of an MU inspection. Structural responses such as lateral buckling or upheaval buckling cannot be predicted by the IMU data analysis.
 The strain and strain change analysis is based on the supplied input data and Ll findings; consequently, it is subject to the detection and reporting limits of the IMU and Ll tools used
- (Appendix A) and subject to the detection and reporting initia to the into and Li tools used (Appendix A) and subject to the detection and reporting initia to the into a limited to missing or degraded data due to pipeline cleanliness or operating conditions not meeting the MU tool operating specification. The strain analysis does not account for any inaccuracies, incompleteness or misclassifications in the supplied input data, LI data or the referenced MU data.
- 5 Only features reported by the LI have been aligned with the strain events. No other data from any previous inspections or surveys by any methods are part of the analysis, i.e. additional coincident features present in the pipeline are not part of the scope for this study.
- 6 Accordingly, it cannot be assumed that all defects present on the pipeline are identified in this assessment, e.g., pin-hole corrosion, narrow axial corrosion, narrow axial or circumferential grooves may be outside the detection and reporting limits of the LI tool and consequently such undetectable features cannot be aligned with strain events as part of this analysis.
- 7 Due to constant improvements in calculating strain, the values of strain, presented in the report, may vary slightly from the previous report.
- 8 Strain values, provided in this report, reflect the bending strain at time of the inspections and does not account for variations in the external loading, pipeline position or other factors that might have happened before or after the inspection.

All work undertaken in this study has been conducted in accordance with the Baker Hughes Quality Management System and associated documentation as certified by ISO9001: 2015 (certificate number 10038575).

Client Name
Contract
Launch/Receive
Diameter
Length
Issue Number

Enbridge Inc. 451191_V30 OWSV_10 - Owingsville CS to Wheelersburg CS 30 in 62 2 miles 2

Strain Feature Detailed Information

Feature No	17	Wall Thickness (inch)	0.375
Feature Type	Deformation Change	Steel Grade	X52
Direction	Horizontal / Vertical	Vehicle Speed (ft/s)	9.0
Upstream Weld	11220	Maximum Overall Strain Magnitude (%)	1.049
Downstream Weld	11390	Length (ft)	554.4
		Maximum Overall Horizontal Strain (%)	-0.867
		Maximum Overall Vertical Strain (%)	-0.615
		Maximum Strain Change Magnitude (%)	0.712
		Maximum Strain Change Horizontal (%)	-0.604
		Maximum Strain Change Vertical (%)	-0.396

	Altitude (ft)
Feature Start	841.991
Feature Mid Point	903.281
Point of Peak Strain	912.707
Feature End	974.790

Girth Weld	Horizontal Strain (%)	Vertical Strain (%)	Strain Magnitude (%)
11230	-0.041	0.019	0.045
11240	0.006	-0.026	0.027
11250	-0.032	-0.117	0.122
11260	-0.012	-0.041	0.043
*11270	-0.020	0.114	0.116
*11280	-0.115	0.209	0.238
11290	0.043	0.002	0.043
11300	0.017	0.052	0.055
11310	-0.397	-0.086	0.406
11320	0.206	0.032	0.208
11330	0.193	0.331	0.383
*11340	0.037	0.108	0.114
11350	-0.010	-0.137	0.137
11360	-0.173	-0.057	0.182
11370	-0.061	0.090	0.109
11380	-0.042	-0.013	0.044

* The strain value can be affected by tool ride over the girth weld or an adjacent construction bend / fitting. Where this is the case the girth weld strain is not considered in the selection of the maximum girth weld strain detailed below.

Feature	Distance (ft)	Weld Number	Horizontal Strain (%)	Vertical Strain (%)	Strain Magnitude (%)
Maximum Overall Strain Magnitude	40999 2	11310	-0.867	-0.590	1 049
Maximum Girth Weld Strain	40989.7	11310	-0.397	-0.086	0.406

All the coincident features identified in the vicinity of the strain event are described in the table below

Girth Weld No	Abs Dist (ft)	Rel Dist (ft)	Comment	Peak Depth (%WT)	Orientation (hrs mins)
11240	40764.3	11 9	Over bend		
11250	40830.8	39.4	NWT 0 3750/0 3850IN		
11260	40852.2	21.4	Under bend		
11270	40896.2	26 6	NWT 0 3850/0 3750IN		
11280	40896.2	0.0	Girth Weld Misalignment		
11300	40974.6	25.1	Over bend		
11310	41019.2	29 5	Over bend		
11320	41051.8	21 8	Under bend		
11340	41085.2	0.0	Girth Weld Misalignment		
11340	41114.7	29 5	Under bend		
11360	41177.7	13 3	Under bend		
11370	41212.1	18 8	Under bend		