

Highway Attachment 8 – SCI Smart Cushion MASH Eligibility Letter

HWY18FH011

(37 pages)

August 16, 2016

1200 New Jersey Ave., SE Washington, D.C. 20590

In Reply Refer To: HSST-CC-128

Mr. Jeffery D. Smith Work Area Protection Corporation 2500 Production Drive St. Charles, Missouri 60174

Dear Mr. Smith:

This letter is in response to your April 20, 2015, and July 28, 2016 requests for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number CC-128 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

Decision

The following device is eligible, with details provided in the form which is attached as an integral part of this letter:

• SCI SmartCushion® TL-3 SCI100GM Impact Attenuator

Scope of this Letter

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials' Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.

FHWA: HSST: Artimovich: sf: x61331:8/8/16 File: s: //directory folder/HSST/Artimovich/ CC128 SmartCushion.docx cc: HSST (NArtimovich; BFouch)

Eligibility for Reimbursement

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the American Association of State Highway and Transportation Officials' Manual for Assessing Safety Hardware (MASH). Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

Name of system:	SCI SmartCushion® SCI100GM
Type of system:	Permanent Crash Cushion for concrete or asphalt pavements.
Test Level:	MASH Test Level 3 (TL3)
Testing conducted by:	KARCO Engineering
Date of requests:	April 20, 2015, and May 18, 2016
Date of completed package:	July 28, 2016

FHWA concurs with the recommendation of the accredited crash testing laboratory as stated within the attached form.

Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

Notice

If a manufacturer makes any modification to any of their roadside safety hardware that has an existing eligibility letter from FHWA, the manufacturer must notify FHWA of such modification with a request for continued eligibility for reimbursement. The notice of all modifications to a device must be accompanied by:

- Significant modifications For these modifications, crash test results must be submitted with accompanying documentation and videos.
- Non-signification modifications For these modifications, a statement from the crash test laboratory on the potential effect of the modification on the ability of the device to meet the relevant crash test criteria.

FHWA's determination of continued eligibility for the modified hardware will be based on whether the modified hardware will continue to meet the relevant crash test criteria.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of the MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.

Supplemental Information

The SCI Smart Cushion® was developed by companies within the Stabler Companies Inc. family. Stabler Companies was purchased by New Enterprise Stone & Lime Co., Inc. in January of 2008. Stabler Companies Inc. was the parent company of SCI Products Inc. and Work Area Protection Corp. The first FHWA letter on the Smart Cushion®, CC-85, was issued to Stabler Companies Inc. while CC-85A and CC-85B were issued to SCI Products Inc. Although SCI Products Inc. is still in existence, it is not the manufacturing and marketing arm for the SCI Smart Cushion®. Work Area Protection Corp. which is a subsidiary of New Enterprise Stone & Lime Co., Inc. manufactures and markets the SCI Smart Cushion®.

This letter acknowledges the Smart Cushion® is manufactured and marketed by Work Area Protection.

Standard Provisions

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number CC-128 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.
- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.
- If the subject device is a patented product it may be considered to be proprietary. If proprietary systems are specified by a highway agency for use on Federal-aid projects: (a) they must be supplied through competitive bidding with equally suitable unpatented items; (b) the highway agency must certify that they are essential for synchronization with the existing highway facilities or that no equally suitable alternative exists; or (c) they must be used for research or for a distinctive type of construction on relatively short sections of road for experimental purposes.

Our regulations concerning proprietary products are contained in Title 23, Code of Federal Regulations, Section 635.411.

Sincerely yours,

Michael S. Griffith Director, Office of Safety Technologies Office of Safety

Enclosures

Version 10.0 (05/16) Page 1 of 1:

Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

	Date of Request:	May 18, 2016	• New	C Resubmission
Name: Jeffery D. Smith				
ter	Company:	/: Work Area Protection Corp.		
Submitte	Address:	Address: 2500 Production Drive, St. Charles, 60174		
Country: USA To: Michael S. Griffith, Director FHWA, Office of Safety Technologies				

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

Device & Testing Criterion - Enter from right to left starting with Test Level			!-!-!	
System Type	Submission Type	Device Name / Variant	Testing Criterion	Test Level
'CC': Crash Cushions, Attenuators, & Terminals	C Engineering Analysis	SCI Smart Cushion-TL3 - SCI100GM- previously approved per NCHRP 350 under Approval HSA-10/CC-85 with no changes to the system.	AASHTO MASH	TL3

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

Individual or Organization responsible for the product:

Contact Name:	Jeffery D. Smith	Same as Submitter 🕅
Company Name:	Work Area Protection Corp.	Same as Submitter 🔀
Address:	2500 Production Drive, St. Charles, 60174	Same as Submitter 🕅
Country:	USA	Same as Submitter 🔀
Subject: Disclosure KARCO Engineerin affiliation with any Richardson and Ms 2, 1994. KARCO is a variety of governm The principals and	of for Safety Hardware Devices' document. e of financial interest g, LLC is an independent research and testing laborator other entity. The company is solely-owned and opera s. Jennifer W. Peng (husband and wife) and was establin actively involved in data acquisition and compliance/con- tent agencies and equipment manufacturers. staff of KARCO Engineering have no past or present fin- rest in any company or entity directly or indirectly rela-	ted by Mr. Frank D. shed on September ertification testing for a
whice tests, if any	rinancial interest should arise, other than receiving fea respect to any project, the company will provide, in y	es for testing

PRODUCT DESCRIPTION

c	New Hardware or
(÷	New Hardware or Significant Modification

C Modification to Existing Hardware

The SCI Smart Cushion is a fully redirective crash cushion approved under NCHRP 350 and now tested to MASH criteria with no changes. It uses a hydraulic cylinder and cable assembly to provide a variable stopping force based on speed. It has 7 collapsible bays utilizing 3/16" tubular steel frames that support 10 gauge side panels that have 4 flutes. The dimensions are 258 inches (6556mm) long X 31.8 inches (808mm) wide at the rear X 33.4 inches (847 mm) high. The front sled structure is braced to minimize damage on angled or offset frontal impacts. This is a low maintenance system that requires very few repair parts.

CRASH TESTING

By signature below, the Engineer affiliated with the testing laboratory, agrees in support of this submission that all of the critical and relevant crash tests for this device listed above were conducted to meet the MASH test criteria. The Engineer has determined that no other crash tests are necessary to determine the device meets the MASH crashworthiness

Engineer Name:	Balbino A. Beltran		
Engineer Signature:		red by Balbino A. Beltran ino A. Beltran, o≖KARCO Engineering, LLC, ou, ran@karco.com, c=US S. 1811:391:2,0700'	
Address:	9270 Holly Rd., Adelanto, CA 92301	Same as Submitter	
Country:	United States	Same as Submitter	

A brief description of each crash test and its result:

Version 10.0 (05/16) Page 3 of 1;

Page	3	of	1:	
------	---	----	----	--

• `

Version 10.0 (05/16)

			•	
Page	4	of	1:	

		Page 4 of 1;
Required Test	Narrative	Evaluation
Number	Description	Results
3-31 (2270P)	Test Date 3-11-2015 - Karco Test #TR- P35022-01-B Complete Report. KARCO Test No. P35022-01. Test 3-31 involves a 2270P pickup truck impacting the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 0 degrees with the centerline of the vehicle aligned with the center line of the vehicle aligned with the center line of the crash cushion. This test is primarily intended to evaluate the capacity of the attenuator to stop the vehicle in a controlled manner. For this test, a 2009 Ram 1500 weighing 5,004.5 lbs (2,270.0 kg) impacted the SCI Smart Cushion at a speed of 60.70 mph (97.67 km/h) and an angle of .3 degrees. Upon impact the vehicle forced the SCI Smart Cushion's sled rearward and began to collapse the sections in between the support frames. The crash cushion brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA). The SCI Smart Cushion redirective crash cushion passed all evaluation criteria for test 3-31.	PASS

Version 10.0 (05/16) Page 5 of 1;

		Page 5 of 1:
involves a 1100C passenger car impacting		
the crash cushion at a nominal impact		
speed of 100 km/h (62.2 mph) and an		
impact at 15 degrees with the center point		
of the vehicle aligned with the center line of		
the crash cushion. This test is primarily		
intended to evaluate occupant risk and		
vehicle trajectory criteria.		
For this test a 2010 Kia Rio weighing 2,444.9		
lbs (1,109.0 kg) impacted the SCI Smart		
Cushion at a speed of 64.00 mph (103.00		
km/h) and an angle of 15.3 degrees. Upon		
impact the vehicle forced the SCI Smart	PASS	
Cushion's sled rearward and began to		
collapse the sections in between the		
support frames. The crash cushion brought		
the vehicle to a controlled stop.		
The test vehicle sustained damage to its		
front end. The occupant compartment was		
not penetrated and the deformation was		
within allowable limits. The maximum roll		
and pitch angles did not exceed 75 deg. and		
the occupant risk values were within limits		
per the MASH specifications for Occupant		
Impact Velocity (OIV) and Ridedown		
Acceleration (RA). The SCI Smart Cushion		
redirective crash cushion passed all		
evaluation criteria for test 3-32.		
	the crash cushion. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria. For this test a 2010 Kia Rio weighing 2,444.9 Ibs (1,109.0 kg) impacted the SCI Smart Cushion at a speed of 64.00 mph (103.00 km/h) and an angle of 15.3 degrees. Upon impact the vehicle forced the SCI Smart Cushion's sled rearward and began to collapse the sections in between the support frames. The crash cushion brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA). The SCI Smart Cushion redirective crash cushion passed all	P36056-01-A Complete Report KARCO Test No. P36056-01. Test 3-32 involves a 1100C passenger car impacting the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the center point of the vehicle aligned with the center line of the crash cushion. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria. For this test a 2010 Kia Rio weighing 2,444.9 lbs (1,109.0 kg) impacted the SCI Smart Cushion at a speed of 64.00 mph (103.00 km/h) and an angle of 15.3 degrees. Upon impact the vehicle forced the SCI Smart Cushion's sled rearward and began to collapse the sections in between the support frames. The crash cushion brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA). The SCI Smart Cushion redirective crash cushion passed all

Version 10.0 (05/16) Page 6 of 1;

Date 3-7-2016 - Karco Test #TR-	
51-01-A Complete Report	
ves a 2270P pickup impacting the	
cushion at a nominal impact speed of	
m/h (62.2 mph) and an impact at 15	
es with the centerline of the vehicle	
ed with the center line of the crash	
on. This test is primarily intended to	
ate occupant risk, vehicle trajectory	
he capacity of the attenuator to stop	
chicle in a controlled fashion on	
.9 lbs (2,267.5 kg) impacted the SCI	
Cushion at a speed of 63.99 mph	
8 km/h) and an angle of 14.9 degrees	PASS
impact the vehicle forced the SCI	
Cushion's sled rearward and began to	
se the sections in between the	
ort frames. The crash cushion brought	
hicle to a controlled stop.	
st vehicle sustained damage to its	
end. The occupant compartment was	
enetrated and the deformation was	
allowable limits. The maximum roll	
tch angles did not exceed 75 deg. and	
cupant risk values were within limits	
e MASH specifications for Occupant	
t Velocity (OIV) and Ridedown	
ration (RA). The SCI Smart Cushion	
tive crash cushion passed all	
tion criteria for test 3-33.	
	51-01-A Complete Report O Test No. P36051-01. Test 3-33 ves a 2270P pickup impacting the cushion at a nominal impact speed of m/h (62.2 mph) and an impact at 15 res with the centerline of the vehicle ed with the center line of the crash on. This test is primarily intended to ate occupant risk, vehicle trajectory ne capacity of the attenuator to stop chicle in a controlled fashion on ue impacts. is test, a 2012 Ram 1500 weighing 9 lbs (2,267.5 kg) impacted the SCI Cushion at a speed of 63.99 mph 8 km/h) and an angle of 14.9 degrees. impact the vehicle forced the SCI Cushion's sled rearward and began to se the sections in between the ert frames. The crash cushion brought hicle to a controlled stop. st vehicle sustained damage to its end. The occupant compartment was allowable limits. The maximum roll tch angles did not exceed 75 deg. and cupant risk values were within limits e MASH specifications for Occupant t Velocity (OIV) and Ridedown ration (RA). The SCI Smart Cushion cushion passed all

Version 10.0 (05/16) Page 7 of 1:

is primarily intended to evaluate occupant risk and vehicle trajectory criteria. For this test a 2010 Kia Rio weighing 2,442.7 Ibs (1,108.0 kg) impacted the SCI Smart Cushion at a speed of 60.17 mph (96.83 km/ h) and an angle of 15.2 degrees. The impact point was 18.9" downstream of the front delineator plate. Upon impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant	PASS	
occupant risk values were within limits per		
	KARCO Test No. P36054-01. Test 3-34 involves a 1100C passenger car impacting the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the CIP at the point where the crash cushion behavior changes from gating to redirective. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria. For this test a 2010 Kia Rio weighing 2,442.7 Ibs (1,108.0 kg) impacted the SCI Smart Cushion at a speed of 60.17 mph (96.83 km/ h) and an angle of 15.2 degrees. The impact point was 18.9" downstream of the front delineator plate. Upon impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA). The SCI Smart Cushion redirective crash cushion passed all	KARCO Test No. P36054-01. Test 3-34 involves a 1100C passenger car impacting the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the CIP at the point where the crash cushion behavior changes from gating to redirective. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria. For this test a 2010 Kia Rio weighing 2,442.7 lbs (1,108.0 kg) impacted the SCI Smart Cushion at a speed of 60.17 mph (96.83 km/ h) and an angle of 15.2 degrees. The impact point was 18.9" downstream of the front delineator plate. Upon impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA). The SCI Smart Cushion redirective crash cushion passed all

			Page 8 of 1:
	Test Date 3-8-2016 - Karco Test #TR-		
	P36053-01-A Complete Report		
	KARCO Test No. P36053-01. Test 3-35		
	involves a 2270P pickup impacting the		
	crash cushion at a nominal impact speed of		
	100 km/h (62.2 mph) and an impact at 25		
ĺ	degrees with the CIP at the point where the		
	crash cushion behavior changes from		
	gating to redirective (beginning of length-		
	of-need). This test is primarily intended to		
	evaluate the capacity of the attenuator for		
	redirection/containment of heavy vehicles		
	at the front of the system.		
	For this test a 2010 Ram 1500 weighing		
	5,009.9 lbs (2,272.5 kg) impacted the SCI		
	Smart Cushion at a speed of 60.02 mph	-	
3-35 (2270P)	(96.59 km/h) and an angle of 25.9 degrees.	PASS	
	The impact point was 19" downstream of		
	the front delineator plate. Upon impact the		
	vehicle was smoothly redirected without		
	snagging.		
	The test vehicle sustained damage to its		
	right front corner, doors and rear quarter		
	panel. The occupant compartment was not		
	penetrated and the deformation was within		
	allowable limits. The maximum roll and		
	pitch angles did not exceed 75 deg. and the		
	occupant risk values were within limits per		
	the MASH specifications for Occupant		[
	Impact Velocity (OIV) and Ridedown		
	Acceleration (RA). The SCI Smart Cushion		
	redirective crash cushion passed all		
	evaluation criteria for test 3-35.		

Version 10.0 (05/16) Page 9 of 1:

<u>г — </u>			Page 9 of 1.
	Test Date 3-10-2016 - Karco Test #TR-		
	P36052-01-A Complete Report		
	KARCO Test No. P36052-01. Test 3-36		
	involves a 2270P pickup impacting the		
	crash cushion at a nominal impact speed of		
	100 km/h (62.2 mph) and an impact at 25		
	degrees with the CIP at the point directed at	1	
	the rear transition of a wide, rigid backup		
	structure. This test is primarily intended to		
	evaluate the capacity for redirection of		
	heavy vehicles at the rear of the system		
	where it protects wide rigid objects.		
	For this test a 2011 Ram 1500 weighing		
]	4,950.4 lbs (2,245.5 kg) impacted the SCI		
	Smart Cushion at a speed of 62.08 mph		
3-36 (2270P)	(99.91 km/h) and an angle of 24.9 degrees.	PASS	
	The impact point was 15' downstream of		
	the front delineator plate. Upon impact the		
	vehicle was smoothly redirected.		
	The test vehicle sustained damage to its		
	right front corner, doors and rear quarter		
	panel. The occupant compartment was not		
	penetrated and the deformation was within		
	allowable limits. The maximum roll and		
	pitch angles did not exceed 75 deg. and the		
	occupant risk values were within limits per		
	the MASH specifications for Occupant		
	Impact Velocity (OIV) and Ridedown		
	Acceleration (RA). The SCI Smart Cushion		
	redirective crash cushion passed all		
	evaluation criteria for test 3-36.		

			Page 1C of 1:
	Test Date 3-11-2016 - Karco Test #TR-		
ſ	P36021-01-A Complete Report		
	KARCO Test No. P36021-01. Test 3-37		
	involves a 2270P pickup impacting the		
1	crash cushion in the reverse direction at a		
	nominal impact speed of 100 km/h (62.2		
	mph) and an impact at 25 degrees with the		
	CIP at the point directed at the beginning of		
	the rear transition protecting a narrow		
	concrete median barrier. This test is		
	primarily intended to evaluate the potential		
	for snagging and capacity for redirection of		
	heavy vehicles at the rear of the system		
	where vehicle can impact the rear of the		
]	attenuator.		
}	For this test a 2010 Ram 1500 weighing		
	4,976.9 lbs (2,257.5 kg) impacted the SCI		
3-37 (2270P)	Smart Cushion at a speed of 62.09 mph	PASS	
	(99.92 km/h) and an angle of 24.5 degrees.		
	The impact point was at the leading edge of		
	the transition to the attenuator. Upon		
	impact the vehicle was smoothly redirected		
	with no snagging.		
	The test vehicle sustained damage to its		
	right front corner, doors and rear quarter		
	panel. The occupant compartment was not		
	penetrated and the deformation was within		
	allowable limits. The maximum roll and		
	pitch angles did not exceed 75 deg. and the		
	occupant risk values were within limits per		
	the MASH specifications for Occupant		
	Impact Velocity (OIV) and Ridedown		
	Acceleration (RA). The SCI Smart Cushion		
	redirective crash cushion passed all		
	evaluation criteria for test 3-37.		

Version 10.0 (05/16) Page ま ゟ イ ミ っチ え

Required Test	Narrative	Evaluation
Number	Description	Results
3-38 (1500A)	Test Date 5-9-2016 - Karco Test #TR- P36142-01 Complete Report KARCO Test No. P36142-01. Test 3-38 involves a 1500A sedan impacting the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 0 degrees with the centerline of the vehicle aligned with the center line of the crash cushion. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria for a mid-size vehicle. For this test, a 2010 Chevrolet Malibu weighing 3,301.4 lbs (1,497.5 kg) impacted the SCI Smart Cushion at a speed of 60.57 mph (97.48 km/h) and an angle of .6 degrees. Upon impact the vehicle forced the SCI Smart Cushion's sled rearward and began to collapse the sections in between the support frames. The crash cushion brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for Occupant Impact Velocity (OIV) and Ridedown Acceleration (RA). The SCI Smart Cushion redirective crash cushion passed all evaluation criteria for test 3-38.	PASS
3-40 (1100C)	Test for non-redirective crash cushion is not applicable.	Non-Relevant Test, not conducted
3-41 (2270P)	Test for non-redirective crash cushion is not applicable.	Non-Relevant Test, not conducted
3-42 (1100C)	Test for non-redirective crash cushion is not applicable.	Non-Relevant Test, not conducted
3-43 (2270P)	Test for non-redirective crash cushion is not applicable.	Non-Relevant Test, not conducted
3-44 (2270P)	Test for non-redirective crash cushion is not applicable.	Non-Relevant Test, not conducted
3-45 (15004)	Test for non-redirective crash cushion is not applicable.	Non-Relevant Test, not conducted

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory's accreditation status as noted in the crash test reports.):

Version 10.0 (05/16) Page 12 of 12

		-
Laboratory Name:	KARCO Engineering, INC	
Laboratory Signature:	Balbino A. Beltran	ı, o=KARCO Engineering, LLC., ou, m, c=US
Address:	9270 Holly Road., Adelanto, Ca. 92301	Same as Submitter 🗌
Country:	United States	Same as Submitter 🗌
Accreditation Certificate Number and Dates of current	TL-371, December 18, 2015 through December 18, 20	17

Submitter Signature*: Jeff Smith Date: 2016.05.18 12:39:49

Submit Form

ATTACHMENTS

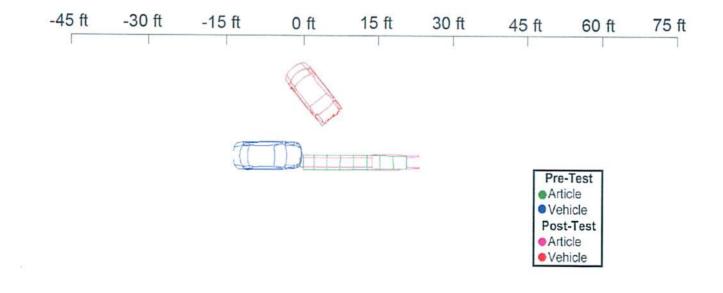
Attach to this form:

Accreditation period :

- 1) Additional disclosures of related financial interest as indicated above.
- 2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
- 3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

Eligi	bility Letter	
Number	Date	Key Words
CC-128	August 9, 2016	Crash Cushion Impact Attenuator SmartCushion Smart Cushion Low Maintenance


MASH TEST 3-30 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36055-01
Test Program:	MASH 3-30	Test Date:	03/10/16

SEQUENTIAL PHOTOGRAPHS

PLAN VIEW

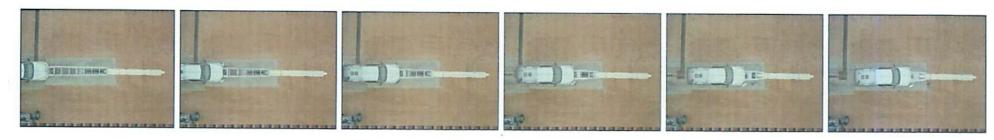
TR-P36055-01-A

MASH TEST 3-30 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36055-01
Test Program:	MASH 3-30	Test Date:	03/10/16

GENERAL INFORMATION		EXIT	CONDITIONS									
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		N/A								
TEST NUMBER	P36055-01	EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		N/A
TEST DESIGNATION	3-30	VEHICLE STABILITY		Satisfactory								
TEST DATE	3/10/16	FINAL VEHICLE POSITION		FINAL VEHICLE POSITION		FINAL VEHICLE POSITION		FINAL VEHICLE POSITION		6.0 ft (1.8 m) downstream, 7.6 ft (2.3 m) left of barrier		
TE	ST ARTICLE	VEHICLE SNAGGIN	G	None								
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	IG	None								
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	GLE (°)	-11.1								
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN	IGLE (°)	8.4								
NET ELEMENTO	Shock Arresting Cylinder	MAXIMUM YAW AND	SLE (°)	52.4								
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		333.2 kip-ft (451.8 kJ)								
TOTAL INSTALLATION LENGTH	21.7 ft (6.6 m)		OCCUPA	ANT RISK VALUES								
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	34.1 ft/s (10.4 m/s)								
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	4.3 ft/s (1.3 m/s)								
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-11.9 g								
	ST VEHICLE	ACCELERATION	Lateral	-3.6 g								
TYPE / DESIGNATION	1100C	THI	1	34.4 ft/s (10.5 m/s)								
YEAR, MAKE AND MODEL	2010 Kia Rio	PHD)	12.2 g								
CURB MASS	2,480.2 lbs (1,125.0 kg)	ASI		1.60								
TEST INERTIAL MASS	2,453.8 lbs (1,113.0 kg)		TEST ART	ICLE DEFLECTIONS								
GROSS STATIC MASS	2,613.5 lbs (1,185.5 kg)	STATIC		13.8 ft (4.2 m)								
IMPAC	TCONDITIONS	DYNAMIC		13.8 ft (4.2 m)								
IMPACT VELOCITY	63.74 mph (102.58 km/h)	ARTICLE DAMAGE		Minor								
IMPACT ANGLE (°)	0		VEHI	CLE DAMAGE								
IMPACT LOCATION / ORIENTATION	0.6 in (16 mm) to the left of vehicle centerline	VEHICLE DAMAGE S		12-FD-3								
Leon non sherranon	old in (10 min) to the left of vehicle centenine	COLLISION DAMAGE	CLASSIFICATION	12FDEW2								

TR-P36055-01-A


4

9

MASH TEST 3-31 SUMMARY

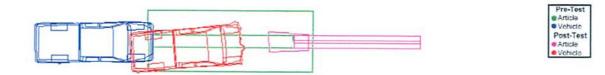
Test Article:	Work Area Protection SCI Smart Cushion	Project No	P35022-01
Test Program:	MASH 3-31	Test Date:	03/11/15

SEQUENTIAL PHOTOGRAPHS

0.000 s

0.072 s

0.144 s


PLAN VIEW

0.360 s

0.288 s

0.216 s

TR-P35022-01-B

MASH TEST 3-31 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P35022-01	_
Test Program:	MASH 3-31	Test Date:	03/11/15	_

GENER	AL INFORMATION	EXIT CONDITIONS														
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		N/A												
TEST NUMBER	P35022-01	EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		EXIT ANGLE		N/A
TEST DESIGNATION	3-31	VEHICLE STABILIT	Y	Satisfactory												
TEST DATE	3/11/15	FINAL VEHICLE PO	SITION	14.7 ft (4.5 m) downstream												
TE	ST ARTICLE	VEHICLE SNAGGIN	G	None												
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETI	NG	None												
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	IGLE (°)	3.4												
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH A	NGLE (°)	3.7												
RET ELEMENTS	Shock Arresting Cylinder	MAXIMUM YAW AN	GLE (°)													
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		616.4 kip-ft (835.7 kJ)												
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		OCCUPANT	RISK VALUES												
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	25.6 ft/s (7.8 m/s)												
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	0.3 ft/s (0.1 m/s)												
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-20.3 g												
	ST VEHICLE	ACCELERATION Lateral		-2.4 g												
TYPE / DESIGNATION	2270P	THI	V													
YEAR, MAKE AND MODEL	2009 RAM 1500	PHI														
CURB MASS	4,866.7 lbs (2,207.5 kg)	AS	1	1.41												
TEST INERTIAL MASS	5,004.5 lbs (2,270.0 kg)		TEST ARTICL	E DEFLECTIONS												
GROSS STATIC MASS	5,004.5 lbs (2,270.0 kg)	STATIC		17.1 ft (5.2 m)												
IMPAC	T CONDITIONS	DYNAMIC		17.1 ft (5.2 m)												
IMPACT VELOCITY	60.70 mph (97.67 km/h)	ARTICLE DAMAGE		Minor												
IMPACT ANGLE (°)	0.3		VEHICL	EDAMAGE												
IMPACT LOCATION / ORIENTATION	Centerline of crash cushion face	VEHICLE DAMAGE SCALE		12-FD-3												
*Data Channel Failed	e shieline of elder eddnorf idee	COLLISION DAMAGE	CLASSIFICATION	12FDBW2												

MASH TEST 3-32 SUMMARY

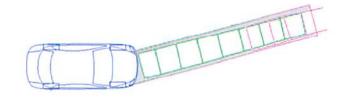
Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36056-01
Test Program:	MASH 3-32	Test Date:	03/08/16

SEQUENTIAL PHOTOGRAPHS

0.000 s

0.050 s

0.250 s


0.475 s

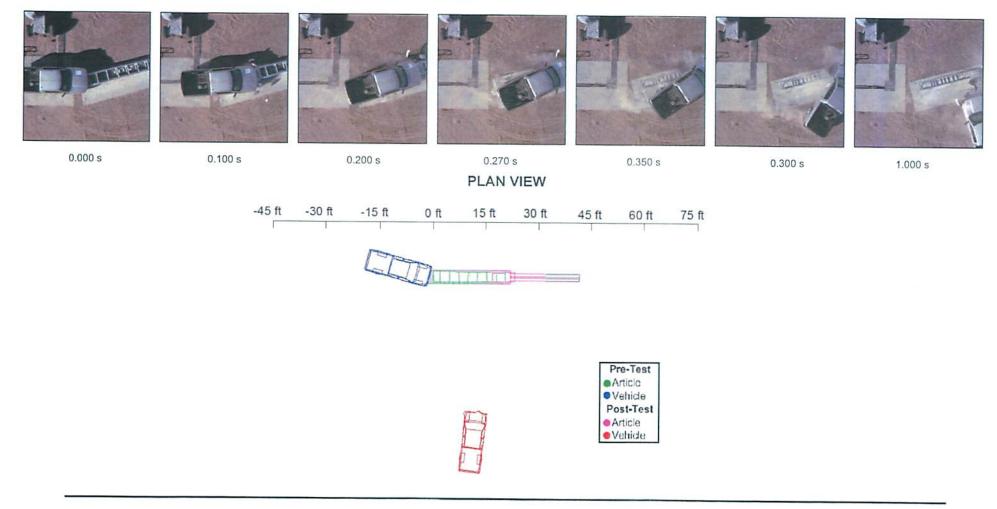
1.110 s

PLAN VIEW

0.150 s

MASH TEST 3-32 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36056-01
Test Program:	MASH 3-32	Test Date:	03/08/16


GENER	AL INFORMATION	EXIT CONDITIONS			
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		N/A	
TEST NUMBER	P36056-01	EXIT ANGLE		N/A	
TEST DESIGNATION	3-32	VEHICLE STABILITY	/	Satisfactory	
TEST DATE	3/8/16	FINAL VEHICLE PO	SITION	21.5 ft (6.6 m) downstream, 20.0 ft (6.1 m) right	
	ST ARTICLE	VEHICLE SNAGGIN	G	None	
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	IG	None	
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN		-40.3	
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN		-39.6	
NET ELEMENTS	Shock Arresting Cylinder	MAXIMUM YAW ANGLE (°)		-104.5	
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		334.6 kips-ft (453.7 kJ)	
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)	OCCUPANT RISK VALUES			
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	35.1 ft/s (10.7 m/s)	
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	4.9 ft/s (1.5 m/s)	
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-8.1 g	
	ST VEHICLE		Lateral	-2.5 g	
TYPE / DESIGNATION	1100C	THIN	/	35.4 ft/s (10.8 m/s)	
YEAR, MAKE AND MODEL	2010 Kia Rio	PHD)	18.4 g	
CURB MASS	2,490.2 lbs (1129.5 kg)	ASI		1.67	
TEST INERTIAL MASS	2444.9 lbs (1109.0 kg)	TEST ARTICLE DEFLECTIONS			
GROSS STATIC MASS	2618.0 lbs (1187.5 kg)	STATIC		13.7 ft. (4.2 m)	
IMPAC	DYNAMIC		13.7 ft. (4.2 m)		
IMPACT VELOCITY	64.00 mph (103.00 km/h)	ARTICLE DAMAGE		Minor	
IMPACT ANGLE (°)	15.3		VEHIC		
IMPACT LOCATION / ORIENTATION	0.7 in (18 mm) right of crash cushion centerline	VEHICLE DAMAGE	SCALE	12-FD-3	
	entering right of order order of the	COLLISION DAMAGE	CLASSIFICATION	12FDEW1	

TR-P36056-01-A

MASH TEST 3-33 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36051-01	
Test Program:	MASH 3-33	Test Date:	03/07/16	

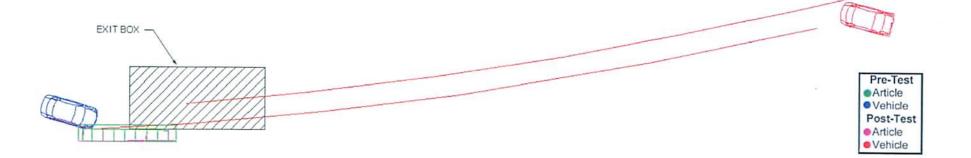
SEQUENTIAL PHOTOGRAPHS

MASH TEST 3-33 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36051-01
Test Program:	MASH 3-33	Test Date:	03/07/16

GENERA	AL INFORMATION	EXIT CONDITIONS			
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		N/A	
TEST NUMBER	P36051-01	EXIT ANGLE		N/A	
TEST DESIGNATION	3-33	VEHICLE STABILITY	/	Satisfactory	
TEST DATE	3/7/16	FINAL VEHICLE PO	SITION	13.5 ft (4.1 m) downstream, 38.6 ft (11.8m) to the right side	
TE	ST ARTICLE	VEHICLE SNAGGIN	G	None	
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	IG	None	
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	GLE (°)	-7.7	
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN	NGLE (°)	-8.9	
RET ELEMENTO	Shock Arresting Cylinder	MAXIMUM YAW AND	GLE (°)	-105.6	
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		684.0 kips-ft (927.4 kJ)	
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		NT RISK VALUES		
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	25.9 ft/s (7.9 m/s)	
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	6.6 ft/s (2.0 m/s)	
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-16.9 g	
	ST VEHICLE		Lateral	-7.1 g	
TYPE / DESIGNATION	2270P	THIN	1	26.9 ft/s (8.2 m/s)	
YEAR, MAKE AND MODEL	2012 RAM 1500	PHD)	18.4 g	
CURB MASS	4,883.2 lbs (2,215.0 kg)	ASI		1.02	
TEST INERTIAL MASS	4,998.9 lbs (2,267.5 kg)		TEST ART	ICLE DEFLECTIONS	
GROSS STATIC MASS	4,998.9 lbs (2,267.5 kg)	STATIC		17.0 ft (5.2 m)	
IMPAC	DYNAMIC		17.0 ft (5.2 m)		
IMPACT VELOCITY	63.99 mph (102.98 km/h)	ARTICLE DAMAGE		Minor	
IMPACT ANGLE (°)	14.9		VEHI	CLE DAMAGE	
IMPACT LOCATION / ORIENTATION	0.5 in (13 mm) right of the article centerline	VEHICLE DAMAGE		12-FD-3	
	ere ar (to hiny fight of the ditiole centenine	COLLISION DAMAGE	CLASSIFICATION	12FDEW2	

MASH TEST 3-34 SUMMARY


Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36054-01
Test Program:	MASH 3-34	Test Date:	03/09/16

SEQUENTIAL PHOTOGRAPHS

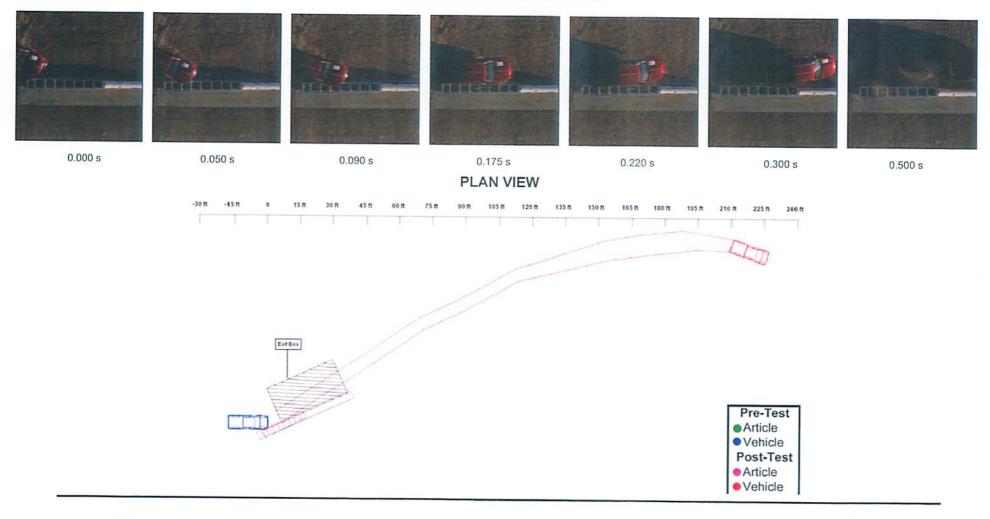
PLAN VIEW

-15 ft	0 ft	15 ft	30 ft	45 ft	60 ft	75 ft	90 ft	105 ft	120 ft	135 ft	150 ft	165 ft	180 ft	195 ft	210 ft

TR-P36054-01-A

MASH TEST 3-34 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36054-01	-
Test Program:	MASH 3-34	Test Date:	03/09/16	


GENERA	AL INFORMATION	EXIT CONDITIONS				
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		50.28 mph (80.92 km/h)		
TEST NUMBER	P36054-01	EXIT ANGLE (°)		4.3		
TEST DESIGNATION	3-34	VEHICLE STABILITY	Y	Satisfactory		
TEST DATE	3/9/16	FINAL VEHICLE PO	SITION	190.6 ft (58.1 m) downstream, 25.8 ft (7.8 m) to the left side		
TES	ST ARTICLE	VEHICLE SNAGGIN	G	None		
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETII	NG	None		
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	IGLE (°)	-3.8		
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AI	NGLE (°)	4.1		
KET ELEMENTS	Shock Arresting Cylinder	MAXIMUM YAW AND	GLE (°)	-22.0		
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		19.8 kip-ft (26.8 kJ)		
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		OCCUPA	ANT RISK VALUES		
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	7.5 ft/s (2.3 m/s)		
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	19.0 ft/s (5.8 m/s)		
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-2.0 g		
	ST VEHICLE	ACCELERATION	Lateral	-9.7 g		
TYPE / DESIGNATION	1100C	THI	V	20.7 ft/s (6.3 m/s)		
YEAR, MAKE AND MODEL	2010 Kia Rio	PHE)	9.7 g		
CURB MASS	2,503.3 lbs (1,135.5 kg)	ASI	1	1.28		
TEST INERTIAL MASS	2,442.7 lbs (1,108.0 kg)		TEST ART	ICLE DEFLECTIONS		
GROSS STATIC MASS	2,610.3 lbs (1,184.0 kg)	STATIC		0.9 in (23 mm)		
IMPAC	DYNAMIC		2.0 in (51 mm)			
IMPACT VELOCITY	60.17 mph (96.83 km/h)	ARTICLE DAMAGE		Minor		
IMPACT ANGLE (°)	15.2	VEHICLE DAMAGE				
IMPACT LOCATION / ORIENTATION	18.9 in (480 mm) downstream from crash cushion	VEHICLE DAMAGE	SCALE	1-RD-1		
	front face	COLLISION DAMAGE	CLASSIFICATION	01RDES1		

MASH TEST 3-35 SUMMARY

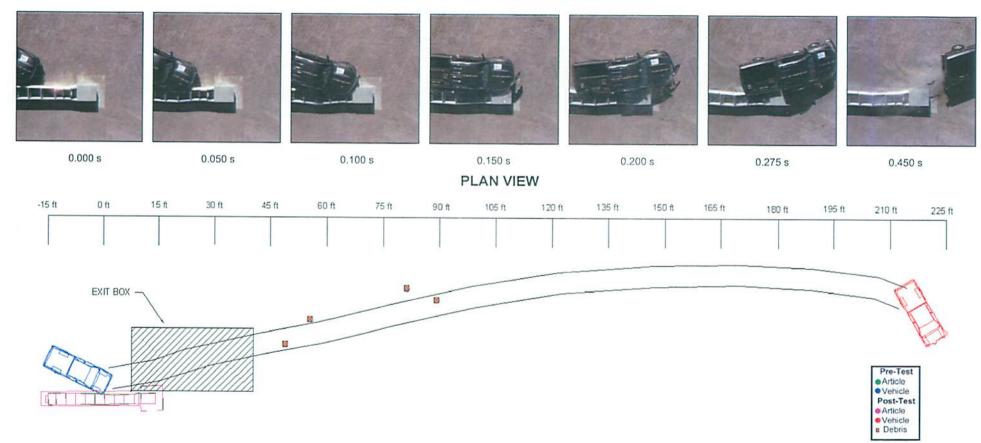
Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36053-01
Test Program:	MASH 3-35	Test Date:	03/08/16

. . . .

SEQUENTIAL PHOTOGRAPHS

MASH TEST 3-35 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36053-01
Test Program:	MASH 3-35	Test Date:	03/08/16


GENER	EXIT CONDITIONS			
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		52.55 mph (84.58 km/h)
TEST NUMBER	P36053-01	EXIT ANGLE (°)		9.2
TEST DESIGNATION	3-35	VEHICLE STABILITY	1	Satisfactory
TEST DATE	3/8/16	FINAL VEHICLE PO	SITION	225.4 ft (68.9 m) downstream, 76.2 ft (23.2 m) left side
TE	ST ARTICLE	VEHICLE SNAGGIN	G	None
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	NG	None
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	GLE (°)	-10.7
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN	NGLE (°)	22.0
RET ELEMENTS	Shock Arresting Cylinder	MAXIMUM YAW ANGLE (°)		-33.2
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		115.7 kip-ft (156.1 kJ)
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		OCCUP	ANT RISK VALUES
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT Longitudinal		15.7 ft/s (4.8 m/s)
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	29.5 ft/s (9.0 m/s)
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-2.6 g
	ST VEHICLE	ACCELERATION	Lateral	-13.2 g
TYPE / DESIGNATION	2270P	THI	/	33.1 ft/s (10.1 m/s)
YEAR, MAKE AND MODEL	2010 Ram 1500	PHE)	13.2 g
CURB MASS	4822.5 lbs (2187.5 kg)	ASI		1.81
TEST INERTIAL MASS	5009.9 lbs (2272.5 kg)		TEST ART	ICLE DEFLECTIONS
GROSS STATIC MASS	5009.9 lbs (2272.5 kg)	STATIC		0.7 in (17 mm)
IMPAC	T CONDITIONS	DYNAMIC		2.6 in (66 mm)
IMPACT VELOCITY	60.02 mph (96.59 km/h)	ARTICLE DAMAGE		Minor
IMPACT ANGLE (°)	25.9		VEH	CLE DAMAGE
IMPACT LOCATION / ORIENTATION	19.0 in (483 mm) downstream of crash cushion	VEHICLE DAMAGE	SCALE	01-RFQ-3
	front face	COLLISION DAMAGE	CLASSIFICATION	01RDEW2

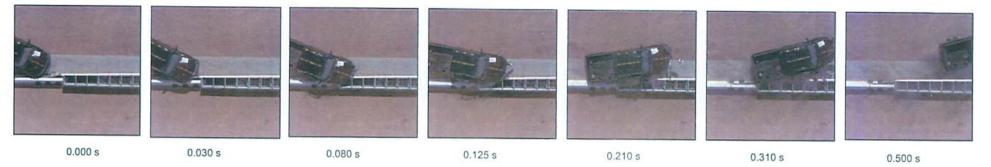
TR-P36053-01-A

MASH TEST 3-36 SUMMARY

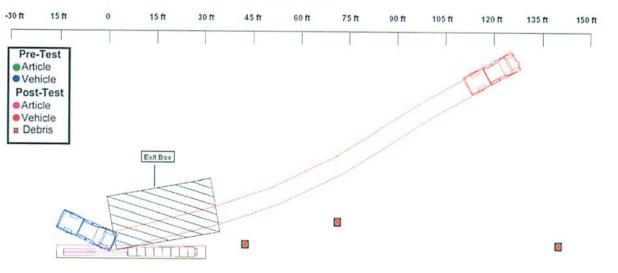
Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36052-01
Test Program:	MASH 3-36	Test Date:	03/10/16

SEQUENTIAL PHOTOGRAPHS

MASH TEST 3-36 SUMMARY


Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36052-01
Test Program:	MASH 3-36	Test Date:	03/10/16

GENER	EXIT CONDITIONS					
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		52.95 mph (85.21 km/h)		
TEST NUMBER	P36052-01	EXIT ANGLE (°)		15.3		
TEST DESIGNATION	3-36	VEHICLE STABILITY	,	Satisfactory		
TEST DATE	3/10/16	FINAL VEHICLE POSITION		FINAL VEHICLE POSITION		221.3 ft (67.4 m) downstream, 13.3 ft. (4.1 m) left side
TE	STARTICLE	VEHICLE SNAGGIN	G	None		
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	1G	None		
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	GLE (°)	-14.5		
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN	NGLE (°)	26.4		
RET ELEMENTO	Shock Arresting Cylinder	MAXIMUM YAW ANGLE (°)		-38.5		
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		113.1 kips-ft (153.3 kJ)		
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		OCCUPA	NT RISK VALUES		
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	18.0 ft/s (5.5 m/s)		
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	29.5 ft/s (9.0 m/s)		
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-10.5 g		
	ST VEHICLE		Lateral	-12.3 g		
TYPE / DESIGNATION	2270P	THI	/	33.5 ft/s (10.2 m/s)		
YEAR, MAKE AND MODEL	2011 RAM 1500	PHD)	12.3 g		
CURB MASS	4877.6 lbs (2212.5 kg)	ASI		1.76		
TEST INERTIAL MASS	4950.4 lbs (2245.5 kg)		TEST ARTI	ICLE DEFLECTIONS		
GROSS STATIC MASS	4950.4 lbs (2245.5 kg)	STATIC		4.3 in (108 mm)		
IMPAC	T CONDITIONS	DYNAMIC		4.5 in (114 mm)		
IMPACT VELOCITY	62.08 mph (99.91 km/h)	ARTICLE DAMAGE		Moderate		
IMPACT ANGLE (°)	24.9	VEHICLE DAMAGE				
IMPACT LOCATION / ORIENTATION	15.0 ft (4.6 m) downstream from crash cushion	VEHICLE DAMAGE S	SCALE	1-RFQ-3		
	front face	COLLISION DAMAGE	CLASSIFICATION	01RDEW3		


MASH TEST 3-37 SUMMARY

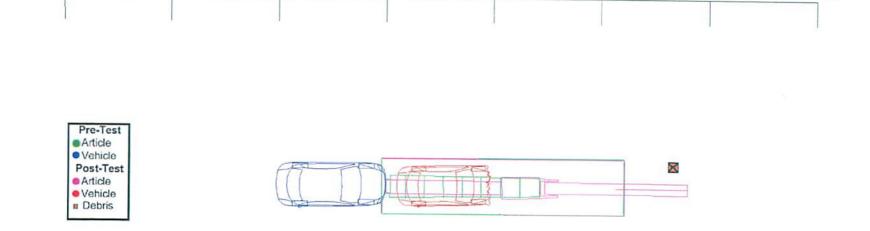
Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36021-01
Test Program:	MASH 3-37	Test Date:	03/11/16

SEQUENTIAL PHOTOGRAPHS

PLAN VIEW

TR-P36021-01-A

MASH TEST 3-37 SUMMARY

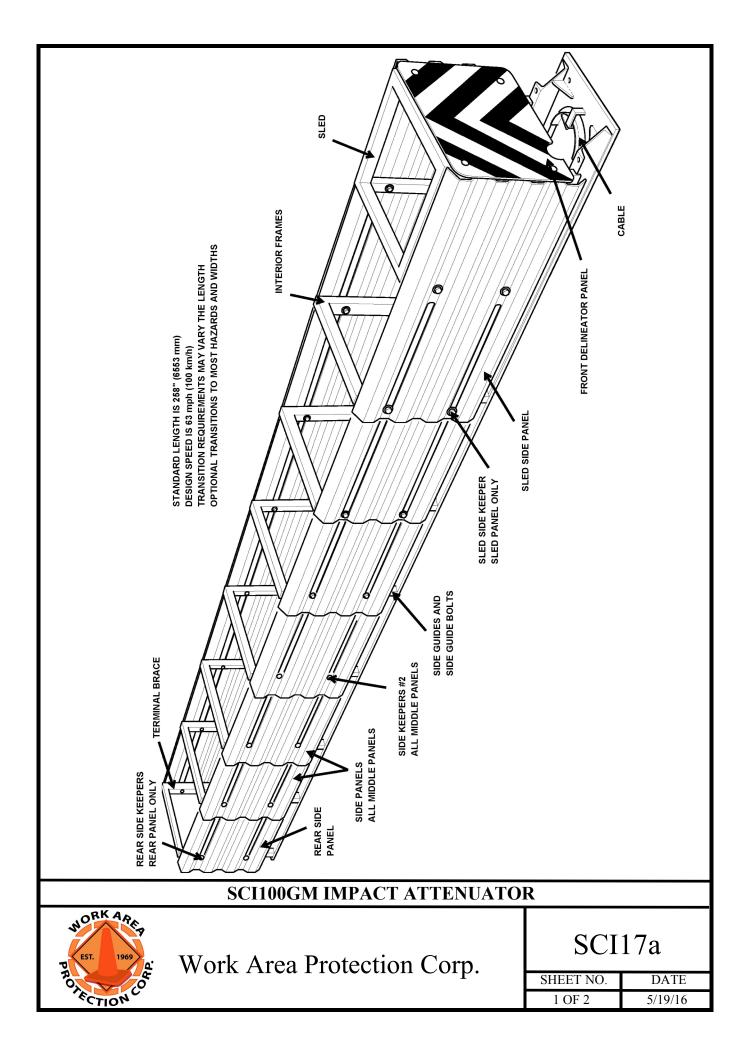

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36021-01
Test Program:	MASH 3-37	Test Date:	03/11/16

GENER	EXIT CONDITIONS					
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		42.80 mph (68.88 km/h)		
TEST NUMBER	P36021-01	EXIT ANGLE (°)		14.3		
TEST DESIGNATION	3-37	VEHICLE STABILITY	(Satisfactory		
TEST DATE	3/11/16	FINAL VEHICLE POSITION		FINAL VEHICLE POSITION		124.6 ft (38.0 m) downstream, 57.7 ft (17.6 m) left side
TE	ST ARTICLE	VEHICLE SNAGGIN	G	None		
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	١G	None		
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	GLE (°)	-11.8		
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN		19.3		
NET ELEMENTS	Shock Arresting Cylinder	MAXIMUM YAW ANGLE (°)		-41.9		
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		110.3 kips-ft (149.5 kJ)		
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		OCCUP	ANT RISK VALUES		
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT	Longitudinal	26.2 ft/s (8.0 m/s)		
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY Lateral		32.2 ft/s (9.8 m/s)		
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-11.3 g		
	ST VEHICLE		Lateral	-11.4 g		
TYPE / DESIGNATION	2270P	THIN	/	40.7 ft/s (12.4 m/s)		
YEAR, MAKE AND MODEL	2010 RAM 1500	PHD)	13.4 g		
CURB MASS	5017.6 lbs (2276.0 kg)	ASI		2.18		
TEST INERTIAL MASS	4,976.9 lbs (2,257.5 kg)		TEST ART	TICLE DEFLECTIONS		
GROSS STATIC MASS	4,976.9 lbs (2,257.5 kg)	STATIC		0.6 in (16 mm)		
IMPAC	T CONDITIONS	DYNAMIC		3.4 in (86 mm)		
IMPACT VELOCITY	62.09 mph (99.92 km/h)	ARTICLE DAMAGE		Moderate		
IMPACT ANGLE (°)	24.5	VEHICLE DAMAGE				
IMPACT LOCATION / ORIENTATION	13.7 ft (4.2 m) downstream of concrete barrier	VEHICLE DAMAGE S	SCALE	1-RFQ-5		
	and the second sec	COLLISION DAMAGE CLASSIFICATION		01RDEW4		

MASH TEST 3-38 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36142-01	
Test Program:	MASH 3-38	Test Date:	05/09/16	

SEQUENTIAL PHOTOGRAPHS - 3--211 0.000 s 0.100 s 0.200 s 0.300 s 0.400 s 0.500 s PLAN VIEW -45 ft -30 ft -15 ft 0 ft 15 ft 30 ft 45 ft 60 ft



TR-P36142-01-NC

MASH TEST 3-38 SUMMARY

Test Article:	Work Area Protection SCI Smart Cushion	Project No.	P36142-01
Test Program:	MASH 3-38	Test Date:	05/09/16

GENER	EXIT CONDITIONS			
TEST AGENCY	KARCO Engineering, LLC.	EXIT VELOCITY		N/A
TEST NUMBER	P36142-01	EXIT ANGLE		N/A
TEST DESIGNATION	3-38	VEHICLE STABILITY	,	Satisfactory
TEST DATE	5/9/16	FINAL VEHICLE POS	SITION	15.7 ft (4.8 m) downstream
TE	ST ARTICLE	VEHICLE SNAGGING	3	None
NAME / MODEL	SCI Smart Cushion	VEHICLE POCKETIN	IG	None
TYPE	Redirective Crash Cushion	MAXIMUM ROLL AN	GLE (°)	-1.1
KEY ELEMENTS	Base Structure, Sled, Wire Rope Cable, Sheaves,	MAXIMUM PITCH AN	IGLE (°)	-2.3
ALT LLEMENTS	Shock Arresting Cylinder	MAXIMUM YAW ANGLE (°)		2.1
ARTICLE LENGTH	21.7 ft (6.6 m)	KINETIC ENERGY		404.9 kip-ft (549.0 kJ)
TOTAL INSTALLATION LENGTH	41.5 ft (12.7 m)		OCCUPA	NT RISK VALUES
HEIGHT	33.5 in (851 mm)	OCCUPANT IMPACT Longitudinal		28.9 ft/s (8.8 m/s)
MAXIMUM WIDTH	37.4 in (951 mm)	VELOCITY	Lateral	0.3 ft/s (0.1 m/s)
ROAD SURFACE	Concrete	RIDEDOWN	Longitudinal	-11.3 g
	ST VEHICLE	ACCELERATION	Lateral	-1.6 g
TYPE / DESIGNATION	1500A	THI	1	28.9 ft/s (8.8 m/s)
YEAR, MAKE AND MODEL	2010 Chevrolet Malibu	PHD)	11.4 g
CURB MASS	3,392.9 lbs (1,539.0 kg)	ASI		1.37
TEST INERTIAL MASS	3,301.4 lbs (1,497.5 kg)		TEST ARTIC	CLE DEFLECTIONS
GROSS STATIC MASS	3,301.4 lbs (1,497.5 kg)	STATIC		15.7 ft (4.8 m)
IMPAC	TCONDITIONS	DYNAMIC		15.7 ft (4.8 m)
IMPACT VELOCITY	60.57 mph (97.48 km/h)	ARTICLE DAMAGE		Minor
IMPACT ANGLE (°)	0.6		VEHIC	CLE DAMAGE
IMPACT LOCATION / ORIENTATION	Centerline of crash cushion sled	VEHICLE DAMAGE SCALE		12-FD-3
		COLLISION DAMAGE	CLASSIFICATION	12FDEW2

DESCRIPTION

The SCI100GM impact attenuator was designed to provide a variable stopping force based on speed to give a smooth ridedown for a wide variety of speeds and masses. It passed all MASH tests including optional test #3-38 setting record ridedown G forces for small vehicles. This system was first tested to NCHRP 350 and passed all MASH tests with no changes.

The SCI100GM uses a hydraulic shock-absorbing cylinder to give a speed dependent, smooth ridedown. The telescoping fender panels are slightly tapered to allow a smooth stress-free nesting during collapse. The SCI100GM uses a 1.125" (29mm) IWRC galvanized cable to control the front sled's rearward travel. Galvanizing and Welding meet standards ASTM A123 and AWS D1.1, respectively.

The SCI100GM only requires the replacement of two 1/4" (6mm) x 1.75" (44mm) grade 8 shear bolts after a frontal impact within MASH design criteria. A reset can be performed in less than 30 minutes by an experienced repair crew.

The SCI100GM has transitions to 24" (610mm), 30" (762mm) and 36" (914mm) obstacles as well as gore area configurations. Wider width may affect the length of the system.

SPECIFICATIONS

Non-Gating Redirectional Non-Pocketing Bidirectional Fully Reusable Length 21.5' (6.55m) Width 24" (610mm) Height 2.75' (840mm) Weight 3450 lb (1,565kg)

APPROVAL

The SCI100GM impact attenuator was tested to the MASH Test Level 3 criteria and was approved in the FHWA NCHRP 350 acceptance letter CC-85 and MASH acceptance letter CC-128.

SCI100GM IMPACT ATTENUATOR

SCI17a

 SHEET NO.
 DATE

 2 OF 2
 5/19/16

Work Area Protection Corp.