

MBI Exhibit CG 104 Page 1 of 17

Presentation Outline

- Education and Background
- Regulatory Stability (46 CFR Subchapter C)
 - Computer Modeling
 - Stability Test
 - Loading Condition Evaluation
- Conclusions
 - Computer Modeling Differences
 - Stability Test Differences from 1988 to 2019
 - Sample Loading Condition Evaluations
 - Casualty Loading Condition Evaluation
 - Regulatory Icing

Background and Education

- Naval Architect Advisor of the Salvage Engineering Response Team (SERT) at USCG Marine Safety Center
- Licensed Professional Engineer of Naval Architecture and Marine Engineering in the Commonwealth of Virginia and Washington State
- Commercial marine salvage experience including fishing vessel salvage projects throughout the PNW and Alaska
- Previous USCG experience as Staff Naval Architect at Marine Safety Center and on USCG Icebreaker
- M.S. Mechanical Engineering (Pennsylvania State University)
- B.S. Mechanical Engineering (USCG Academy)

Regulatory Stability for Commercial Fishing Vessels

- Stability Requirements in 46 CFR Part 28, Subpart E
 - Calculations completed by a "Qualified Individual" selected by the owner (§28.505 and §28.510)
 - Establish weight and center of gravity of the ship through an inclining test (§28.535)
 - Evaluate all conditions of operation and loading for:
 - §28.565 Water on Deck
 - §28.570 Intact Righting Energy
 - §28.575 Severe Wind and Roll
 - Coast Guard review of these calculations is not required by the regulations. All MSC work described here is post-casualty, as requested by the Marine Board of Investigation

MBI Exhibit CG 104 Page 4 of 17

Regulatory Stability for Commercial Fishing Vessels

- Stability Requirements in 46 CFR Part 28, Subpart E
 - To complete these required calculations, the procedure is:
 - 1. Computer Modeling
 - 2. Inclining (Stability) Test
 - 3. Evaluate Operating Conditions and Develop Stability Instructions

Regulatory Stability: Computer Modeling

- **Buoyant Volumes Modeled from Lines Plan**
- Tanks Modeled from Tank and Capacity Plan

Windage Modeled from Profile Drawings or Pictures

MBI Exhibit CG 104 Page 6 of 17

Regulatory Stability: Stability Test

- Used to define ship's light weight and center of gravity
- Recommended to use ASTM F 1321: "Standard Guide for Conducting a Stability Test"
 - Occurs in two parts:
 - Lightweight (Deadweight) Survey
 - Identification of weights onboard that are fixed vs. variable
 - Physical measurement of vessel drafts and freeboards to calculate weight and longitudinal center of gravity
 - Inclining Experiment
 - Shifting of weights to make the ship heel over
 - Measurement of heel angles to establish vertical center of gravity
- For small ships, self-weight is usually the largest weight

MBI Exhibit CG 104 Page 7 of 17

Regulatory Stability: Operating Conditions

 "Stability instructions which provide the master or individual in charge of the vessel with loading constraints and operating restrictions which maintain the vessel in a condition which meets the applicable stability requirements of" 46 CFR Part 28, Subpart E

Required Criteria:

- Stability with Water on Deck
- Intact Stability
- Severe Wind and Roll Stability

Prescribed Constraints:

- Free Surface Effect in Tanks
- Icing Loads
- Size of Freeing Ports
- Watertight Integrity

<u>ABI Exhibit CG 104</u> Page 8 of 17

- 1. Created hull model from available documents and pictures
- 2. Used available stability test notes from 1988 and 2019 to calculate weight and center of gravity
- 3. Evaluated each loading/operating condition from the 1988 and 2019 stability instructions as well as two estimated casualty voyage conditions using regulatory criteria
- 4. Results are compared to provided documentation prepared for SCANDIES ROSE and Stability Instructions to SCANDIES ROSE's Master

MSC

Poop

Windage

а.

С.

f.

Tank Capacities

MBI Exhibit CG 104 Page 11 of 17

MSC

MODEL

Foc'sle

SCANDIES ROSE: Stability Test Comparison/Conclusions

2. Provided stability test data and documentation do not support weight and centers of gravity used in stability analysis.

1988 Stability Test Results	1988 Culver	1988 MSC	Difference
Lightweight (Long Tons)	485.35	392.57	MSC 93 LT Lighter
Vertical Center of Gravity (Feet abv Baseline)	14.09	14.63	MSC 6 inches Higher
Longitudinal Center of Gravity (Feet Aft of Amidships)	10.74	7.41	MSC 3 ft 4 inches Fwd
RECENTATION STAT	AL LARDON	CLI INCO	2 STATIANE 23
2019 Stability Test Results	2019 Culver	2019 MSC	Difference
2019 Stability Test Results	2019 Culver	2019 MSC	Difference
2019 Stability Test Results Lightweight (Long Tons)	2019 Culver 548.32	2019 MSC 578.33	Difference MSC 30 LT Heavier
2019 Stability Test Results Lightweight (Long Tons) Vertical Center of Gravity (Feet aby Baseline)	2019 Culver 548.32 14.69	2019 MSC 578.33 15.26	Difference MSC 30 LT Heavier MSC 7 inches Higher
2019 Stability Test Results Lightweight (Long Tons) Vertical Center of Gravity (Feet abv Baseline) Longitudinal Center of Gravity (Feet Aft of Amidships)	2019 Culver 548.32 14.69 3.30	2019 MSC 578.33 15.26 0.52	Difference MSC 30 LT Heavier MSC 7 inches Higher MSC 2 ft 9 inches Fwd

MBI Exhibit CG 104 Page 12 of 17

SCANDIES ROSE: Stability Test Comparison/Conclusions

2. Provided stability test data indicates excessive weight gain from 1988 to 2019.

1988 Stability Test Results	1988 Culver	1988 MSC	
Lightweight (Long Tons)	485.35	392.57	
		aal	
Lightweight Difference (LT)	+62.97	+185.76	
Lightweight Difference	+13%	+47%	
A SALLING ST	ALCONT IN	PLACE	
2019 Stability Test Results	2019 Culver	2019 MSC	
Lightweight (Long Tons)	548.32	578.33	
all and the all and the	all		

SCANDIES ROSE: Stability Analysis Conclusions

3. Analysis of 1988 and 2019 Stability Instructions indicate that many provided 2019 loading conditions fail regulatory stability.

2019 Sample	Hydrostatics Model:	Reference (a)		MSC - Small Pots		MSC - Large Pots	
Loading Condition	Lightship Characteristics:	Ref (b)	MSC	Ref (b)	MSC	Ref (b)	MSC
2019 Stability Book Conditio	n 1:	E Fail	Epil	Fail	Eail	Eail	Fail
Max Consumables, 208 Sma	ll Pots, Holds 2 and 3 full		Fall	Fdii	Fdii	Fdii	Fall
2019 Stability Book Conditio	n 2:	Pass	Fail	Fail	Fail	Fail	Fail
75% Consumables, 208 Sma	ll Pots, Holds 2 and 3 Full		i dii	1 dii	T dii	T dii	i ali
2019 Stability Book Conditio	n 3:	Eail	Fail	Fail	Fail	Fail	Fail
50% Consumables, 208 Sma	ll Pots, Holds 2 and 3 Full		- Cin	i un	1 411	1411	- un
2019 Stability Book Conditio	n 4:	D Pass	Fail	Fail	Fail	Fail	Fail
25% Consumables, 208 Sma	ll Pots, Holds 2 and 3 Full		1 411		1 411	i ali	1 dii
2019 Stability Book Conditio	n 5:	Pass	Fail	Eail	Fail	Fail	Fail
10% Consumables, 208 Sma	ll Pots, Holds 2 and 3 Full	0	1 411		1 411	1411	
2019 Stability Book Conditio	n 6:	Eail	Fail	E Fail	Fail	Fail	Fail
Max Consumables, Tenderin	ng, All Holds Full		1 411		1 411	1 411	
2019 Stability Book Conditio	n 7:	Pass	Fail	Eail	Fail	Fail	Fail
75% Consumables, Tenderin	ng, All Holds Full		1 411				
2019 Stability Book Conditio	n 8:	Pass	Pass	Fail	Fail	Fail	Fail
50% Consumables, Tenderin	ng, All Holds Full		1 405	i un		1.411	
2019 Stability Book Conditio	n 9:	Pass	Pass	Pass	Fail	Pass	Fail
25% Consumables, Tenderin	ng, All Holds Full		1 405	1 000		1 435	
2019 Stability Book Conditio	n 10:	Pass	Pass	Pass	Fail	Pass	Fail
10% Consumables, Tenderin	ng, All Holds Full		1 055	1 435	i dii	1 435	i un
2019 Stability Book Conditio	n 11:	Eail	Fail	Fail	Fail	Fail	Fail
Crabbing, 3 Holds Full, 168 S	Small Pots	- Tun		- Tan	i dii	ran	i un

MBI Exhibit CG 104 Page 14 of 17

SCANDIES ROSE: Casualty Voyage Analysis Conclusions

4. Casualty voyage loading conditions did not comply with regulatory stability standards while nearly meeting stability instructions (number of pots, freeboard, holds flooded)

	-NEW COST						
2019	Hydrostatics Model:	Reference (a)		MSC - Small Pots		MSC - Large Pots	
Loading Condition	Lightship Characteristics:	Ref (b)	MSC	Ref (b)	MSC	Ref (b)	MSC
Investigating Officer's Con 195 Small Pots, Holds 2 ar Full, 20,000lb bait	ndition 1: nd 3 Full. Fuel and Water	Fail	Fail	Fail	Fail	Fail	Fail
Investigating Officer's Con 195 Small Pots, Holds 2 an Full except #1 WTs, 20,000	ndition 2: d 3 Full. Fuel and Water Db bait	Fail	Fail	Fail	Fail	Fail	Fail

MBI Exhibit CG 104 Page 15 of 17

SCANDIES ROSE: Icing Loads in Stability Analysis

5. Actual icing was likely asymmetric and not well represented by regulatory icing standards.

MBI Exhibit CG 104 Page 16 of 17

- 1. Provided hydrostatics model did not match MSC's model created from available documents and pictures
- 2. Provided stability test notes from 1988 and 2019 do not support lightweight used in provided analyses. MSC has low confidence in 2019 test accuracy.
- Provided model and test results could not have accurately analyzed conditions for regulatory stability. MSC analysis indicates many failing loading conditions.
- 4. MSC analysis indicates that SCANDIES ROSE did not comply with stability criteria for the casualty voyage.
- 5. Actual icing likely differed from regulatory requirements.