

Bridge Factors Factual Report Attachment 55 – FDOT Structures Design Guidelines (SDG), Structures Manual Volume 1, dated January 2015

Miami, FL

HWY18MH009

(5 pages)

FLORIDA DEPARTMENT OF TRANSPORTATION

STRUCTURES DESIGN GUIDELINES

FDOT STRUCTURES MANUAL VOLUME 1 JANUARY 2015

B. Delete the third paragraph of *LRFD* [4.6.3.1] and add the following:

When a refined method of analysis is used for bridge superstructures not meeting the requirements of *LRFD* [4.6.2.2], indicate the name, version, and date of the software used on the FDOT Load Rating Summary Tables.

C. When widening existing AASHTO and Florida Bulb-T beam bridges with Florida-I Beams, the live load distribution factors may be calculated using the *LRFD* [4.6.2.2] approximate method.

Commentary: The **LRFD** approximate method produces distribution factors that are conservative when compared to refined analyses even though the beam stiffnesses and spacings vary significantly.

2.10 REDUNDANCY AND OPERATIONAL IMPORTANCE [1.3.4 AND 1.3.5]

A. Redundancy [1.3.4]

Delete the Redundancy factors, η_R , in *LRFD* [1.3.4] and use $\eta_R = 1.0$ unless a revised value is established in the tables below.

Redundancy Factors, η_R for Flexural and Axial Effects					
Structure Type	ຖ _ື Factor				
Welded Members in Two Truss/Arch Bridges	<mark>1.20</mark>				
Floor beams with Spacing > 12 feet and Non-Continuous Stringers and Deck	<mark>1.20</mark>				
Floor beams with Spacing > 12 feet and Non-Continuous Stringers but with Continuous Deck	<mark>1.10</mark>				
Steel Piers (Caps, columns, C-Piers, Straddle Piers, etc.)	<mark>1.20</mark>				
Concrete C-Piers and Straddle Bents or Piers located over roadways	<mark>1.05</mark>				

Redundancy Factors, η_R for Steel Girder Bridges							
Number of Girders in Cross Section	<mark>Span</mark> Type	# of Hinges required for Mechanism	I-Girders		Box Girders		
			With Cross- Frames ¹	Without Cross- Frames	With Exterior Diaphragms	Without Exterior Diaphragms	
2	Interior	3	<mark>1.20</mark>	Not Permitted	<mark>1.00</mark>	<mark>1.20</mark>	
	End	2	<mark>1.20</mark>	Not Permitted	<mark>1.00</mark>	<mark>1.20</mark>	
	Simple	1	<mark>1.20</mark>	Not Permitted	<mark>1.05</mark>	<mark>1.20</mark>	
<mark>3 or 4</mark>	Interior	<mark>3</mark>	<mark>1.00</mark>	Not Permitted	<mark>1.00</mark>	<mark>1.00</mark>	
	End	2	<mark>1.00</mark>	Not Permitted	<mark>1.00</mark>	<mark>1.05</mark>	
	Simple	1	<mark>1.00</mark>	Not Permitted	1.00	<mark>1.10</mark>	
<mark>5 or more</mark>	Interior	<mark>3</mark>	<mark>1.00</mark>	Not Permitted	<mark>1.00</mark>	<mark>1.00</mark>	
	End	2	<mark>1.00</mark>	Not Permitted	<mark>1.00</mark>	<mark>1.00</mark>	
	Simple	1	<mark>1.00</mark>	Not Permitted	1.00	<mark>1.05</mark>	

1 With at least three evenly spaced intermediate cross-frames or floor beams (excluding end cross-frames) in each span.

B. Operational Importance [1.3.5]

Delete the operational importance factors, η_I , in *LRFD* [1.3.5] and use $\eta_I =$ 1.0 unless otherwise approved by the Department. For bridges considered critical to the survival of major communities, or to the security and defense of the United States, use $\eta_I =$ 1.05.

Modification for Non-Conventional Projects:

Delete **SDG** 2.10.B and see the RFP for requirements.

10 PEDESTRIAN BRIDGES

10.1 GENERAL

- A. The criteria covers engineered steel and concrete pedestrian bridge superstructures, including proprietary trusses, and the associated substructures, ramps, stairs, etc. crossing over FDOT roadway or placed on FDOT right-of-way.
- B. Minor timber or aluminum structures associated with boardwalks, docks or fishing pier projects are not covered by these policies except that the loading shall meet requirements defined herein.
- C. Wooden trusses or timber beam structures shall not cross over FDOT roadway facilities.
- D. Aluminum or Fiber-reinforced polymer (FRP) (i.e. plastic, carbon fiber, or fiberglass) pedestrian bridges are not allowed.
- E. Comply with ADA requirements for ramps and railings. See **SDG** 1.1.6 (ADA on Bridges).

10.2 REFERENCED STANDARDS

Reference Standards are in accordance with Section 8.2 of the PPM (Volume 1).

10.3 DESIGNER QUALIFICATIONS

- A. All design calculations and design details or any design changes must be signed and sealed by a Professional Engineer licensed in the State of Florida.
- B. For FDOT projects, engineering design firms working directly for the FDOT or Contractor's EORs designing prefabricated steel truss pedestrian bridges meeting the requirements of *PPM*, Volume 1, Article 8.7.2 shall be pre-qualified in accordance with Rule 14-75, work group 4.2.2.
- C. Engineering firms designing private, permitted bridges crossing FDOT roadway facilities need not be pre-qualified in accordance with Rule 14-75, but must comply with Rule 14-75 for minimum personnel and technical experience.

10.4 DESIGN (Rev. 01/15)

- A. All pedestrian bridge structures shall be designed in accordance with the following:
 - AASHTO LRFD Bridge Design Specifications (AASHTO)
 - AASHTO Guide Specifications for the Design of Pedestrian Bridges (Guide Spec.)
 - FDOT Plans Preparation Manual (**PPM**)
 - FDOT Structures Manual