

#### NATIONAL TRANSPORTATION SAFETY BOARD

Office of Aviation Safety Washington, D.C. 20594

June 1, 2020

**Group Chairmen's Factual Report – Attachment 11** 

PenAir Saab 2000 Aircraft Performance presentation excerpt

### **OPERATIONAL FACTORS/HUMAN PERFORMANCE**

DCA20MA002



## **SAAB 2000**

### AIRCRAFT PERFORMANCE

SPIRIT OF AL ASKA

Rev 01 11/08/15



Airport Analysis Manual

Calculating takeoff and landing performance data for all airports within the PenAir route structure. These Manuals are located in each a/c.

Aircraft Performance Group (APG)

Provides the performance data and is designed to meet FAA requirements.

Outside the PenAir normal route structure, dispatch will provide flight crews airport analysis data with normal flight paperwork.

# APG Takeoff Performance Charts Description, Definitions and Instructions



### SF-2000 AE 2100A INTRODUCTION

Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon:

Airport characteristics consisting of airport elevation, runway gradient and length, runway contaminants, and the obstructions within the takeoff flight path,

Environmental conditions consisting of temperature, wind, and pressure altitude.

Aircraft Configurations consisting of power settings, flap settings, bleed configurations, and Minimum Equipment List (MEL) inoperative components.

The performance and limitations are as outlined in the approved Airplane Flight Manual (AFM) for the specific aircraft considered. All takeoff and landing airport analysis data provided by Aircraft Performance Group complies with FAA regulations.



#### TAKEOFF

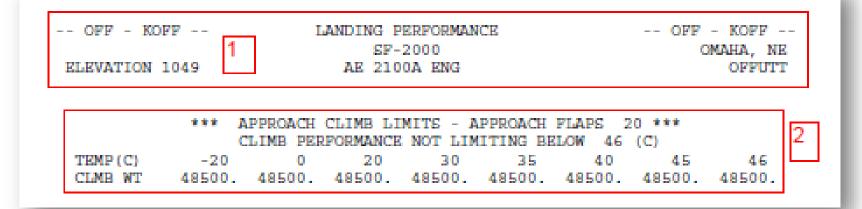
The maximum allowable takeoff weight is obtained by selecting the most limiting of the following:

- 1. Maximum certified takeoff structural weight.
- Climb limited weight the maximum weight at which the appropriate airworthiness climb gradients, for each takeoff segment, are attained for airport elevation and temperature.
- Runway field length limit weight the maximum weight at which the aircraft complies with the appropriate airworthiness rules governing runway length, runway gradient (slope), airport elevation, temperature, wind, pressure altitude, and runway contamination.
- 4. Obstruction limited weight the maximum weight at which obstruction clearance required by the appropriate airworthiness rules can be attained. The obstruction limit weight is a function of aircraft configuration, obstacle height and distance, airport elevation, temperature, and wind. Unless otherwise stated, all takeoffs assume a straight out takeoff flight path along the extended runway centerline.
- Brake energy the maximum weight at which the aircraft brakes can absorb the amount of energy required to stop the aircraft.
- Tire speed the maximum weight so as not to exceed the maximum tire speed limitations.

NOTE: Some runways/airports require a "Special Departure Procedure" in order to optimize takeoff weight in terrain sensitive areas. The specific description of the Special Departure Procedure is outlined on a separate page attached to the takeoff airport analysis. These procedures describe the non-standard, one engine inoperative departure flight path. The maximum allowable takeoff weights, presented in the subsequent analysis, are based upon following the specific procedure(s) outlined.

#### LANDING

The maximum allowable landing weight is obtained by selecting the most limiting of the following:


- 1. Maximum certified landing structural weight.
- Climb limited weight the maximum weight at which the appropriate airworthiness climb gradients, in the approach and landing configuration, are attained for airport elevation and temperature.
- Runway field length limit weight the maximum weight at which the aircraft complies with the appropriate airworthiness rules governing runway length, runway gradient (slope), airport elevation, wind, pressure altitude, and runway contamination.



## Landing Performance Chart Description, Definitions and Instructions







#### 1. Chart Heading

The chart heading specifies the performance outlined (takeoff or landing), the airport by Identifier, City/State, and Airport Name, the airport elevation, and the Aircraft type and Engine.

#### 2. Approach Climb Limits

The approach climb limit weights meet the minimum climb gradients required for the approach climb (go-around) phase of landing as defined in the certification regulations. The approach climb limit weights are determined from the applicable Landing Weight Permitted by Climb Requirements Charts within the AFM. The approach climb limit is dependent upon reported surface temperature and airport altitude only. Corrections are displayed for Anti-ice ON.



CORRECTIONS: ANTIICE ON SUBTRACT 0 POUNDS ABOVE -20. DEGREES C ANTIICE ON + ACCUM ICE SUB 7300 POUNDS ABOVE 40. DEGREES C

\*\*\* LANDING FIELD LENGTH LIMITS \*\*\*

|   | RUNWAY          |             | **    | LANDING             | FLAPS 20 | ) **    | **    | LANDING               | FLAPS 35       | **              |    |
|---|-----------------|-------------|-------|---------------------|----------|---------|-------|-----------------------|----------------|-----------------|----|
| 4 | LENGTH<br>SLOPE | WIND<br>KTS |       | NATION  <br>15%-WET | ALTE     | NATE    |       | INATION  <br>115%-WET | ALTER<br>DBV 1 | NATE<br>15%-WET | Ľ. |
|   | DIVES           | AID         | DRI 1 | 124-421             | DRI .    | 138-961 | DRI   | 1128-9611             | DRI 1          | 128-421         |    |
|   |                 | -10         | 48500 | 48500               | 48500    | 48500   | 48500 | 48500                 | 48500          | 48500           |    |
|   |                 | -5          | 48500 | 48500               | 48500    | 48500   | 48500 | 48500                 | 48500          | 48500           |    |
|   | 12              |             |       |                     |          |         |       | i                     |                |                 |    |

#### 4. Runway Identifier

The runway identifier is specified as follows:

- Full length runways indicated by basic identifier i.e. 34L
- Temporary runway lengths / closures include "TMP", i.e. 34LTMP

Declared Distances used:

Landing Distance Available (LDA)

Associated effective runway slope/gradient.

5. Landing Runway Limit Weight

The runway limit weight for landing distance available is displayed corresponding to given wind component and aircraft/runway configuration.

#### THE LIMITING LANDING WEIGHT IS THE <u>LOWER</u> OF THE RUNWAY LIMIT WEIGHT, THE APPROACH CLIMB LIMIT WEIGHT, OR THE MAXIMUM CERTIFIED STRUCTURAL LIMIT WEIGHT.



| tailwi | able landing wei<br>nd, multiply the a<br>itical tailwind. S<br>t. | associ         | 48500             | 48500          | 48500<br>48500    | 1              |                   |                |                   |                |  |
|--------|--------------------------------------------------------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|--|
|        | 12<br>10695FT<br>-0.66                                             | 0              | 48500             | 48500          | 48500             | 48500          | 48500             | 48500          | 48500             | 48500          |  |
|        |                                                                    | 10             | 48500<br>48500    | 48500<br>48500 | 48500             | 48500<br>48500 | 48500             | 48500<br>48500 | 48500             | 48500<br>48500 |  |
| 6      |                                                                    | 20<br>TW<br>KT | 48500<br>-10<br>0 | -10<br>0       | 48500<br>-10<br>0 | -10<br>0       | 48500<br>-10<br>0 | -10<br>0       | 48500<br>-10<br>0 | -10<br>0       |  |

6. Critical Tailwind / Tailwind Penalty

The critical tailwind is the maximum tailwind component at which maximum structural landing weight may be achieved. At all greater tailwind components (to a maximum of -10 knots) the

allowable landing weight must be reduced. If the tailwind component exceeds the critical tailwind, multiply the associated tailwind value by the number of knots of tailwind in excess of the critical tailwind. Subtract the resulting penalty weight from the zero wind landing limit weight.

Example: If the critical tailwind is 6 knots and there is a 10-knot tailwind, a downwind landing would require a weight penalty calculated as follows:

You must take the difference of 4 knots (10 knots - 6 knots) and multiply it by the penalty figure given (SUB LB/KT or SUB KG/KT). The resulting weight should then be subtracted from the maximum zero wind weight. The reduction in landing weight will then allow you to land with the 10-knot tailwind component.



#### 7. Date

THE SPIRIT OF ALASKA

Indicates the date the performance chart was prepared.

| AKN - PAKN L |           |         | LANDING F<br>SF- | ERFORMAN | AKN - PAKN<br>KING SALMON, AK |          |             |         |  |
|--------------|-----------|---------|------------------|----------|-------------------------------|----------|-------------|---------|--|
| ELEVATION    |           | AE 210  | OA ENG           |          |                               | KIN      | KING SALMON |         |  |
|              |           |         |                  |          |                               |          |             |         |  |
|              |           |         |                  |          |                               |          |             |         |  |
|              |           |         | CLIMB LI         |          |                               |          |             |         |  |
| TEMP(C)      |           |         | RFORMANCE        |          |                               |          |             | 46      |  |
| CLMB WT      |           |         |                  |          |                               |          |             |         |  |
| CLMB WI      | 40500.    | 40500.  | 40500.           | 40500.   | 40500.                        | 40500.   | 40500.      | 40500.  |  |
| CORRECTION   |           | TOP ON  | CUDEDACE         |          |                               | 01777 20 | DECEREC     |         |  |
|              |           |         |                  |          |                               |          | . DEGREES   |         |  |
| A            | NILLER ON | + ACCO  | A ICE SOE        | 0 1293 1 | CONDS AB                      | OVE 45.  | . DEGREES   | C       |  |
|              |           | *** L2  | ANDING FI        | ELD LENG | TH LIMIT                      | 's ***   |             |         |  |
|              |           |         |                  |          |                               | -        |             |         |  |
|              | *         | ** INC  | REASED RE        | F. SPEEL | (VREF-I                       | CE) ***  |             |         |  |
|              |           |         |                  |          |                               | .,       |             |         |  |
| RUNWAY       |           |         |                  |          |                               |          |             |         |  |
| LENGTH WIND  | DESTI     | NATION  | ALTER            | NATE     | DESTI                         | NATION   | ALTER       | NATE    |  |
| SLOPE KTS    | DRY 1     | 15%-WET | DRY 1            | 15%-WET  | DRY 1                         | 15%-WET  | DRY 1       | 15%-WET |  |
|              |           |         | -                |          |                               |          |             |         |  |
| -10          | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| -5           | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| 12           |           |         |                  |          |                               |          |             |         |  |
| 8501FT 0     | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| 0.15         |           |         |                  |          |                               |          |             |         |  |
| 10           | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
|              |           |         |                  |          |                               |          | 48500       |         |  |
| CRT TW       |           |         |                  |          |                               |          |             |         |  |
| SUB LB/KT    | 0         | 0       | 0                | 0        | 0                             | 0        | 0           | 0       |  |
|              | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| -5           | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| 30           | 10000     | 10000   | 10000            | 10000    | 10000                         |          | 10000       |         |  |
| 8501FT 0     |           | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| -0.15        |           |         |                  |          | 10200                         |          | 10200       |         |  |
|              |           | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| 20           | 48500     | 48500   | 48500            | 48500    | 48500                         | 48500    | 48500       | 48500   |  |
| CRT TW       | -10       | -10     | -10              | -10      | -10                           | -10      | -10         | -10     |  |
| SUB LB/KT    |           |         |                  |          |                               |          |             |         |  |
|              |           |         |                  |          |                               |          |             |         |  |



FAA AFM CODE 001

## ALT CG I or II landing weights

| RUNWAY      | **    | LANDING  | FLAPS 2 | 0 ** 0   |       | LANDING  | FLAPS 3 | 5 **     |
|-------------|-------|----------|---------|----------|-------|----------|---------|----------|
| LENGTH WIND | - ALT | CGI-     | - ALT ( | CG II -  | - ALT | CGI-     | - ALT   | CG II -  |
| SLOPE KTS   | DRY   | 115%-WET | DRY     | 115%-WET | DRY   | 115%-WET | DRY     | 115%-WET |
| -10         | 31610 | NA       | 32217   | NA       | 35963 | 28870    | 36698   | 29494    |
| -5          | 36843 | 30094    | 37943   | 30828    | 42203 | 34784    | 42940   | 35490    |
| 13          |       |          |         |          |       |          |         |          |
| 4099FT 0    | 42204 | 35056    | 43099   | 36122    | 48438 | 40260    | 48500   | 41144    |
| 0.13        |       |          |         |          |       |          |         |          |
| 10          | 44991 | 37592    | 45728   | 38692    | 48500 | 43101    | 48500   | 43838    |
| 20          | 48147 | 40319    | 48500   | 41417    | 48500 | 46185    | 48500   | 47059    |
| CRT TW      | 0     | 0        | j 0     | 0        | 0     | 0        | 0       | oj       |
| SUB LB/KT   | -1059 | -991     | -1088   | -998     | -1247 | -1139    | -1180   | -1164    |
| -10         | NA    | NA       | NA      | NA       | NA    | NA       | NA      | NA       |
| -5          | 29286 | NA       | 30133   | NA       | 33823 | NA       | 34547   | NA       |

SPIRIT OF AL