National Transportation Safety Board

Office of Research and Engineering Washington, DC 20594

HWY22MH003

MATERIALS LABORATORY

Factual Report 23-036

March 29, 2023

(This page intentionally left blank)

A. ACCIDENT INFORMATION

Location:Pittsburgh, PennsylvaniaDate:January 28, 2022Vehicle:Fern Hollow BridgeInvestigator:Dennis Collins (HS-22)

B. COMPONENTS EXAMINED

Summary of "Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report" and "Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Weld Microstructure Factual Report".

C. EXAMINATION PARTICIPANTS

Group Chair	Adrienne Lamm National Transportation Safety Board Washington, DC
Party Coordinator	Justin Ocel Federal Highway Administration Baltimore, MD
Group Member	Ryan Slein Federal Highway Administration McLean, VA

D. DETAILS OF THE EXAMINATION

On Friday, January 28, 2022, about 6:37 a.m. eastern standard time, the Fern Hollow bridge, which carried Forbes Avenue over the north side of Frick Park, in Pittsburgh, Allegheny County, Pennsylvania, experienced a structural failure. As a result, the 447-foot-long bridge fell approximately 100 feet into the park below.

1.0 Structure Description

The bridge superstructure was a frame-floorbeam-stringer system with two parallel lines of rigid "K" frames. Each frame was comprised of three-span, continuous welded I-shaped steel girders, and two inclined, welded steel I-shaped legs. The structure was unique in that the legs were bolted to I-girders. The entire superstructure was made from weld-fabricated uncoated weathering steel plates. The ends of the girders rested on reinforced concrete caps on stone masonry abutments, and each leg rested atop reinforced concrete thrust blocks. The bents of the bridge referred to the legs and thrust blocks, taken together with their associated cross bracing.

Figure 1 shows a plan view composite photo of the collapsed structure with the locations of the legs underneath the structure outlined and labeled. The bridge legs were individually labeled according to bent number and bridge side. The first index of the naming convention is "B" for bent. The second index is the numeric "1" or 2", meant to indicate the first and second bent away from the near abutment. The final index is the letter "L" or "R", representing left or right when looking east from the near abutment. Thus, B1R refers to the leg in bent 1 on the right side of the bridge.

In Figure 1, the plan view composite photo is compared to schematics in plan view and elevation view orientations, with the components of the bridge labeled consistent with the latest bridge inspection report.¹ Figure 2 shows the plan view composite photo of the collapsed structure relative to the elevation view schematic, with each leg identified.

The bridge legs were a built-up I-shape cross-section configuration of web plate bracketed by flanges. The width of bridges legs tapered slightly from the top down, with a second, sharper taper resulting in a trapezoidal-shaped shoe at the bottom of the leg. The width of the flanges was oriented perpendicular to the direction of the girders, with the web plate perpendicular to the width of the flanges. A schematic showing the outward facing side of a leg mating with a girder with all structural elements labeled is shown in Figure 3. A schematic showing a detailed view of the labeled structural elements in the bottom of a leg is shown in Figure 4.

2.0 Specimen Location and Extraction

The details of the accident scene post-collapse are given in NTSB reports Structural Factors Group Chair's Factual Report and NTSB Materials Laboratory Factual Report 23-009. While on-scene, NTSB investigators, along with engineers from Federal Highway Administration (FHWA), identified and retained material from all four bridge legs and the girders attached directly there above to capture each steel plate thickness that comprised the structure. This was done to ensure every steel plate used in the structure could be tested to ensure it met specifications. FHWA agreed to complete mechanical and materials testing of the retained material, which is documented in a report being reviewed here titled "Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report", hereafter referred to as the FHWA Mechanical report, which is attached in Appendix A.

¹ "2021 Routine Bridge Safety Inspection Report, City of Pittsburgh, Allegheny County, Forbes Avenue over Fern Hollow and Nine Mile Run" by Gannett Fleming, Inc.

After the evidence had been collected and during examination of records from the construction of the bridge, specifically while reviewing numerous mill testing reports (MTRs), steel plates of the same thickness and heat code were noted as used in multiple locations in the bridge. In total, there were 20 unique heat and plate thickness combinations. To avoid duplicative efforts by testing all the material extracted, only the number of specimens needed to capture the mechanical and material properties from each unique steel plate were machined and tested. The exact location of each specimen tested is described in sections 1.1 and 3 of the FHWA Mechanical report.

3.0 Material Tested

Per the MTRs, bridge construction utilized two types of plates produced by different manufacturers. United States Steel Corporation (Pittsburgh, PA) produced plates specified to meet ASTM A588-71 Grade B. Bethlehem Steel Corporation (Bethlehem, PA) produced plates specified to meet ASTM A588 Grade A, without specifying the year of the standard. Changes were made to the ASTM A588 standard over the years the plates were produced (1972-1974). Comparisons of Grade A and Grade B material and changes to the standard are discussed extensively in section 4.3 of the FHWA Mechanical report.

Within the MTRs, 2 plates were listed as Grade A, 7 plates were listed as Grade B, and 16 plates could not be definitively tied to either Grade A or Grade B. Thus, while there were ostensibly 20 unique heat and plate thickness combinations, specimens representing 25 separate plates of material were tested.

While reviewing design plans post-collapse, investigators noted the top transverse stiffener in the legs (indicated in Figure 5) was specified to be constructed from plate with 0.75 inch thickness, while the remainder of the transverse stiffeners were specified to be constructed from plate with 0.4375 inch thickness.² However, examination of the collected evidence revealed the top transverse stiffeners were constructed of plate with 0.8125 inch measured thickness. During review of the MTRs for the plate material, investigators were unable to locate the parent heat from which the 0.8125-inch plates nested. Thus, no specifications to which tested mechanical and material properties could be compared were available. As a result, and coupled with the information that the collapse initiated at the bottom of a leg and not the top, the plate material from which the top transverse stiffeners were constructed was not tested.

² "Reconstruction of Forbes Avenue Bridge Over Fern Hollow & Approaches" by City of Pittsburgh Department of Public Works Bureau of Engineering, sheet no. 14.

The retained material was transported to and stored at FHWA Turner-Fairbank Highway Research Center (TFHRC) in McLean, VA for future testing.

4.0 Mechanical and Materials Testing

The mechanical and materials testing of all the bridge steel evidence was performed by FHWA personnel at TFHRC. The methodology and results of the testing are presented by FHWA in the report attached in Appendix A. A summary of the testing performed is provided below. All testing was performed per ASTM standards as required in City of Pittsburgh material specifications.³

4.1 Tensile Testing

The design plans called for the steel to be used for construction of the bridge was ASTM A588⁴. For plates of thickness 4 inches or less, ASTM A588 specifies nominal yield strength of 50 ksi and ultimate tensile strength of 70 ksi, with elongation at fracture specified as 18% in 8 inches or 21% in 2 inches. The MTRs for each heat of material reported the yield strength, ultimate tensile strength, and percent elongation at fracture determined via testing prior to shipment of the material; MTR values for each heat are listed in section 4.1 the FHWA Mechanical report.

Tensile specimens were prepared in duplicate per the method described in the FHWA report, following the ASTM A370 specification⁵. 21 of the 25 specimens met the specification; 4 specimens did not meet the minimums outlined in ASTM A588. One specimen was 4% below the yield strength and 1% below the ultimate tensile strength, two specimens met the yield strength but were 1% below the ultimate strength, and one specimen met both the yield and ultimate tensile strength but was 11% below the specified percent elongation at fracture.

The tensile testing results are listed in summary in section 5.1 and in full in Appendix D of the FHWA Mechanical report.

³ "Specifications for Materials and Construction, 1938 Specifications and 1962 Addendums" by City of Pittsburgh, page 9.

⁴ ASTM A588 "Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance", ASTM International, West Conshohocken PA.

⁵ ASTM A370 "Standard Test Methods and Definitions for Mechanical Testing of Steel Products", ASTM International, West Conshohocken PA.

4.2 CVN Impact Testing

The MTRs specified the plates were to pass a Charpy v-notch (CVN) impact test at 15 foot-pounds at positive 40 degrees Fahrenheit; MTR values are listed in section 4.2 of the FHWA Mechanical report.

CVN specimens were prepared in triplicate per the method described in the FHWA report, following the ASTM A370 specification. All tested specimens met the requirement for impact testing listed on the MTRs.

The CVN impact testing results are listed in summary in section 5.2 and in full in Appendix E of the FHWA Mechanical report.

4.3 Compositional Analysis

The ASTM A588 specification lists a chemical composition that was compared to specimens measured using glow discharge spectroscopy (also called spark atomic emission spectrometry). The glow discharge spectroscopy was performed twice per specimen and averaged, per ASTM E415 specification⁶.

The 2 plates listed as Grade A met the specifications for Grade A per ASTM A588. Of the 7 plates listed as Grade B, 6 plates met the specifications for Grade B per ASTM A588 and 1 plate was non-conformant. For the remaining 16 plates, 2 plates were non-conformant regardless of if they were Grade A or Grade B. An additional 6 plates would have been non-conformant if Grade B but conformant if Grade A. 10 plates were conformant for both Grade A and Grade B specifications.

The composition results are listed in summary in section 5.3 and in full in Appendix F of the FHWA Mechanical report.

4.4 Metallographic Examination

After fractures were discovered at the end plates on the tops of two legs while on scene (evaluated in NTSB Materials Laboratory Factual Report 23-011), assessment of the welds at the tops of the legs was desired. Consequently, the welds between the top of each leg and the base plate at both the acute and obtuse angles were cross-sectioned and examined.

The design plans called for a U-groove weld at the leg flange-to-endplate interface, with a far side reinforcing fillet weld.⁷ No details about partial versus

⁶ ASTM E415 "Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry", ASTM International, West Conshohocken PA.

⁷ "Reconstruction of Forbes Avenue Bridge Over Fern Hollow & Approaches" by City of Pittsburgh Department of Public Works Bureau of Engineering, sheet no. 14.

complete joint penetration were given. Examination of the cross-sections showed they were partial joint penetration welds with double-bevel groove geometry. The bevel preparation varied, with the two legs of Bent 1 having similar preparation and the two legs of Bent 2 having similar preparation.

Most of the welds showed a lack of fusion with either sidewall, with some welds displaying no fusion. Cracks were observed in welds on Leg B1R and B2L; the cracks either had pack rust consistent with occurring some time ago or else appeared fresh and consistent with occurring during the collapse. None of the cracks displayed characteristics consistent with fatigue cracking. The welds in Leg B1L and Leg B2R did not have cracks observed.

Detailed observations from the metallographic examinations are given in section 5.4 and macroetched images are shown in Appendix G of the FHWA Mechanical report.

4.5 Weld Microstructure Examination

Due to the non-conformance to specification for the composition of some plates, along with the lack of fusion of the examined flange-to-endplate welds, investigators desired further analysis of the weld quality on the bridge. FHWA agreed to complete additional hardness and microstructure work to examine the welds, which is documented in a report being reviewed here titled "Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Weld Microstructure Factual Report", hereafter referred to as the FHWA Weld report, which is attached in Appendix B.

The flange-to-endplates welds of the Span 1 and Span 2 flanges for Leg B1R were further examined by performing hardness tracts traversing the base metal, heat affected zone (HAZ), and weld metal, as well as analyzing the microstructure at each hardness test indentation.

The hardness of the specimens in the HAZ were higher than either the base metal or the weld metal, and the weld metal had slightly higher hardness than the base metal. Several hardness readings in the HAZ were above the threshold value likely to predict a microstructural change. The hardness results are summarized in section 3.1 of the FHWA Weld report. The microstructure of the base metal consisted of pearlite and ferrite, while the weld metal microstructure was comprised of several forms of ferrite. The microstructure in the HAZ had smaller pearlite colonies and ferrite grains compared to the base metal, as well as areas of martensite. The microstructure of the hardness tracts traversing the Span 1 flange and the Span 2 flange are shown in section 3.2 and section 3.3, respectively, of the FHWA Weld report.

Submitted by:

Adrienne V. Lamm Materials Engineer

Figure 1. Plan view composite photo (top) compared to schematics in plan view and elevation view orientations (middle and bottom, respectively).

Figure 2. Plan view composite photo of the collapsed structure relative to the elevation view schematic.

Figure 3. Schematic showing the outward facing side of a leg mating with a girder with all structural elements labeled. (Schematic not to scale)

Figure 5. Schematic showing the inward facing side of a leg with the top transverse stiffener highlighted in red. (Schematic not to scale)

APPENDIX A - "Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report", prepared by Federal Highway Administration (FHWA)

Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report

Prepared For: National Transportation Safety Board NTSB Accident ID: HWY22MH003

Prepared by:

Ryan Slein, Ph.D. Federal Highway Administration Turner-Fairbank Highway Research Center 6300 Georgetown Pike, McLean, VA 22101

Justin Ocel, Ph.D., P.E. Federal Highway Administration Resource Center Structures Team 31 Hopkins Plaza, Suite 840 Baltimore, MD 21201

Benjamin Graybeal, Ph.D., P.E. Federal Highway Administration Turner-Fairbank Highway Research Center 6300 Georgetown Pike, McLean, VA 22101

Table of Contents

List of Figures	iii
List of Tables	xi
List of Abbreviations	xii
1 Introduction	1
1.1 Description of structural components retained after the collapse	1
1.2 Report scope	8
2 Testing plan	8
2.1 Work completed at the bridge collapse site	9
2.2 Work conducted outside of TFHRC	9
2.3 Work conducted by NTSB at TFHRC	9
2.4 Description of evidence storage at FHWA	9
2.5 Testing Completed by FHWA at TFHRC	9
2.5.1 Tensile testing	10
2.5.2 CVN testing	11
2.5.3 Chemistry assessment	12
2.5.4 Metallographic assessment	14
3 Cut plan	15
4 MTR Assessment	
4.1 MTR tensile comparison	
4.2 MTR CVN comparison	19
4.3 MTR chemistry comparison	20
5 Test Results	25
5.1 Tensile test results	25
5.2 CVN results	
5.3 Chemistry results	
5.4 Metallographic results	
5.4.1 General Observations	
5.4.2 Leg 1 (B1R)	
5.4.3 Leg 2 (B1L)	
5.4.4 Leg 3 (B2L)	
5.4.5 Leg 4 (B2R)	
Acknowledgements	

References	37
Appendix A: Record of Evidence prior to Cutting	39
Appendix B: Cutting Plan	56
Appendix C: Specimen Extraction Shop Drawings	71
Appendix D: Tensile Test Results	95
Appendix E: CVN Test Results	130
Appendix F: GDS Results	179
Appendix G: Macroetches	184
Appendix H: Supporting Calibration, Service, and SRM Documentation	205

List of Figures

Figure 1. Orthomosaic Plan View (from NTSB).	1
Figure 2. Elevation View, looking north (modified from NTSB provided figure)	1
Figure 3. B1R – South-West Leg	4
Figure 4. B1L – North-West Leg.	5
Figure 5. B2L – North-East Leg.	6
Figure 6. B2R – South-East Leg.	7
Figure 7. Tensile coupon dimensions.	. 10
Figure 8. Design weld profile versus the observed profile for B1R.	.35
Figure 9. Design weld profile versus the observed profile for B1L	. 35
Figure 10. Design weld profile versus the observed profile for B2R	
Figure A.1. B1R – NTSB-STR-001	40
Figure A.2. B1R – NTSB-STR-002 & NTSB-STR-003	40
Figure A.3. B1R – NTSB-STR-004	.41
Figure A.4. B1R – NTSB-STR-005	.41
Figure A.5. B1R – NTSB-STR-006	. 42
Figure A.6. B1R – NTSB-STR-007	42
Figure A.7. B1R – NTSB-STR-008	43
Figure A.8. B1R – NTSB-STR-009	43
Figure A.9. B1R – NTSB-STR-010	44
Figure A.10. B1R – NTSB-STR-011	45
Figure A.11. B1L – NTSB-STR-012	45
Figure A.12. B1L – NTSB-STR-013	. 46
Figure A.13. B1L – NTSB-STR-014	46
Figure A.14. B1L – NTSB-STR-015	47
Figure A.15. B1L – NTSB-STR-016	47
Figure A.16. B1L – NTSB-STR-017	.48
Figure A.17. B2L – NTSB-STR-018	
Figure A.18. B2L – NTSB-STR-019 & NTSB-STR-020	49
Figure A.19. B2L – NTSB-STR-021	49
Figure A.20. B2L – NTSB-STR-022	. 50
Figure A.21. B2L – NTSB-STR-023	. 50
Figure A.22. B2L – NTSB-STR-024	. 51
Figure A.23. B2L – NTSB-STR-025	. 51
Figure A.24. B2R – NTSB-STR-026	. 52
Figure A.25. B2R – NTSB-STR-027	. 52
Figure A.26. B2R – NTSB-STR-028A (Taken at TFHRC)	. 53
Figure A.27. B2R – NTSB-STR-028B (Taken at TFHRC)	. 53
Figure A.28. B2R – NTSB-STR-029	. 54
Figure A.29. B2R – NTSB-STR-030	. 54
Figure A.30. B2R – NTSB-STR-031	. 55
Figure A.31. B2R – NTSB-STR-032	. 55
Figure B.1. B1R – NTSB-STR-001	. 57
Figure B.2. B1R – NTSB-STR-002	. 58
Figure B.3. B1R – NTSB-STR-006	
Figure B.4. B1R – NTSB-STR-007	. 59

Figure B.5. B1R – NTSB-STR-008	59
Figure B.6. B1R – NTSB-STR-009	60
Figure B.7. B1L – NTSB-STR-012.	61
Figure B.8. B1L – NTSB-STR-014	62
Figure B.9. B1L – NTSB-STR-016	63
Figure B.10. B2L – NTSB-STR-018	64
Figure B.11. B2L – NTSB-STR-022	65
Figure B.12. B2L – NTSB-STR-024	66
Figure B.13. B2R – NTSB-STR-026	67
Figure B.14. B2R – NTSB-STR-028B.	68
Figure B.15. B2R – NTSB-STR-029	69
Figure B.16. B2R – NTSB-STR-031	70
Figure C.1. 1A – NTSB-STR-001	72
Figure C.2. 1B – NTSB-STR-001	72
Figure C.3. 1C – NTSB-STR-002	73
Figure C.4. 1C – NTSB-STR-002	73
Figure C.5. 1D – NTSB-STR-004	74
Figure C.6. 1E – NTSB-STR-003	75
Figure C.7. 1Q – NTSB-STR-006	76
Figure C.8. 1H – NTSB-STR-007	76
Figure C.9. 1U – NTSB-STR-007	77
Figure C.10. 1N – NTSB-STR-008	77
Figure C.11. 1T – NTSB-STR-009	78
Figure C.12. 1V – NTSB-STR-011.	79
Figure C.13. 2A – NTSB-STR-012.	80
Figure C.14. 2B – NTSB-STR-012	80
Figure C.15. 2D – NTSB-STR-014.	81
Figure C.16. 2E – NTSB-STR-014	82
Figure C.17. 2Q – NTSB-STR-014.	83
Figure C.18. 2T – NTSB-STR-016	83
Figure C.19. 2U – NTSB-STR-016.	84
Figure C.20. 3A – NTSB-STR-018.	84
Figure C.21. 3B – NTSB-STR-018	85
Figure C.22. 3E – NTSB-STR-020	86
Figure C.23. 3F – NTSB-STR-020.	87
Figure C.24. $3Q - NTSB-STR-022$.	88
Figure C.25. 3T – NTSB-STR-024.	88
Figure C.26. $3U - NTSB-STR-024$.	89
Figure C.27. $4A - NTSB-STR-026$.	89
Figure C.28. $4B - NTSB-STR-026$.	90
Figure C.29. 4E – NTSB-STR-028A	91
Figure C.30. 4F $-$ NTSB-STR-028A.	92
Figure U.31. $4Q = NISB-SIK-028B$	93
Figure C.32. $4K - NTSB-STR-029$	93
Figure $C.33.4U - NISB-SIR-029$.	94
L'EXAMPLE AND	~ '
Figure C.54. $41 - N15B-51K-051$	94

Figure D.2. Stress-strain curve for specimen 1A2.	96
Figure D.3. Stress-strain curve for specimen 1B1.	97
Figure D.4. Stress-strain curve for specimen 1B2.	97
Figure D.5. Stress-strain curve for specimen 1C1.	98
Figure D.6. Stress-strain curve for specimen 1C2.	98
Figure D.7. Stress-strain curve for specimen 1H1.	99
Figure D.8. Stress-strain curve for specimen 1H2.	99
Figure D.9. Stress-strain curve for specimen 1N1.	100
Figure D.10. Stress-strain curve for specimen 1N2.	100
Figure D.11. Stress-strain curve for specimen 1Q1.	101
Figure D.12. Stress-strain curve for specimen 1Q2.	101
Figure D.13. Stress-strain curve for specimen 1T1	102
Figure D.14. Stress-strain curve for specimen 1T2	102
Figure D.15. Stress-strain curve for specimen 1V1.	103
Figure D.16. Stress-strain curve for specimen 1V2.	103
Figure D.17. Stress-strain curve for specimen 2A1.	104
Figure D.18. Stress-strain curve for specimen 2A2.	104
Figure D.19. Stress-strain curve for specimen 2B1.	105
Figure D.20. Stress-strain curve for specimen 2B2.	105
Figure D.21. Stress-strain curve for specimen 201.	106
Figure D.22. Stress-strain curve for specimen 202.	106
Figure D.23. Stress-strain curve for specimen 2T1	107
Figure D.24. Stress-strain curve for specimen 2T2	107
Figure D.25. Stress-strain curve for specimen 3A1	108
Figure D.26. Stress-strain curve for specimen 3A2.	108
Figure D.27. Stress-strain curve for specimen 3B1.	109
Figure D.28. Stress-strain curve for specimen 3B2.	109
Figure D.29. Stress-strain curve for specimen 3O1	110
Figure D.30. Stress-strain curve for specimen 3O2.	110
Figure D.31. Stress-strain curve for specimen 3T1	111
Figure D.32. Stress-strain curve for specimen 3T2	111
Figure D.33. Stress-strain curve for specimen 4A1.	112
Figure D.34. Stress-strain curve for specimen 4A2, where the DIC camera unexpectedly shutoff	112
Figure D.35. Stress-strain curve for specimen 4A2 duplicate (machined from 4A3)	113
Figure D.36. Stress-strain curve for specimen 4B1.	113
Figure D.37. Stress-strain curve for specimen 4B2.	114
Figure D.38. Stress-strain curve for specimen 4O1	114
Figure D.39. Stress-strain curve for specimen 4O2.	115
Figure D.40. Stress-strain curve for specimen 4R1.	115
Figure D.41. Stress-strain curve for specimen 4R2.	116
Figure D.42. Stress-strain curve for specimen 4T1	116
Figure D.43. Stress-strain curve for specimen 4T2	117
Figure D.44. Stress-strain curve for specimen 1U1.	117
Figure D.45. Stress-strain curve for specimen 2U1.	118
Figure D.46. Stress-strain curve for specimen 3U1.	118
Figure D.47. Stress-strain curve for specimen 4U1.	119
Figure D.48. Completed tensile and chemical specimens for plate 1A (1A1, 1A2, 1A4).	119

Figure D.49. Completed tensile and chemical specimens for plate 1B (1B1, 1B2, 1B4)1	20
Figure D.50. Completed tensile and chemical specimens for plate 1C (1C1, 1C2, 1C4)1	20
Figure D.51. Completed tensile and chemical specimens for plate 1H (1H1, 1H2, 1H4) 1	21
Figure D.52. Completed tensile and chemical specimens for plate 1N (1N1, 1N2, 1N4) 1	21
Figure D.53. Completed tensile and chemical specimens for plate 1Q (1Q1, 1Q2, 1Q4) 1	22
Figure D.54. Completed tensile and chemical specimens for plate 1T (1T1, 1T2, 1T4)1	22
Figure D.55. Completed tensile and chemical specimens for plate 1V (1V1, 1V2, 1V4)	22
Figure D.56. Completed tensile and chemical specimens for plate 2A (2A1, 2A2, 2A4)	23
Figure D.57. Completed tensile and chemical specimens for plate 2B (2B1, 2B2, 2B4)	23
Figure D.58. Completed tensile and chemical specimens for plate 20 (201, 202, 204)	23
Figure D.59. Completed tensile and chemical specimens for plate 2T (2T1, 2T2, 2T4)	24
Figure D.60. Completed tensile and chemical specimens for plate 3A (3A1, 3A2, 3A4)	24
Figure D.61. Completed tensile and chemical specimens for plate 3B (3B1, 3B2, 3B4)	24
Figure D.62. Completed tensile and chemical specimens for plate 30 (301, 302, 304)	25
Figure D.63. Completed tensile and chemical specimens for plate 3T (3T1, 3T2, 3T4)	25
Figure D.64. Completed tensile and chemical specimens for plate 4A (4A1, 4A2, 4A3 (4A2 duplicate).	
4A4)	26
Figure D.65. Completed tensile and chemical specimens for plate 4B (4B1, 4B2, 4B4)	26
Figure D.66. Completed tensile and chemical specimens for plate 40 (401, 402, 404).	27
Figure D.67. Completed tensile and chemical specimens for plate 4R (4R1, 4R2, 4R4)	27
Figure D.68. Completed tensile and chemical specimens for plate 4T (4T1, 4T2, 4T4)	27
Figure D.69. Completed tensile and chemical specimens for longitudinal stiffener plate (1U1, 2U1, 3U)	1.
4U1, 1U4, 2U4, 3U4, 4U4)	28
Figure E.1. Shear fracture surfaces for plate 1A1	32
Figure E.2. Shear fracture surfaces for plate 1B	32
Figure E.3. Shear fracture surfaces for plate 1C.	33
Figure E.4. Shear fracture surfaces for plate 1H.	33
Figure E.5. Shear fracture surfaces for plate 1N	34
Figure E.6. Shear fracture surfaces for plate 1Q.	34
Figure E.7. Shear fracture surfaces for plate 1T.	35
Figure E.8. Shear fracture surfaces for plate 1V	135
Figure E.9. Shear fracture surfaces for plate 2A	136
Figure E.10. Shear fracture surfaces for plate 2B.	136
Figure E.11. Shear fracture surfaces for plate 20	37
Figure E.12. Shear fracture surfaces for plate 2T	137
Figure E.13. Shear fracture surfaces for plate 3A	138
Figure E.14. Shear fracture surfaces for plate 3B.	138
Figure E.15. Shear fracture surfaces for plate 30	139
Figure E.16. Shear fracture surfaces for plate 3T.	39
Figure E.17. Shear fracture surfaces for plate 4A	40
Figure E.18. Shear fracture surfaces for plate 4B.	40
Figure E.19. Shear fracture surfaces for plate 4O	41
Figure E.20. Shear fracture surfaces for plate 4R.	41
Figure E.21. Shear fracture surfaces for plate 4T.	42
Figure E.22. Shear fracture areas for specimen 1AX using a Mask Area Method (left) and a Pixel	
Internetics Method (micha)	11

Figure E.23. Shear fracture areas for specimen 1AY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.24. Shear fracture areas for specimen 1AZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.25. Shear fracture areas for specimen 1BX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.26. Shear fracture areas for specimen 1BY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.27. Shear fracture areas for specimen 1BZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)146
Figure E.28. Shear fracture areas for specimen 1CX using a Mask Area Method (left) and a Pixel
Intensity Method (right)147
Figure E.29. Shear fracture areas for specimen 1CY using a Mask Area Method (left) and a Pixel
Intensity Method (right)147
Figure E.30. Shear fracture areas for specimen 1CZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.31. Shear fracture areas for specimen 1HX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.32. Shear fracture areas for specimen 1HY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.33. Shear fracture areas for specimen 1HZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.34. Shear fracture areas for specimen 1NX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.35. Shear fracture areas for specimen 1NY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.36. Shear fracture areas for specimen 1NZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.37. Shear fracture areas for specimen 1QX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.38. Shear fracture areas for specimen 1QY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.39. Shear fracture areas for specimen 1QZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.40. Shear fracture areas for specimen 1TX using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.41. Shear fracture areas for specimen 1TY using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.42. Shear fracture areas for specimen 1TZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.43. Shear fracture areas for specimen 1VX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.44. Shear fracture areas for specimen 1VY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.45. Shear fracture areas for specimen 1VZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)

Figure E.46. Shear fracture areas for specimen 2AX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.47. Shear fracture areas for specimen 2AY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.48. Shear fracture areas for specimen 2AZ using a Mask Area Method (left) and a Pixel Intensity
Method (right).
Figure E.49. Shear fracture areas for specimen 2BX using a Mask Area Method (left) and a Pixel
Intensity Method (right).
Figure E.50. Shear fracture areas for specimen 2BY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.51. Shear fracture areas for specimen 2BZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.52. Shear fracture areas for specimen 2QX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.53. Shear fracture areas for specimen 2QY using a Mask Area Method (left) and a Pixel
Intensity Method (right)159
Figure E.54. Shear fracture areas for specimen 2QZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)160
Figure E.55. Shear fracture areas for specimen 2TX using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.56. Shear fracture areas for specimen 2TY using a Mask Area Method (left) and a Pixel Intensity
Method (right)161
Figure E.57. Shear fracture areas for specimen 2TZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)161
Figure E.58. Shear fracture areas for specimen 3AX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.59. Shear fracture areas for specimen 3AY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.60. Shear fracture areas for specimen 3AZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.61. Shear fracture areas for specimen 3BX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.62. Shear fracture areas for specimen 3BY using a Mask Area Method (left) and a Pixel
Intensity Method (right). Note this specimen did not separate in two pieces
Figure E.63. Shear fracture areas for specimen 3BZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.64. Shear fracture areas for specimen 3QX using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.65. Shear fracture areas for specimen 3QY using a Mask Area Method (left) and a Pixel
Intensity Method (right)
Figure E.66. Shear fracture areas for specimen 3QZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.67. Shear fracture areas for specimen 3TX using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.68. Shear fracture areas for specimen 3TY using a Mask Area Method (left) and a Pixel Intensity
Method (right)

Method (right). 167 Figure E.70. Shear fracture areas for specimen 4AX using a Mask Area Method (left) and a Pixel 168 Figure E.71. Shear fracture areas for specimen 4AY using a Mask Area Method (left) and a Pixel 168 Intensity Method (right). 168 Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel 168 Figure E.73. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 169 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 171 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pi
Figure E.70. Shear fracture areas for specimen 4AX using a Mask Area Method (left) and a Pixel 168 Intensity Method (right) 168 Figure E.71. Shear fracture areas for specimen 4AY using a Mask Area Method (left) and a Pixel 168 Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel 168 Figure E.73. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 169 Figure E.73. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 170 Figure E.77. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.79. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.79. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 172 Figure E.79.
Intensity Method (right). 168 Figure E.71. Shear fracture areas for specimen 4AY using a Mask Area Method (left) and a Pixel 168 Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.76. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.79. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80.
Figure E.71. Shear fracture areas for specimen 4AY using a Mask Area Method (left) and a Pixel 168 Intensity Method (right). 169 Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.76. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.79. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80.
Intensity Method (right) 168 Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel Intensity 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 169 Figure E.75. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 172 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Fig
Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel Intensity Method (right) 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Fi
Method (right) 169 Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Intensity Method (right) 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Intensity Method (right) 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel Intensity Method (right) 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel Intensity Method (right) 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity Method (right) 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel Intensity Method (right) 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right) 173 Figure E.81. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right) 173 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right) 174
Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Me
Intensity Method (right). 169 Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.75. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity
Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel 170 Intensity Method (right). 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174
Intensity Method (right) 170 Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 172 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 174 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174
Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Intensity Method (right). 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 172 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 174 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 174
Method (right). 170 Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Intensity Method (right). 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Intensity Method (right). 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel 174 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174
Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity 174
Intensity Method (right). 171 Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity 174
Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel Intensity Method (right). 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity Method (right). 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel Intensity Method (right). 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right). 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right). 173 Figure E.82. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right). 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity
Intensity Method (right). 171 Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity 172 Method (right). 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity 174
Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity Method (right). 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel Intensity Method (right). 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right). 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right). 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity
Method (right). 172 Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel 172 Intensity Method (right). 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 172 Intensity Method (right). 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity
Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel Intensity Method (right). 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right). 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right). 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity
Intensity Method (right). 172 Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel 173 Intensity Method (right). 173 Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity 174 Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity
Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right)
Intensity Method (right)
Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right)
Method (right)
Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.83. Shear fracture areas for specimen 4TY using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure E.84. Shear fracture areas for specimen 4TZ using a Mask Area Method (left) and a Pixel Intensity
Method (right)
Figure G.1. Macroetch of 1D5 with planar reference scales
Figure G.2. Macroetch of 1D6 with planar reference scales
Figure G.3. Macroetch of 1D7 with planar reference scales
Figure G.4. Macroetch of 1D8 with planar reference scales
Figure G.5. Macroetch of 1D9 with planar reference scales
Figure G.6. Macroetch of 1E5 with planar reference scales
Figure G.7. Macroetch of 1E6 with planar reference scales
Figure G.8. Macroetch of 1E7 with planar reference scales.
Figure G.9. Macroetch of 1E8 with planar reference scales
Figure G.10. Macroetch of 1E9 with planar reference scales
Figure G.11. Macroetch of 2D5 with planar reference scales
Figure G.12. Macroetch of 2D6 with planar reference scales
Figure G.13. Macroetch of 2D7 with planar reference scales
Figure G.14. Macroetch of 2D8 with planar reference scales
Figure G.15. Macroetch of 2D9 with planar reference scales

Figure G.16. Macroetch of 2E5 with planar reference scales.	.192
Figure G.17. Macroetch of 2E6 with planar reference scales	193
Figure G.18. Macroetch of 2E7 with planar reference scales	193
Figure G.19. Macroetch of 2E8 with planar reference scales.	194
Figure G.20. Macroetch of 2E9 with planar reference scales.	194
Figure G.31. Macroetch of 3E5 with planar reference scales.	195
Figure G.32. Macroetch of 3E6 with planar reference scales, taken in the vertical position (90-degree	
planar rotation) for improved camera focus	195
Figure G.33. Macroetch of 3E7 with planar reference scales, taken in the vertical position (90-degree	
planar rotation) for improved camera focus	196
Figure G.34. Macroetch of 3E8 with planar reference scales. The right half of the specimen separated	
during preparation and is supported by a machined 1-2-3 block.	196
Figure G.35. Macroetch of 3E9 with planar reference scales.	197
Figure G.36. Macroetch of 3F5 with planar reference scales	197
Figure G.37. Macroetch of 3F6 with planar reference scales	198
Figure G.38. Macroetch of 3F7 with planar reference scales.	198
Figure G.39. Macroetch of 3F8 with planar reference scales.	199
Figure G.40. Macroetch of 3F9 with planar reference scales	199
Figure G.41. Macroetch of 4E5 with planar reference scales.	200
Figure G.42. Macroetch of 4E6 with planar reference scales	200
Figure G.43. Macroetch of 4E7 with planar reference scales	201
Figure G.44. Macroetch of 4E8 with planar reference scales	201
Figure G.45. Macroetch of 4E9 with planar reference scales	202
Figure G.46. Macroetch of 4F5 with planar reference scales	202
Figure G.47. Macroetch of 4F6 with planar reference scales	203
Figure G.48. Macroetch of 4F7 with planar reference scales	203
Figure G.49. Macroetch of 4F8 with planar reference scales.	204
Figure G.50. Macroetch of 4F9 with planar reference scales	204

Table 1: Description of the structural steel.	
Table 2: Mill testing report heats.	8
Table 3: Ultra-violet wavelength calibration for glow discharge spectrography using the NIST 1	269 SRM.
- 6 6 61 61 7 6	
Table 4: SRM measurement confirmation.	14
Table 5: SRM drift throughout the duration of testing.	14
Table 6: Designation for the first three alphanumeric characters of the specimen identifier	15
Table 7: Cut plan summary.	17
Table 8: Reported yield strength, ultimate strength, and elongation from the relevant MTRs	19
Table 9: Impact energy results from the provided MTRs.	
Table 10: Percent weight element composition requirements for ASTM A 588 Grade A & Grade	e B per
the 1971 specification with ASTM A 6-70 tolerances	
Table 11: MTR percent weight element composition	
Table 12: MTR conformance to ASTM A 588-71 Grade A & Grade B.	23
Table 13: MTR carbon equivalency and corrosion indices from ASTM G101-20.	25
Table 14: Summary of tensile testing results	
Table 15: Summary of CVN results	
Table 16: Conformance to ASTM A 588-71 Grade A with and without ASTM A 6-70 tolerance	s for heats
specified as Grade A in the MTR	
Table 17: Conformance to ASTM A 588-71 Grade B with ASTM A 6-70 tolerances for heats sp	becified as
Grade B in the MTR.	
Table 18: Percent weight element composition requirements for ASTM A 588-71 Grade A & G	rade B
with ASTM A 6-70 tolerances (as presented in Table 5) and the composition range restrictive to	both
grades	
Table 19: Conformance of plate that could not be tied to a specific heat to the restrictive require	ments of
both Grade A & B, as presented in Table 18.	
Table 20: GDS measured carbon equivalency and corrosion indices from ASTM G101-20	
Table D-1: Tensile test results for all specimens.	
Table D-1 (cont.): Tensile test results for all specimens	
Table E-1: CVN impact results in the L-T direction	131
Table E-2: Percent shear fracture areas of CVN specimens.	143
Table E-3: Lateral expansion of CVN specimens	177
Table E-3 (cont.): Lateral expansion of CVN specimens.	178

Table F-1: Raw GDS measurements.180Table F-1 (cont.): Raw GDS measurements.181Table F-2: Averaged GDS measurements per specimen.182Table F-3: NIST SRM 1269 checks.183Table F-4: Drift check with condition block.183

List of Tables

List of Abbreviations

AASHO	American Association of State Highway Officials		
AASHTO	American Association of State and Highway Transportation Officials		
ASTM	American Society for Testing and Materials		
AWS	American Welding Society		
FHWA	Federal Highway Administration		
NIST	National Institute of Standards and Technology		
NTSB	National Transportation Safety Board		
TFHRC	Turner-Fairbank Highway Research Center		
CE	carbon equivalency		
CI	corrosion index		
CNC	computerized numerical control		
CVN	Charpy vee notch		
DIC	digital image correlation		
F_y	yield strength (ksi)		
F_u	ultimate strength (ksi)		
GDS	glow discharge spectrography		
MP	mega-pixel		
MTR	mill test report		
SRM	standard reference material		
STR	structural (a component of the evidence identifier to signify mechanical/material testing)		
UTM	universal testing machine		
Fe	Iron		
С	Carbon		
Cb	former name for Niobium (Nb)		
Mn	Manganese		
Р	Phosphorous		
S	Sulfur		
Si	Silicon		
Ni	Nickle		
Cr	Chromium		
Мо	Molybdenum		
Си	Copper		
V	Vanadium		
Nb	Niobium (formerly known as Columbium (Cb))		
Zr	Zirconium		
Ti	Titanium		

1 INTRODUCTION

The Fern Hollow Bridge carried Forbes Avenue over Fern Hollow and 9 Mile Run through Frick Park within the City of Pittsburgh, Pennsylvania. The bridge used a rigid, K-frame superstructure type built-up with ASTM A 588 uncoated weathering steel. On January 28th, 2022, the bridge collapsed. Investigators from the National Transportation Safety Board (NTSB) were dispatched to the scene. Engineers from the Federal Highway Administration (FHWA) were also dispatched to the scene to assist NTSB with the investigation. During the on-site investigation, evidence was collected which was to be later used to assist in determining the cause of the bridge failure.

The extracted evidence was transported to the FHWA's Turner-Fairbank Highway Research Center (TFHRC) in McLean, Virginia for testing and assessment.

1.1 Description of structural components retained after the collapse

To assist in orientation of the evidence being tested, Figs. 1 and 2 provide a plan view orthomosaic photograph and elevation view line drawing of bridge. The plan view includes cardinal coordinates and a naming convention for the legs and abutments, consistent with the latest bridge inspection report. The first index of the naming convention is "B" for bent. The second index is the numeric "1" or 2", meant to indicate the first and second bent away from the near (west) abutment. The final index is the letter "L" or "R", representing left or right when looking east from the near abutment.

Figure 1. Orthomosaic Plan View (from NTSB).

Figure 2 provides labels for each span and similar detail about the supports as was shown in Fig. 1. Note that the obtuse angle at the top of each leg corresponds to Span 2, while the acute angle corresponds to Span 1 for the legs in Bent 1 and Span 3 for the legs in Bent 2.

Figure 2. Elevation View, looking north (modified from NTSB provided figure).

Note that the mill testing reports (MTRs) were not located until the end of May 2022. Therefore, at the time of the extraction of components to be retained (in early February 2022), each unique plate thickness making up each leg, and the girder plate directly above each leg, had been assumed to come from a unique heat and given a unique evidence number by NTSB. Table 1 summarizes the location, provides a description, and gives approximate dimensions (measured prior to being flame cut from the recovered steel pieces on the collapse site; photos provided in Appendix A) for each recorded piece of evidence. Note that evidence numbers and a description of the wire cable from the lateral bracing retrofit are excluded from this document for brevity. Figures 3 through 6 supplement Table 1 by providing marked-up design drawings overlaid with each piece of evidence.

The legs are I-sections with three web plate thicknesses $(^{1}/_{2}-inch, ^{11}/_{16}-inch)$, and $^{13}/_{16}-inch)$, two flange thicknesses (2 $^{1}/_{4}-inch$ and 2 $^{1}/_{2}-inch)$, one transverse stiffener plate thickness to stiffen the leg web ($^{7}/_{16}-inch$), one longitudinal stiffener plate thickness to stiffen the leg web ($^{1}/_{2}-inch$), and one "tie plate" anchoring the change in flange taper at the top of the shoe ($^{3}/_{4}-inch$). Note that the term "shoe" corresponds to the base of each leg, circled in Figs. 3 through 6. The girder I-sections above the legs have a web plate of $^{13}/_{16}-inch$ thickness and flange plates of 3 $^{1}/_{8}-inch$ thickness. Table 2 summarizes the mill testing certificate heat numbers for each aforementioned thickness.

Leg	Item Description	Evidence Number	Approximate Dimensions
B1R	Top Flange Girder & Web Girder	NTSB-STR-001	24"x96"x39"
	Bot Flange Girder	NTSB-STR-002	24"x129"x17"
	Span 2 (Obtuse) End Plate Weld	NTSB-STR-003	24"x129"x33"
	Span 1 (Acute) End Plate Weld	NTSB-STR-004	24"x12"x8"
	Span 2 Fracture Face	NTSB-STR-005	12"x6"x5"
	Panel 11, Web	NTSB-STR-006	8"x54"x8"
	Panel 10, Web & Flanges	NTSB-STR-007	69"x55"x24"
	Panel 7, Span 2 Flange	NTSB-STR-008	24"x3"x45"
	Panel 4, Web	NTSB-STR-009	27"x32"x7"
	Separated Span 2 Flange from Shoe	NTSB-STR-010	31"x80"x67"
	Shoe & Span 1 Flange	NTSB-STR-011	132"x62"x41"
B1L	Top Flange Girder & Web Girder	NTSB-STR-012	24"x40"x116"
	Bot Flange Girder	NTSB-STR-013	138"x24"x19"
	End Plate Web, Flanges, & Welds	NTSB-STR-014 [†]	114"x24"x40"
	Panel 5, Web	NTSB-STR-015	42"x21"x7"
	Panel 3, Web & Flanges	NTSB-STR-016	44"x47"x24"
	Shoe	NTSB-STR-017	83"x44"x24"
B2L	Top Flange Girder & Web Girder	NTSB-STR-018	70"x40"x24"
	Bot Flange Girder	NTSB-STR-019	125"x25"x24"
	End Plate Welds	NTSB-STR-020	114"x24"x5"
	Span 3 Fracture Face	NTSB-STR-021	12"x6"x7"
	Panel 11, Web, Flanges & Long. Stiff	NTSB-STR-022	56"x74"x24"
	Panel 8, Web	NTSB-STR-023	25"x54"x8"
	Panel 3, Web & Flanges	NTSB-STR-024	44"x49"x24"
	Shoe	NTSB-STR-025	24"x44"x84"
B2R	Top Flange Girder & Web Girder	NTSB-STR-026	70"x24"x20"
	Bot Flange Girder	NTSB-STR-027	125"x24"x20"
	End Plate Welds	NTSB-STR-028A	118"x94"x41"
	Panel 12, Web & Flanges	NTSB-STR-028B	118"x94"x41"
	Panel 9, Web	NTSB-STR-029	54"x32"x8"
	Panel 6, Span 3 Flange	NTSB-STR-030	45"x24"x3"
	Panel 3, Web	NTSB-STR-031	36"x44"x10"
	Shoe & Span 2 Flange	NTSB-STR-032	48"x120"x48"

Table 1: Description of the structural steel.

[†]NTSB-STR-014 has weld assessment as well as mechanical and material testing. The corresponding label font in Fig. 4 is colored accordingly.

Figure 3. B1R – South-West Leg.

Figure 4. B1L – North-West Leg.

Figure 5. B2L – North-East Leg.

Table 2: I	Mill testing	report heats.
------------	--------------	---------------

Plate Thickness (inches)	Heat Number(s)	Notes
¹ / ₂	422H2271, 74C184, 661H632,	It was not possible to strictly associate plates with Heat
	661H352, 662H868, 645H218,	Numbers based on plate dimensions. Therefore, it was
	645H090, 650J220	assumed that every ¹ / ₂ -inch thick plate was unique.
¹¹ / ₁₆	74C184, 662H404	Delivered plate dimension indicate leg webs could only
		have come from Heat 74C184.
3/4	658J291	Single heat number for the "tie plate".
$^{13}/_{16}$	801H11600, 801H12930,	It was not possible to strictly associate plates with Heat
	801H15770, 802E00400,	Numbers based on plate dimensions. Therefore, it was
	74C184	assumed that every $13/16$ -inch thick plate was unique.
$2^{1/4}$	649H558	Single heat number for leg flanges.
$2^{1}/_{2}$	67C262, 659H518	Delivered plate dimensions indicate leg flange could only
		have come from Heat 67C262.
3 1/8	422H3271, 421H1431,	Plate dimensions of delivered plate indicate all girder
	649H558	bottom flanges came from Heat 649H558. Girder top
		flanges came from Heats 422H3271 and 421H1431, thus
		each top flange sample was considered unique.

1.2 Report scope

This factual report documents the evidence received by TFHRC and describes the assessments and testing completed on the evidence. The cumulative testing plan encompasses work done within and exterior to TFHRC; presentation herein of test results is limited to mechanical and material testing performed by TFHRC personnel.

2 TESTING PLAN

All relevant structural steel within the legs and girders was specified to be ASTM A 588 with nominal 50 ksi yield and 70 ksi tensile strength. Tensile coupons were pulled in duplicate for each unique heat in each leg and in the portion of the girder above each leg. Charpy vee notch (CVN) specimens were tested in triplicate for each unique heat and thickness.

Metallographic assessment of the welds between the top of each leg and its end plate, at both the obtuse (Span 2) and acute (Span 1; Span 3) angles, investigated weld quality and the possibility of fatigue cracking. Assessment was done by conducting five, equally spaced macro etches across the width of intact welds that had not fractured open during the collapse.

Assessment of the chemical composition of the steel was conducted on each unique heat using glow discharge spectrography.

NTSB conducted fractography on exposed fracture surfaces of interest within each leg.

NTSB contracted an external vendor to conduct corrosion mapping on the base of each leg (generally from the base of the shoe through the first web panel) using a structured light metrology technique.
2.1 Work completed at the bridge collapse site

FHWA assisted NTSB in identifying and marking evidence to be cut from larger portions of the legs and girders for retention and testing.

NTSB conducted laser scanning at the bridge collapse site to document the global geometry of key parts of the structure. The leg pieces were scanned in the upright (standing on a flange face) condition prior to cutting out evidence specimens for further testing. Similarly, the girder pieces were scanned; however, these pieces were generally scanned with the plane of the web parallel to the ground. Specimens were pressure washed when large amounts of dirt and debris were present. Exclusive of the corrosion mapping of the components near the shoe (conducted at TFHRC), the resolution of the laser scan is expected to be sufficient for analytical modeling and other assessments requiring measured geometry.

2.2 Work conducted outside of TFHRC

The shoe of each leg (NTSB-STR-010 & NTSB-STR-011, NTSB-STR-017, NTSB-STR-025, and NTSB-STR-032) was cleaned by dipping each piece of evidence in a caustic bath, a process generally used as a precursor step for hot-dip galvanizing, by V&S Galvanizing in Columbus, OH. The caustic bath was used in lieu of other options (e.g., a low pressure (<80 psi) abrasive cleaning) that may damage very thin plate.

After cleaning, the pieces were received at TFHRC in late March 2022.

NTSB conducted fractography on exposed fracture surfaces of interest within each leg at their laboratory.

2.3 Work conducted by NTSB at TFHRC

NTSB contracted an external vendor to conduct corrosion mapping on the base of each leg using a structured light metrology technique. Scans were conducted at TFHRC in September 2022 by CreaForm using their proprietary MetraSCAN 3D and HandyScan 3D devices. These higher fidelity metrology scans supplemented the laser scanning discussed in Section 2.1 of this report.

2.4 Description of evidence storage at FHWA

Upon receipt at TFHRC, the cleaned shoes were stored inside the TFHRC Structural Testing Lab until the completion of corrosion mapping in September 2022. After completion of the corrosion mapping the specimens were stored in a secure external location within the gated property of TFHRC. Fracture faces (NTSB-STR-005 and NTSB-STR-021) were temporarily stored inside locked federal office space, then transferred to NTSB's laboratory in April 2022.

All other structural steel pieces, steel in build-up wooden boxes, and cables were stored at a secure location within the gated property of TFHRC.

2.5 Testing Completed by FHWA at TFHRC

Each unique heat for the legs, and for the girder portion above the legs, had two tensile coupons pulled to rupture per ASTM A370, triplicate standard CVNs tested per ASTM A370, and chemical assessment completed per ASTM E415. Additionally, metallographic assessment of the welds between the flanges and base plate at the tops of each leg was completed. Original fabrication shop drawings were not found by any of the associated parties, and no splices between plates of the same size were observed, so it is assumed that within each leg, steel of the same continuous plate thickness is from the same heat. One coupon blank was also extracted per unique heat; this blank has been retained but will only be machined and tested if justified. Note that CVNs and the coupon blank were not extracted for the longitudinal stiffeners.

2.5.1 Tensile testing

Tensile coupons were tested with their longitudinal direction aligned with the speculated direction of roll in the steel plate. Due to length and width of most plates, the direction of roll for flanges, webs, and longitudinal stiffeners had to be aligned with the long direction of the member. The direction of roll for transverse stiffeners and the "tie plate" was not specifically known, but tensile specimens were oriented in a direction of their greatest direction. This detail is noted because in the modern era, hot-rolled plate is tensile tested in the transverse direction, but per ASTM A 6 up through 1974, testing was performed in the longitudinal direction. (Note that up through the mid-1990s, ASTM included a space between the letter and number of specification titles; the space was later removed.)

2.5.1.1 Tensile testing protocol

Eight-inch and two-inch gauge length plate-type specimens were fabricated according to the geometric requirements described in in ASTM A370-21 Figure 4. All specimens have eight-inch gauge lengths except for specimens from the plate in evidence number NTSB-STR-009 (denoted as 1T in the cut plan) and the "tie plate" (denoted as 1V in the cut plan). A two-inch gauge length was needed for NTSB-STR-009 to satisfy thickness requirements caused by excessive plate distortion, pitting corrosion, and general section loss. A two-inch gauge length was needed for the "tie plate" since the clear distance between stiffeners welded to the plate was only 10-inches. Both plate type coupons included an optional taper of width resulting in no more than a 0.015-inch difference between the ends of the reduced section and the center per ASTM A370-21 Figure 4 Note 3. The specimens were machined flat to remove distortion and nonuniform corrosion per ASTM A370-21 Section 5.3. Figure 7 of this report shows dimensions for both plate-type tensile coupons.

Figure 7. Tensile coupon dimensions.

The tension testing was conducted in a MTS 244.51 220-kip capacity and a MTS 311.41 550-kip capacity servovalve controlled hydraulic test frame. Machine conformance and testing procedure follow ASTM A370-21. The 220-kip frame was used for tensile specimens with a thickness less than or equal to $1 \frac{5}{8}$ -inch, The 550-kip frame had the required capacity to test the remaining thicker specimens. Each frame was fitted with side-loading hydraulic wedge grips for gripping onto specimens. Each frame was controlled by a dedicated controller and computer that also collected data throughout the execution of each test. Machine

calibration certificates are provided in Appendix H; note that on the calibration certificate a blank highlighted box indicates that the machine was within tolerance.

The same loading program was used for both machines. The program requires the user to enter the specimen "reduced length" as it is used to determine the crosshead displacement rate. A succinct description of the loading program is as follows:

1. The user enters the reduced length of the specimen.

2. The initial displacement rate is set at 0.015 in./min. per inch of reduced length.

3. At an axial strain of 0.015, the displacement rate increases to 0.016 in./min. per inch of reduced length.

4. At an axial strain of 0.020, the displacement rate increases to 0.021 in./min. per inch of reduced length.

5. At an axial strain of 0.025, the displacement rate increases to 0.032 in./min. per inch of reduced length.

6. At an axial strain of 0.030, the displacement rate increases to 0.055 in./min. per inch of reduced length.

7. At an axial strain of 0.035, the displacement rate increases to 0.109 in./min. per inch of reduced length. This loading rate does not change for the remainder of the test.

For determining yield strength, ASTM A370-21 requires the displacement rate to be between $1/_{160}$ and $1/_{16}$ in./min. per inch of reduced length in the specimen. For determining tensile strength, ASTM A370-21 requires the displacement rate to be between $1/_{20}$ and $1/_{2}$ in./min. per inch of reduced length in the specimen. Therefore, the loading program fits within and is on the slower end of the ASTM A370-21 displacement rate ranges.

A video extensometer was used to monitor strain and capture elongation at fracture. This device operates on the principle of digital image correlation (DIC). The video camera is able to track the motion of image pixels, and through calibration, pixels are converted to specimen displacements. Uniaxial strain was determined by analyzing the captured video extensometer data over the gauge length of the specimen. DIC camera calibration certificates are provided at the end of the report.

2.5.2 CVN testing

The construction plans for the bridge stated that design was in accordance with the AASHO Standard Specifications for Highway Bridges -10^{th} Edition (1969) and welding was in accordance with the AWS D2.0 Specifications for Welded Highway and Railway Bridges -8^{th} Edition (1969). Between these two specifications, weldments from ASTM A 588 had mandatory CVN energy requirements for the base metal and weld metal.

2.5.2.1 CVN testing protocol

Standard sized CVN specimens were fabricated in the L-T orientation for all plates. That is, the long dimension of the CVN specimen was aligned with the assumed direction of roll for the tension specimens, and the notch was cut such that the fracture during testing would propagate transverse to the roll direction. Samples were taken from the 1/4 thickness for all plates to match the practice used in the early 1970's, unless the plate is less than 7/8-inch thick wherein the sample was taken from the center of the plate. Machine

conformance, fabrication dimensions and tolerance requirements for standard size specimens, and testing procedure all followed ASTM A370 (supplemented by ASTM E23). The impact requirements were 15 ft-lbf @ 40°F for the base metal; weld metal was not tested for conformance. A 300 ft-lbf Tinius Olsen impact testing machine was used to conduct the testing. Machine calibration certificates are provided in Appendix H.

2.5.3 Chemistry assessment

Provided mill test reports show that the two plate manufacturers, United States Steel Corporation and Bethlehem Steel Corporation, explicitly specified Grade A and B of ASTM A 588. Grades A and B specify composition limits for iron, carbon, manganese, phosphorus, sulfur, silicon, chromium, copper, and vanadium. Grade B further specifies composition limits for nickel.

2.5.3.1 Chemistry testing protocol

Verification of chemical conformance to ASTM A 588-71 (see Section 4.3 for discussion of the binding year) was checked through the use of glow discharge spectrography (analogous with spark atomic emission spectrometry). This testing process follows ASTM E415-21 in which element mass fractions are measured through the concentration of photons emitted at various ultra-violet wavelengths of a plasma discharge from the sample.

Chemistry was conducted using a LECO GDS500A for each unique heat, as identified in Table 2. Per Section 13.2 and 14.1 of ASTM E415-21, each sample was measured twice and averaged for the calculation of the element mass fractions. The GDS500A service report is included in Appendix H.

Care was taken to ensure contamination of the chemistry did not occur during specimen preparation by excluding the use of silicon carbide and aluminum oxide sanding paper, and instead using 120 grit zirconium sanding paper (LECO GDS Sample Preparation Guide 12.17, see Appendix H). Note ASTM A 588-71 Grade A & Grade B does not specify a required zirconium content.

Prior to testing, all manufacturer recommended practices were followed including a 48-hour minimum warm-up cycle of the testing machine. Following ASTM E415-21 Section 12.1, multiple conditioning (i.e., drift correction) samples were run until machine stabilization occurred; thereafter calibration and testing were completed. Verification of calibration against the standard reference material (SRM) was checked prior to, twice during, and after completion of the testing. Conditioning and calibration results are provided in Appendix F.

NIST Check Standard 1269 (Line Pipe Steel) was used as the verifier; Table 3 provides the corresponding calibrated ultra-violet wavelengths.

Floment	Discharge
Liement	wavelength (nm)
Iron	249
Carbon	165
Manganese	403
Phosphorus	177
Sulfur	180
Silicon	Calculated
Nickel	341
Chromium	Calculated
Molybdenum	386
Copper	327
Vanadium	411
Columbium	405
Zirconium	360
Titanium	334

Table 3: Ultra-violet wavelength calibration for glow discharge spectrography using the NIST 1269 SRM.

Note that "Calculated" defers to the equipment manufacturer's method for measuring mass fraction calibration for the accumulated photons.

LECO (the equipment manufacturer) recommends that the acceptance of the measured results be assessed using a total uncertainty budget, following a sum of errors procedure using the error propagation law (see Appendix H), as shown in Equation 1.

$$Test Result = Certified Value \pm (s * t)$$
(1)

The SRM was measured four times; resulting in a t value of 2.776 for a two tail 95% confidence interval. The certified value is explicitly stated in the SRM NIST Certificate. The uncertainty, s, is the square root of the sum of the squares (NIST 2012), where the considered uncertainties are those reported in the NIST certificate, a known machine mass fraction measurement tolerance of 0.008, and the standard deviation of the magnitudes of the verification checks (intra-laboratory precision and bias). It is noted that additional uncertainty, such as interlaboratory precision and bias, will likely increase the bounds of the confidence interval. A summary of the SRM values, the verification checks, and calculated bounds of a 95% confidence interval is provided in Table 4.

	NIST 12	GDS 1269 SRM Checks				Statistics			
	Certified								
	Value	Estimated		During	During		Standard	Upper	Lower
Element	(% weight)	Uncertainty	Start	(First)	(Second)	Finish	Deviation	Limit	Limit
Carbon	0.298	0.004	0.300	0.293	0.300	0.300	0.003	0.324	0.272
Manganese	1.35	0.02	1.376	1.373	1.401	1.389	0.011	1.417	1.283
Phosphorus	0.012	0.002	0.010	0.011	0.011	0.011	0.000	0.035	0.000
Sulfur	0.0061	0.0004	0.003	0.004	0.003	0.002	0.001	0.028	0.000
Silicon	0.189	0.008	0.190	0.190	0.184	0.182	0.004	0.222	0.156
Copper	0.095	0.005	0.090	0.091	0.085	0.084	0.003	0.123	0.067
Nickel	0.108	0.005	0.104	0.104	0.106	0.107	0.001	0.134	0.082
Chromium	0.201	0.009	0.190	0.192	0.200	0.198	0.004	0.236	0.166
Vanadium	0.004	0.001	0.011	0.011	0.011	0.011	0.000	0.026	0.000
Molybdenum	0.036	0.003	0.034	0.034	0.038	0.039	0.002	0.061	0.011
Lead	0.005	0.001	_	_	_	_	_	_	_
Aluminum	0.016	0.003	_	_	_	_	_	_	_

Table 4: SRM measurement confirmation.

Note: "-" indicates that the element mass fraction is not specified in ASTM A 588 and therefore not presented here.

From Table 4, all the elements have all checks fall within the expected confidence interval. Note that lead and aluminum are certified in the NIST 1269 SRM but are not a specified in the ASTM A 588 composition, therefore the statistics are excluded.

Drift of the verification samples throughout the duration of the testing are summarized in Table 5.

		Difference from initial (% weight)				
	Initial 1269 SRM Check	During	During			
Element	(% weight)	(First)	(Second)	Final		
Carbon	0.30	0.01	0.00	0.00		
Manganese	1.38	0.00	-0.03	-0.01		
Phosphorus	0.01	0.00	0.00	0.00		
Sulfur	0.00	0.00	0.00	0.00		
Silicon	0.19	0.00	0.01	0.01		
Copper	0.09	0.00	0.00	0.01		
Nickel	0.10	0.00	0.00	0.00		
Chromium	0.19	0.00	-0.01	-0.01		
Vanadium	0.01	0.00	0.00	0.00		
Molybdenum	0.03	0.00	0.00	-0.01		

Table 5: SRM drift throughout the duration of testing.

2.5.4 Metallographic assessment

Metallographic assessment of the welds between the top of each leg and the base plate, at both the obtuse (Span 2) and acute (Span 1; Span 3) angles, was assessed for fatigue cracking and quality of the weld. Assessment was done by sectioning through the weld at five equally spaced points across the width of intact welds. Sections were ground, polished, and etched with a 5-percent solution of nitric acid in ethyl alcohol (Nital) to expose the weld macrostructures and any discontinuities within them.

Images were captured in a light box using a 20.2 MP camera with a dynamic optical lens set to roughly 20 mm at an approximately 16 in. standoff.

3 CUT PLAN

The labeling scheme for specimens cut from evidence follows a three-character alphanumeric identifier. The first character is a number assigned to an individual leg as shown in Table 6. The second character represents the location from which the plate was cut in the leg or girder. Leg and location designators are provided in Table 6. The third character represents a replicate designator. For coupons, the replicate number follows increasing coupon numbers representing north to south for flange plate and uphill to downhill for web and stiffener plate. The coupon blank is always given the replicate number "3". A sample for chemistry was taken from the grip portion of each coupon labeled with the replicate number "1"; this sample was captured after mechanical testing was complete and was given a replicate number "4". Replicate numbers between five and nine were used for weld macro-etches across the width of an intact weld, increasing from north to south. CVN designators use sequential letters "X", "Y", and "Z". Replicant designators are also summarized in Table 6. As an example, the northern coupon extracted from the Span 2 Leg Flange (2 ¹/₄- inch thickness) in Panel 7 of B1R corresponds to the identifier "1N1".

Leg		Location		Replicate	
Designator	Leg	Designator	Plate Location	Designator	Description
1	B1R	Α	Girder Top Flange	1	North/Uphill
2	B1L	В	Girder Web	2	South/Downhill
3	B2L	С	Girder Bottom Flange	3	Blank
4	B2R	D	Span 1 End Plate	4	Chemistry
		Е	Span 2 End Plate	5 to 9	Weld Etches
			•		North to South
		F	Span 3 End Plate	0	Additional Weld
					Section
		G	Span 1 Leg Flange $-2^{1/2}$ -inch	X, Y, Z	CVN
			Thickness		
		Н	Span 2 Leg Flange $-2^{1/2}$ -inch		
		-	Thickness		
		J	Span 3 Leg Flange – $2^{1/2}$ -inch		
		V	Inickness		
		ĸ	Span 1 Leg Flange – 2 7/4-inch		
		N	Span 2 Leg Flange $2^{1}/i$ inch		
		1	Thickness		
		Р	Span 3 Leg Flange $-2^{1/4}$ -inch		
		-	Thickness		
		Q	Leg Web $-\frac{13}{16}$ -inch Thickness		
		R	Leg Web $-\frac{11}{16}$ -inch Thickness		
		Т	Leg Web $-\frac{1}{2}$ -inch Thickness		
		U	Longitudinal Stiffener		
		v	Transverse Stiffener in the Shoe		
		,	– Referred to as the "tie plate"		

Table 6: Designation for the first three alphanumeric characters of the specimen identifier.

Table 7 summarizes the cut plan for conducting mechanical testing, weld assessment, and chemistry. The cut plan reflects the exclusion of multiple specimen replicates when plates were identified to come from the same heat (see details provided in Table 2). Bolts and loose components were tracked by evidence number but not given unique identifiers.

Appendix B provides line drawings of nested specimens for mechanical testing and for weld assessment on the steel received at TFHRC. A minimum of $1^{1/2}$ -inch clear space was provided around the test specimens as a barrier for flame cut heat affected zones and for vertical bandsaw blade kerf. Final specimens were cut to shape using a computerized numerical control (CNC) mill. The nesting patterns were marked up with soap stone on the evidence (not shown) to ensure sufficient clear plate was available for each cut. The web in each leg has a tapered depth, where the leg is deep towards the girder and shallow at the shoe. Conservatively, the line drawings represent the web depth as constant using the depth of 42-inches, the measured depth in Panel 3. Note that the distance between the longitudinal stiffeners is more than sufficient to nest three 8-inch gauge length coupons with the $1^{1/2}$ -inch clear space.

After rough cutting, further cuts were made on a vertical band saw to make the pieces workable for machining. Detailed shop drawings are provided in Appendix C.

Line drawings for weld assessment are drawn as nominal. Many of the welds have partial or substantial fractures. In these cases, if a sufficient length of weld remained intact, five macro etches were taken across a uniform spacing of the remaining weld. All weld line drawings are provided in Appendix C.

Table 7: Cut plan summary.

					Evidence Sub-Labeling and	l Testing	Protocol			
		Tens	sile Testing	2	-	Fracto-	Corrosion		_	Cut
Leg	Evidence Number	220 kip	550 kip	Blank	Weld Assessment	graphy	Mapping	CVN	Chemistry	Plate
	NITED STD 001	1B1, 1B2	1A1, 1A2	1A3, 1B3				1AX, 1AY, 1AZ,	1A4, 1B4	1A, 1B
	NTSD STR-001		1C1_1C2	1C3				1BX, 1BY, 1BZ	1C4	10.10
	NTSD STR 002		101,102	105	1F5 1F6 1F7 1F8 1F9 1F0			10, 101, 102		10, 10 1D 1F
	NTSD-STR-003				105 106 107 108 109 100					ID, IL
	NISB-SIR-004					1				
B1R	NTSB-STR-005	101 102		102				10X 10X 107	104	10
	NTSB-STR-006	101, 102	1111 1112	103				1QX, 1QT, 1QZ	104	
	NTSB-STR-007	101	1H1, 1H2	1113				IHA, IHY, IHZ	1H4, 1U4	IH, IU
	NTSB-STR-008	171 172	1111, 1112	1113				INA, IN I, INZ	11114	11N 1T
	NTSB-STR-009	111,112		115		1	1	11A, 11Y, 11Z	114	11
	NTSB-STR-010			47.75		1	1			
	NTSB-STR-011	1V1, 1V2		1V3			1	IVX, IVY, IVZ	1V4	IV
	NTSB-STR-012	2B1, 2B2	2A1, 2A2	2A3, 2B3				2AX, 2AY, 2AZ, 2BX, 2BY, 2BZ	2A4, 2B4	2A, 2B
	NTSB-STR-013									
DII		2Q1, 2Q2		2Q3	2D5, 2D6, 2D7, 2D8, 2D9, 2D0,			2QX, 2QY, 2QZ	2Q4	2D, 2E,
BIL	NTSB-STR-014				2E5, 2E6, 2E7, 2E8, 2E9, 2E0					2Q
	NTSB-STR-015									
	NTSB-STR-016	2T1, 2T2, 2U1		2T3				2TX, 2TY, 2TZ	2T4, 2U4	2T, 2U
	NTSB-STR-017						1			
	NTSB-STR-018	3B1, 3B2	3A1, 3A2	3A3, 3B3				3AX, 3AY, 3AZ, 3BX, 3BY, 3BZ	3A4, 3B4	3A, 3B
	NTSB-STR-019									
	NTSB-STR-020				3E5, 3E6, 3E7, 3E8, 3E9, 3E0, 3F5, 3F6, 3F7, 3F8, 3F9, 3F0					3E, 3F
B2L	NTSB-STR-021					1				
	NTSB-STR-022	3Q1, 3Q2		3Q3				3QX, 3QY, 3QZ	3Q4	3Q
	NTSB-STR-023									
	NTSB-STR-024	3T1, 3T2, 3U1		3T3				3TX, 3TY, 3TZ	3T4, 3U4	3T, 3U
	NTSB-STR-025						1			
	NTSB-STR-026	4B1, 4B2	4A1, 4A2	4A3, 4B3				4AX, 4AY, 4AZ, 4BX, 4BY, 4BZ	4A4, 4B4	4A, 4B
	NTSB-STR-027									
					4E5, 4E6, 4E7, 4E8, 4E9, 4E0,					4E, 4F
	NTSB-STR-028A				4F5, 4F6, 4F7, 4F8, 4F9, 4F0					Í
B2R	NTSB-STR-028B	4Q1, 4Q2		4Q3				4QX, 4QY, 4QZ	4Q4	4Q
	NTSB-STR-029	4R1, 4R2, 4U1		4R3				4RX, 4RY, 4RZ	4R4, 4U4	4R, 4U
	NTSB-STR-030									
	NTSB-STR-031	4T1, 4T2		4T3				4TX, 4TY, 4TZ	4T4	4T
	NTSB-STR-032						1			
	Testing Count	32	14	21	48	8 3	5	6.	3 25	-

¹ Testing of evidence is nondestructive.

4 MTR ASSESSMENT

The MTR for each heat of steel used in the bridge were compiled by NTSB and provided to TFHRC in late May 2022. The steel heats are described in Table 2. These MTRs allow for comparison between the reported mechanical and chemical properties of the steel and the specified requirements that were in effect at the time of the steel production.

4.1 MTR tensile comparison

All available MTRs reported the yield strength, ultimate strength, and elongation for each heat. Results are summarized in Table 8. A result is shown as conformant if all mechanical metrics exceed the specified minimums which are delineated in ASTM A 588-71 and reproduced at the bottom of the table. For heats with more than one MTR, the lowest value for each measurement across all heats of the respective thickness is presented in the table. Values are reported to the relevant significant digits per ASTM A370-21 Annex 8 and ASTM E29 Section 7.4.

Plate Thickness (inches)	Heat Number	F_y (ksi)	F_u (ksi)	Elongation (%)	Pass or Fail A 588-71?
	422H2271	61.0	81.5	19 (in 8")	Pass
	74C184	61.0	87.0	21 (in 8")	Pass
	661H632	58.0	85.0	24 (in 8")	Pass
1/-	661H352	64.5	91.0	20 (in 8")	Pass
72	662H868	67.0	85.5	23 (in 8")	Pass
	645H218	70.5	91.0	21 (in 8")	Pass
	645H090	67.0	92.5	21 (in 8")	Pass
	650J220	56.0	81.0	26 (in 8")	Pass
¹¹ / ₁₆	74C184	58.5	82.5	23 (in 8")	Pass
3/4	658J291	60.0	81.0	25 (in 8")	Pass
	801H11600	64.0	82.5	19 (in 8")	Pass
	801H12930	52.0	71.0	26 (in 8")	Pass
¹³ / ₁₆	801H15770	55.0	74.0	25 (in 8")	Pass
	802E00400	54.0	74.0	21 (in 8")	Pass
	74C184	58.5	82.5	23 (in 8")	Pass
$2^{1/4}$	649H558	58.0	85.5	24 (in 8")	Pass
$2^{1/2}$	67C262	64.0	95.0	26 (in 2")	Pass
	649H558	63.0	88.0	22 (in 8")	Pass
3 1/8	422H3271	57.0	82.0	30 (in 2")	Pass
	421H1431	54.0	77.0	29 (in 2")	Pass
A588-71 Limits		50.0	70.0	18 (in 8") 21 (in 2")	

Table 8: Reported yield strength, ultimate strength, and elongation from the relevant MTRs.

4.2 MTR CVN comparison

The majority of the MTRs included CVN data, however several heats did not. Where MTR data was reported, testing was conducted at 40°F and all impact strengths surpassed the 15 ft-lbf requirement for base metal. Results are summarized in Table 9. For heats with more than one MTR, the lowest average value across all heats of the respective thickness is reported. Values are reported to the nearest ft-lb per ASTM A370-21 Annex 8 and ASTM E29 Section 7.4.

Plate Thickness (inches)	Heat Number	Average Impact Energy (ft-lbf)	Pass or Fail 15 ft-lbf?
	422H2271	45	Pass
	74C184	74	Pass
1/ ₂	661H632	44	Pass
	661H352	51	Pass
	662H868	Missing	_
	645H218	Missing	—
	645H090	Missing	_
	650J220	35	Pass
¹¹ / ₁₆	74C184	37	Pass
3/4	658J291	Missing	_
	801H11600	26	Pass
	801H12930	131	Pass
¹³ / ₁₆	801H15770	114	Pass
	802E00400	75	Pass
	74C184	60	Pass
2 1/4	649H558	38	Pass
$2^{1/2}$	67C262	61	Pass
3 1/8	649H558	36	Pass
2 1/	422H3271	25	Pass
3 78	421H1431	Missing	_

Table 9: Impact energy results from the provided MTRs.

Note: "-" indicates that the MTR value is missing and thus the impact energy conformance of the material is unknown.

4.3 MTR chemistry comparison

The provided MTRs show that the two plate manufacturers, United States Steel Corporation and Bethlehem Steel Corporation, explicitly specified Grade A and B. All plate provided from Pittsburgh, PA (US Steel) was specified to meet ASTM A 588-71 Grade B. All plate provided from Bethlehem, PA (Bethlehem) was specified to meet ASTM A 588 Grade A requirements but did not include the standard's year. Dates on the MTRs ranged from 1972 to 1974; it is relevant to identify the binding specification since there were changes to the grades of interest over the fabrication years.

The following are excerpts from ASTM year-on-year proceedings regarding changes to the A 588 standards between 1969 and 1975,

- "A 588 69 (formerly A 588 68), Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick (Subcommittee II) (effective July 18, 1969)
 - A new grade, Grade H (Kaisaloy 50 CR) was added."

- "A 588 70 (formerly A 588 69), Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick (Subcommittee II) (effective April 13, 1970)
 - This revision eliminated modifications and made requirements more consistent, added a new grade as requested by Jones & Laughlin Steel Corp., and revised carbon requirement of Grade B as requested by Bethlehem Steel Corp."
- "A 588 70a (formerly A 588 70), Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick (Subcommittee A01.02) (effective Oct. 2, 1970)"
 - The analysis terms were revised and the former check analysis requirements were deleted."
- "A 588 74 (formerly A 588 71), Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick (Subcommittee A01.02) (approved July 29, 1974)"
 - The specification was reapproved with no revisions.

However, after reviewing physical copies of the ASTM A 588 standards over the relevant years there seems to be an error in the synoptic proceedings. The revised requirement for the carbon content of Grade B, changing from setting a range of 0.10-0.20 percent to setting a maximum value of 0.20 percent, did not change until the ASTM A 588-74 edition. It also appears that ASTM A 588-70a and ASTM A 588-71 are synonymous documents. Therefore, ASTM A 588-71 (ASTM A 588-70a) is taken as the governing specification of the fabrication years for steel from both US Steel and Bethlehem.

ASTM A 588 was first listed as a steel composition under the purview of ASTM A 6 in the 1968a edition. In the 1970 edition of ASTM A 6, a product analysis tolerance was introduced to all steels within the scope of ASTM A 6, with specified chemistry tolerances in Section 4.1¹ and Tables B through E. Applicability of the ASTM A 6-70 tolerances is directly stated in Section 2.1 of ASTM A 588-71. Therefore, all assessments of chemistry herein include the tolerances specified in ASTM A 6-70, summarized in Table 10. Note ASTM A 6-70 chemical analysis tolerances of elements specified for Grades A and B did not change through ASTM A 6-74 and are taken as representative over the time of fabrication.

The chemical compositions, performed by ladle analysis (explicitly stated for the Grade A steels and assumed for the Grade B steel based on the fabrication year), from the MTRs are summarized in Table 11. Table 12 compares the stated MTR chemistries in Table 11 to the chemistry limits required for conformance presented in Table 10. Mass fraction values are reported to parallel the significant digits provided in the MTRs.

¹Section 4.1 states that "*rimmed or capped steel is characterized by a lack of homogeneity in its composition, especially for the elements carbon, phosphorous, and sulphur; therefore, the limitation for these elements shall not be applicable unless misapplication is clearly indicated.*" Rimming and capping are steel production processes where the casting has modified exposure to the atmosphere, minimizing the formation of gas voids in the ingot. The MTRs do not report this production information and it is therefore unclear as to whether the clause in Section 4.1 is applicable.

1								
	Chemical Requirements by Heat Analysis including							
	ASTM A 6-70 tolerances — Composition (%)							
Element	Grade A	Grade B						
Carbon	0.07-0.23	0.07-0.24						
Manganese	0.85-1.30	0.70-1.30						
Phosphorus	≤ 0.05	≤ 0.05						
Sulfur	≤ 0.06	≤ 0.06						
Silicon	0.13-0.33	0.13-0.33						
Nickel		0.22-0.53						
Chromium	0.36-0.69	0.36-0.74						
Copper	0.22-0.43	0.17-0.43						
Vanadium	0.01-0.11	0.005-0.10						

Table 10: Percent weight element composition requirements for ASTM A 588 Grade A & Grade B per the 1971 specification with ASTM A 6-70 tolerances.

Note: "..." indicates that no upper or lower limits are specified for the respective element.

	Table 11: MTR	percent weight element	composition.
--	---------------	------------------------	--------------

		Element (% weight composition)								
Plate										
Thickness	Heat									
(inches)	Number	С	Mn	P	S	Si	Ni	Cr	Си	V
	422H2271	0.13	0.98	0.009	0.019	0.24	0.28	0.51	0.28	0.026
	74C184	0.15	1.15	0.010	0.026	0.23	0.09	0.56	0.29	0.030
	661H632	0.10	1.09	0.010	0.021	0.26	0.33	0.57	0.26	0.050
1/2	661H352	0.10	1.19	0.011	0.029	0.29	0.33	0.57	0.25	0.050
12	662H868	0.08	1.12	0.013	0.035	0.26	0.32	0.57	0.27	0.050
	645H218	0.08	1.20	0.013	0.024	0.29	0.32	0.58	0.24	0.060
	645H090	0.10	1.14	0.010	0.019	0.36	0.33	0.58	0.25	0.050
	650J220	0.08	1.06	0.010	0.022	0.28	0.30	0.59	0.26	0.050
¹¹ / ₁₆	74C184	0.15	1.15	0.010	0.026	0.23	0.09	0.56	0.29	0.030
3/4	658J291	0.08	1.02	0.010	0.019	0.26	0.29	0.57	0.24	0.050
	801H11600	0.12	0.92	0.005	0.020	0.22	0.34	0.50	0.24	0.030
	801H12930	0.11	0.85	0.006	0.017	0.24	0.29	0.55	0.26	0.030
¹³ / ₁₆	801H15770	0.11	0.89	0.008	0.019	0.21	0.29	0.54	0.25	0.020
	802E00400	0.11	0.89	0.008	0.028	0.23	0.36	0.50	0.28	0.030
	74C184	0.15	1.15	0.010	0.026	0.23	0.09	0.56	0.29	0.030
2 1/4	649H558	0.10	1.21	0.013	0.030	0.29	0.33	0.60	0.30	0.070
2 1/2	67C262	0.17	1.18	0.010	0.020	0.24	0.17	0.56	0.34	0.060
	649H558	0.10	1.18	0.016	0.030	0.25	0.31	0.58	0.27	0.060
3 1/8	422H3271	0.13	1.04	0.019	0.028	0.25	0.35	0.54	0.27	0.026
	421H1431	0.13	1.09	0.018	0.029	0.28	0.33	0.56	0.28	0.026

			Compliant to ASTM A 588-71								
	1			V	with AS	TM A	6-70 tol	erances	$(Y/N)^{a}$?	
Plate Thickness (inches)	Heat Number	Specified Grade	С	Mn	Р	S	Si	Ni	Cr	Си	V
	422H2271	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
	74C184	А	Y	Y	Y	Y	Y	Y	Y	Y	Y
	661H632	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
17	661H352	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
1/2	662H868	В	Y ^b	Y	Y	Y	Y	Y	Y	Y	Y
	645H218	В	Y ^b	Y	Y	Y	Y	Y	Y	Y	Y
	645H090	В	Y	Y	Y	Y	Ν	Y	Y	Y	Y
	650J220	В	Y ^b	Y	Y	Y	Y	Y	Y	Y	Y
¹¹ / ₁₆	74C184	А	Y	Y	Y	Y	Y	Y	Y	Y	Y
3/4	658J291	В	Y ^b	Y	Y	Y	Y	Y	Y	Y	Y
	801H11600	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
	801H12930	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
¹³ / ₁₆	801H15770	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
	802E00400	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
	74C184	А	Y	Y	Y	Y	Y	Y	Y	Y	Y
2 1/4	649H558	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
2 1/2	67C262	А	Y	Y	Y	Y	Y	Y	Y	Y	Y
	649H558	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
3 1/8	422H3271	В	Y	Y	Y	Y	Y	Y	Y	Y	Y
-	421H1431	В	Y	Y	Y	Y	Y	Y	Y	Y	Y

Table 12: MTR conformance to ASTM A 588-71 Grade A & Grade B.

 ${}^{a}Y$ – Denotes compliance to the specified grade, N – Denotes that the heat does not conform to the specified grade. ${}^{b}If$ the clause defined in footnote¹ is applicable then these heats will not be within conformance for carbon content.

Table 12 shows a single heat, heat 645H090, falls outside of conformance defined in Table 10.

Two performance characteristics that are dependent on conformance with weathering steel chemistry requirements are: 1) the hardenability of the steel and how this can affect the weldability, and 2) the effect that the chemistry would have on atmospheric corrosion resistance.

Hardenability can be assessed by various means. One common procedure is to calculate the carbon equivalency (CE) since carbon is the primary hardenability element in the steel. This is done via equation where the proportional hardenability effect of other elements is added to carbon. American Welding Society codes utilize the following equation.

$$CE = C + \frac{Mn+Si}{6} + \frac{Cr+Mo+V}{5} + \frac{Ni+Cu}{15}$$
 (AWS D1.5 G6.1.1²)

The calculated carbon equivalency provides a metric for the likelihood of potential hydrogen-induced cracking in the weld heat affected zone. Lower carbon equivalencies indicate less potential for these defects to form with the threshold of concern usually beginning with *CE* values greater than 0.45. Table 13 summarizes the *CE* values for the relevant MTRs and for a "typical" A588 composition as listed in ASTM G101-20.

Similar to hardenability, the atmospheric corrosion resistance of a weathering steel can be quantified by various means, with one common procedure in the US being to use one of the methods delineated in ASTM G101-20. G101 calculates a corrosion loss rate relative to reference data sets at multiple domestic and international exposure sites for steels of known makeup. Two methods, 1) the Predictive Method Based on the Data of Townsend (G101 Section 6.3.2), and 2) the Predictive Method Based on the Data of Larabee and Coburn (G101 Section 6.3.1), correlate that loss to a respective corrosion index (*CI*). The calculated *CI* ranges from 0 to 10, where 0 represents the corrosion index for pure iron and 10 represents a very corrosion resistant alloy. While (with the exception of heat 645H090), the MTRs indicated conformance with ASTM A588 at the time of construction, modern UWS metallurgical practice (ASTM A588-19 Section 5.3; introduced in ASTM A588-97 and revised to use the Predictive Method Based on the Data of Larabee and Coburn for the calculated *CI* value in ASTM A588-01), weathering steel shall have a *CI* of at least 6.0. Table 13 summarizes the Townsend *CI* and the Larabee and Coburn *CI* values for the relevant MTRs and for a "typical" A588 composition as listed in ASTM G101-20.

² This equation replicates the equation from Clause F6.1.1 in the 2020 Edition of the AASHTO/AWS D1.5M/D1.5 *Bridge Welding Code*. The AWS *CE* equation builds upon the Dearden-O'Neill (Dearden and O'Neill 1940) equation with the addition of a term for silicon because the work performed by Dearden and O'Neill only used lowsilicon steel. Subsequent to their research, steel producers commonly began engaging silicon-killing, a process that increases steel homogeneity and decreases porosity, leading to products that had appreciable silicon compositions which had to be accounted for in weldability.

Plate Thickness (inches)	Heat Number	CE	<i>CI</i> (G101 6.3.2)	<i>CI</i> (G101 6.3.1)
	422H2271	0.48	5.31	6.28
	74C184	0.52	5.16	6.07
	661H632	0.49	5.60	6.37
17	661H352	0.51	5.55	6.37
/2	662H868	0.47	5.25	6.46
	645H218	0.49	5.70	6.32
	645H090	0.51	5.95	6.47
	650J220	0.47	5.58	6.37
¹¹ / ₁₆	74C184	0.52	5.16	6.07
3/4	658J291	0.45	5.48	6.15
	801H11600	0.45	5.09	6.04
	801H12930	0.44	5.26	6.19
¹³ / ₁₆	801H15770	0.44	5.13	6.09
	802E00400	0.45	4.98	6.38
	74C184	0.52	5.16	6.07
2 1/4	649H558	0.53	5.73	6.69
2 ¹ / ₂	67C262	0.56	5.63	6.41
	649H558	0.51	5.50	6.48
3 1/8	422H3271	0.50	5.43	6.55
	421H1431	0.52	5.55	6.62
Reference –	G101 Typical A588	_	6.14	6.67

Table 13: MTR carbon equivalency and corrosion indices from ASTM G101-20.

5 TEST RESULTS

This section presents the results of the testing regiment summarized in Table 7 following the methods described in Section 2.5. Testing was conducted from early November 2022 through January 2023, including a technical exhibition day open to all parties in the investigation, held on November 16 at TFHRC to demonstrate conformance of the testing protocol.

5.1 Tensile test results

Testing of specimens 3Q2 and 1N2 was conducted on November 16, 2022, as a part of the technical demonstration for the parties involved in the investigation. The remainder of the specimens were tested between November 10, 2022 and December 9, 2022.

Table 14 provides the average yield stress and ultimate stress results of the duplicate tensile specimens per unique heat, reported to the nearest tenth of a ksi. The stress-strain curves, documented in Appendix D, did not always have a clearly defined yield plateau. Therefore, the reported yield stress was determined for all specimens using the Total Extension Under Load Method, per ASTM A370-21 Section 14.1.3, at a specified

Note: "-" indicates that the *CE* can be calculated using the reference chemistry in ASTM G101, but it would not necessarily be representative of the product specification.

strain of 5000 x 10⁻⁶ in./in. The reported ultimate stress is the maximum observed load over the original cross-sectional area at the middle of the tapered width coupon, per ASTM A370-21 Section 14.3. Table 14 also includes the elongation at fracture, per ASTM A370-21 Section 14.4.4.1. Calibration for the noncontact extensometer, calibrated following ASTM E83-16, is included in Appendix H. Values are reported to the relevant significant digits per ASTM A370-21 Annex 8 and ASTM E29 Section 7.4. For reference, mechanical requirements for ASTM A 588-71 are provided at the bottom of Table 14.

			Elongation at	Pass or Fail
Plate	F_{y} (ksi)	F_u (ksi)	Fracture (%)	A 588-71?
$1A^1$	53.5	81.5	27 (in 8")	Pass
1B	54.0	77.5	22 (in 8")	Pass
1C	53.0	77.5	28 (in 8")	Pass
1H	66.0	96.0	21 (in 8")	Pass
$1N^1$	55.0	79.5	27 (in 8")	Pass
1Q	59.0	87.0	20 (in 8")	Pass
1T	52.0	77.5	35 (in 2")	Pass
1U	56.5	79.5	18 (in 8")	Pass
1V	56.0	81.0	25 (in 2")	Pass
2A	55.0	82.5	26 (in 8")	Pass
2B	47.9	69.0	28 (in 8")	Fail
2Q	60.5	88.5	18 (in 8")	Pass
2T	53.5	76.5	22 (in 8")	Pass
2U	57.5	79.0	20 (in 8")	Pass
3A	53.0	81.0	26 (in 8")	Pass
3B	49.3	72.5	22 (in 8")	Fail
3Q	59.0	88.5	18 (in 8")	Pass
3T	54.5	79.0	21 (in 8")	Pass
3U	56.0	80.5	16 (in 8")	Fail
$4A^2$	55.0	83.0	26 (in 8")	Pass
4B	49.6	72.5	23 (in 8")	Fail
4Q	58.0	86.0	19 (in 8")	Pass
4R	56.0	74.5	23 (in 8")	Pass
4T	52.0	75.5	22 (in 8")	Pass
4U	57.5	80.5	18 (in 8")	Pass
A 588-71 Limits	50.0	70.0	18 (in 8") 21 (in 2")	

Table 14: Summary of tensile testing results.

Note: Shaded cells indicate that at least one measured mechanical value is outside of the specified limits in ASTM A 588-71.

¹Specimens 1A1 and 1N1 had an interlock trip near the conclusion of the test, resulting in a loss of loading in the servo-hydraulic system. The reported elongation at fracture represents the sum of the accumulation of strain prior to the interlock being tripped and the additional straining from the reloading until fracture.

²Reported values for 4A represent the sum of measured values from specimen 4A1 and a duplicate test of specimen 4A2. During the testing of the original specimen 4A2, the DIC camera unexpectedly ceased recording data and was therefore excluded from Table 14 but is reported in Appendix D.

Table 14 shows that 4 of the 25 unique heats fall outside of mechanical conformance with ASTM A 588-71. The measured yield and ultimate strength for plate 2B are both less than the requirement. Plates 3B and 4B also have measured yield strengths less than the requirement but had conformant measured ultimate strengths. Plate 3U has a measured yield and ultimate strength within conformance but does not meet the specified elongation requirement.

It is important to note that the tensile specimens were not extracted from virgin steel. As the bridge was in service for half a century, and experienced large deformations during the collapse, there is the potential that plastic strain was accumulated at any time between plate fabrication and specimen testing. If prior yielding did exist in a tested plate, the observed stress-strain curves might exhibit an artificially larger measured yield strength due to strain hardening. The ultimate stress would likely be unaffected unless the accumulation of plastic strain was very large. The measured elongation would directly decrease with the accumulation of plastic strain. However, recognize that when selecting the locations for specimen extraction, care was taken to locate plate with minimal distortion to attempt to minimize the influence of plastic strain accumulation on the captured mechanical properties.

Given their location in the bridge, it is highly unlikely that the measured strengths for plates 2B, 3B, and 4B were out of conformance due to damage history. These plates are ${}^{13}/{}_{16}$ -in. web plate located in the girder. The MTRs, from Table 2, showed that a few of the ${}^{13}/{}_{16}$ -in. heats that could make up the girder web plate were close to the ASTM A 588-71 mechanical limits. It is possible that a slower testing strain rate could account for a slight reduction in the measured yield strength; however, the testing protocol of the MTRs is not explicitly known and thus potential differences in procedure between the tests conducted herein and the MTRs are speculative.

Plate 3U, a ¹/₂-in. longitudinal stiffener plate, is out of conformance due to an insufficient elongation capacity. The reduction in measured elongation capacity versus the reported MTR elongations is possibly due to the aforementioned accumulation of plastic strain. Additionally of note is the location of fracture in the tensile specimen which may have affected the overall result. ASTM A370-21 Section 14.4.2 states that the measured elongation may not be representative of the material if any part of the fracture takes place outside of the middle half of the gauge length, unless the measured elongation meets the minimum requirements specified. Appendix D documents the necking location along the length of each specimen. For plate 3U, the specimen had the fracture initiate just outside of the middle half of the gauge length and therefore the reported elongation for this specimen may not be representative of the material. Additional tests of 3U were not conducted as the material is not virgin and therefore it is unknown if or where internal flaws exist, potentially driving the initiation of fracture to a different location within the length of the reduced section.

It is important to note three instances during the testing of the tensile specimens wherein the standard testing protocol was not followed. During the testing of specimens 1A1 and 1N1, an interlock tripped near the conclusion of the test, resulting in a loss of loading in the servo-hydraulic system. An interlock is a safety protocol implemented into the software to ensure control of the testing system. The testing protocol had several displacement and load interlocks in place where if a user specified load, displacement, or stain limit was surpassed then the program would cause the servo-hydraulic system to immediately, rapidly decrease the applied load. After relaxing the interlock limits, both tests were resumed and continued through to rupture. The reported elongations in Table 14 represent the sum of the accumulation of strain prior to the interlock being tripped and the additional straining from the reloading until fracture. Recognize, however, that this reloading was not necessary as both specimens had already satisfied the required ASTM A 588-71

tensile strength and elongation limits prior to the interlock tripping. NTSB was consulted regarding the decision not to machine and test duplicate specimens.

Finally, during the testing of specimen 4A2 the DIC camera unexpectedly ceased recording data after the test was well into the strain hardening region (approximately an axial strain of 0.09). The test continued, ending with a load-deflection curve and measured strengths similar to specimen 4A1. After consulting with NTSB, it was decided to machine the coupon blank 4A3 and repeat the test so as to obtain an accurate elongation measurement. Results in Table 14 represent the average of 4A1 and the replicate cut from the coupon blank. Results for all three specimens are presented in Appendix D. There were no other instances of issues with the DIC camera.

5.2 CVN results

Specimens 1BZ, 1VX, 1AX, 2AX, 4AX were tested on November 16, 2022 as a part of the technical demonstration for the parties involved in the investigation. The remainder of the specimens were tested on December 9, 2022. On both days the zero and windage loss were checked. The zero was consistently accurate to a 0 ft-lbf indication per ASTM E23-18 Section 9.1.1.2. The windage loss was consistently indicating 10 ft-lbf over the 11 half swings, i.e., the reading was within 1 ft-lbf, per ASTM E23-18 Section 9.1.1.3.

Table 15 provides the averaged results of the three replicate CVN specimens per unique heat, reported to the nearest ft-lbf per ASTM A370-21 Annex 8 and ASTM E29 Section 7.4. Note that the specimen 3BY test was run successfully and resulted in an unbroken specimen that did not stop the hammer; thus per ASTM E23-18 Section 9.3.3.1 the result from 3BY was excluded from the average for the 3B plate. All measured heats passed the required 15 ft-lbf requirement of the time (AASHO 1969), following interpretation of the test results per ASTM A370-21 Section 27.1.1.1. The measured impact energy for each specimen is provided in Appendix E.

		Pass or Fail
	Averaged	15 ft-lbf at
Specimen	Recording (ft-lbf)	40 °F?
1A	54	Pass
1B	36	Pass
1C	97	Pass
1H	25	Pass
1N	132	Pass
1Q	25	Pass
1T	59	Pass
1V	23	Pass
2A	35	Pass
2B	100	Pass
2Q	29	Pass
2T	86	Pass
3A	65	Pass
$3B^1$	141	Pass
3Q	22	Pass
3T	65	Pass
4A	43	Pass
4B	101	Pass
4Q	66	Pass
4R	90	Pass
4T	76	Pass

Table 15: Summary of CVN results.

¹Note that specimen 3BY was unbroken and excluded from the average for 3B plate per ASTM E23-18 Section 9.3.3.1.

The temperature of each test specimen was measured with a calibrated thermometer and recorded to the nearest tenth of a degree Fahrenheit. The results are presented in Appendix E Table E-1. The specimens were soaked for at least 5 minutes in a chilled denatured alcohol thermal bath per ASTM A370-21 Section 26.1.1. The test temperatures for all specimens were within the required 40 \pm 2 °F per ASTM A370-21 Section 25.1. Note that zero and windage losses were remeasured with no change in either value between the different test days.

A stopwatch was used to ensure that the time between the specimen removal from the thermal bath and the release of the hammer was less than 5.0 seconds per ASTM A370-21 Section 26.2.2. There was one instance on the technical demonstration day where the time exceeded the 5.0 seconds for specimen 1VX; the test was halted prior to releasing the hammer and the specimen was resubmerged in the thermal bath. After the 5-minute minimum soak time had elapsed the test was conducted.

The estimated percent shear fracture area (to the nearest 5%) and respective images are provided in Appendix E Table E-2 per ASTM A370-21 Section 26.4.2.1(4). Images were captured in a light box using a 20.2 MP camera with a dynamic optical lens set to roughly 120 mm at approximately a 12 in. standoff. Measured shear fracture areas are calculated through both a Mask Area Method and a Pixel Intensity Method. The Mask Area Method utilizes a user defined superimposed trace of the total fracture area (the red outline in Appendix E) and a trace of the non-shear fracture area (the yellow outline in Appendix E).

The difference represents the shear fracture area. The Pixel Intensity Method calculates the shear fracture area based on color intensity of each pixel in grayscale images of the samples. The method uses a constant intensity threshold of 85 or greater to denote the shear fracture areas. Note that the simpler Mask Area Method seemed to be more consistent with visual shear fracture areas shown in ASTM A370-21 Figure 14.

Measured lateral expansion results are reported in Appendix E Table E-3 per ASTM A370-21 Section 26.4.3 and ASTM E23-18 Figure 6.

5.3 Chemistry results

All GDS measurements were captured on December 16, 2022. Tables 16 and 17 show whether the specimens are conformant with respective grades of ASTM A 588-71 including ASTM A 6-70 tolerances in cases where plate could be tied to a specific heat, shown in Table 2. Note that only elements included in Table 10 are applied for verifying conformance, herein, excluding GDS output presented in Appendix F.

Table 16: Conformance to ASTM A 588-71 Grade A with and without ASTM A 6-70 tolerances for heats specified as Grade A in the MTR.

	Element Conformant (Y/N)?								
Sample	С	Mn	P	S	Si	Ni	Cr	Си	V
1H4	Y	Y	Y	Y	Y	Y	Y	Y	Y
4R4	Y	Y	Y	Y	Y	Y	Y	Y	Y

Table 17: Conformance to ASTM A 588-71 Grade B with ASTM A 6-70 tolerances for heats specified as Grade B in the MTR.

	Element Conformant (Y/N)?								
Sample	Ca	Mn	P ^a	Sa	Si	Ni	Cr	Си	V
1A4	Y	Y	Y	Y	Y	Y	Y	Y	Y
1C4	Y	Y	Y	Y	Y	Y	Y	Y	Y
1N4	Y	N	Y	Y	N	N	N	N	Y
1V4	Y	Y	Y	Y	Y	Y	Y	Y	Y
2A4	Y	Y	Y	Y	Y	Y	Y	Y	Y
3A4	Y	Y	Y	Y	Y	Y	Y	Y	Y
4A4	Y	Y	Y	Y	Y	Y	Y	Y	Y

^aIf the steel is rimmed or capped then the ASTM A 6-70 tolerances do not apply for select elements. This situation necessitates reevaluation for conformance.

Note: Shaded cells indicate the reported value is outside of the specified limits for Grade B in ASTM A 588-71.

From the GDS measurements with ASTM A 6-70 tolerances, Table 16 shows that all analyzed plate able to be identified as Grade A are conformant. Table 17 shows that specimen 1N4 is out of conformance for manganese, silicon, nickel, chromium, and copper; all other analyzed plate able to be identified as Grade B are conformant.

In cases where plate that could not be tied to a specific heat, the specimen conformance was checked against both Grade A and Grade B (the two listed grades throughout the MTRs encompassing the relevant plates that were tested). The percent element weight composition ranges restrictive to both grades, including respective tolerances per ASTM A 6-70, are provided in Table 18. Tables 19 shows whether the specimens are conformant with this range.

Table 18: Percent weight element composition requirements for ASTM A 588-71 Grade A & Grade B with ASTM A 6-70 tolerances (as presented in Table 5) and the composition range restrictive to both grades.

	Chemical Requirements b		
	ASTM A 6-70 toleranc	es — Composition (%)	Restrictive to Requirements
Element	Grade A	Grade B	of both Grade A & B
Carbon	0.07-0.23	0.07-0.24	0.07-0.23
Manganese	0.85-1.30	0.70-1.30	0.85-1.30
Phosphorus	≤ 0.05	≤ 0.05	≤ 0.05
Sulfur	≤ 0.06	≤ 0.06	≤ 0.06
Silicon	0.13-0.33	0.13-0.33	0.13-0.33
Nickel		0.22-0.53	0.22-0.53
Chromium	0.36-0.69	0.36-0.74	0.36-0.69
Copper	0.22-0.43	0.17-0.43	0.22-0.43
Vanadium	0.01-0.11	0.005-0.10	0.01-0.10

Note: "..." indicates that no upper or lower limits are specified for the respective element.

Table 19: Conformance of plate that could not be tied to a specific heat to the restrictive requirements of both Grade A & B, as presented in Table 18.

	Element Conformant (Y/N)?								
Sample	Ca	Mn	P ^a	Sa	Si	Ni ^b	Cr	Си	V
1B4	Y	Y	Y	Y	Y	Y	Y	Y	Y
1Q4	Y	Y	Y	Y	Y	N	Y	Y	Y
1U4	Y	Y	Y	Y	Y	Y	Y	Y	Y
1T4	Y	Y	Y	Y	Y	N	Y	Y	Y
2B4	Y	Y	Y	Y	Y	Y	Y	Y	Y
2Q4	Y	Y	Y	Y	Y	N	Y	Y	Y
2T4	Y	Y	Y	Y	Y	N	Y	Y	Y
2U4	Y	Y	Y	Y	Y	Y	Y	Y	Y
3B4	Y	Y	Y	Y	Y	Y	Y	Y	Y
3Q4	Y	N	Y	Y	Y	N	Y	Y	Y
3T4	Y	N	Y	Y	Y	N	Y	Y	Y
3U4	Y	Y	Y	Y	Y	Y	Y	Y	Y
4B4	Y	Y	Y	Y	Y	Y	Y	Y	Y
4Q4	Y	Y	Y	Y	Y	N	Y	Y	Y
4U4	Y	Y	Y	Y	Y	Y	Y	Y	Y
4T4	Y	Y	Y	Y	Y	N	Y	Y	Y

^aIf the steel is rimmed or capped then the ASTM A 6-70 tolerances do not apply for select elements. This situation necessitates reevaluation for conformance.

^bSpecimens 1Q4, 1T4, 2Q4, 2T4, 3Q4, 3T4, 4Q4, and 4T4 all have measured nickel contents lower than what is specified in Grade B; however, these specimens may be conformant if in fact the plate was specified as Grade A. Note: Shaded cells indicate the reported value is outside of the specified limits in ASTM A 588-71.

Table 19 shows that specimens 1Q4, 1T4, 2Q4, 2T4, 3Q4, 3T4, 4Q4, and 4T4 fall outside of the mass fraction range limited by the overlap of Grades A & B; all other analyzed plates not able to be identified

specifically as Grade A or B are conformant. Specimens 1Q4, 1T4, 2Q4, 2T4, 3Q4, 3T4, 4Q4, and 4T4 all have measured nickel contents lower than what is specified in Grade B; however, these specimens may be conformant if in fact the plate was specified as Grade A. Specimens 3Q4 and 3T4 both surpass the manganese upper ASTM A 588-71 limit (with ASTM A 6-70 tolerances) for both grades and are therefore out of conformance regardless of specified MTR grade. However, it is important to note that the magnitude that manganese surpasses the upper limit is within the measurement uncertainty, *s*, in Equation 1.

As discussed in Section 4.3, two potential concerns with the chemistry requirements of a weathering steel being out of conformance are: 1) the hardenability of the steel and how this can affect the weldability, and 2) the effect that the chemistry would have on atmospheric corrosion resistance. Table 20 summarizes the *CE*, Townsend *CI*, and the Larabee and Coburn *CI* values for the GDS measurements and for a "typical" A588 composition as listed in ASTM G101-20.

Plate				
Thickness			CI	CI
(inches)	Specimen	CE	(G101 6.3.2)	(G101 6.3.1)
	1T4	0.55	5.28	6.12
	1U4	0.48	5.67	6.17
	2T4	0.50	5.34	5.92
17	2U4	0.49	5.68	6.12
1/2	3T4	0.57	5.47	6.26
	3U4	0.49	5.84	6.09
	4T4	0.52	5.47	5.92
	4U4	0.48	5.58	6.16
¹¹ / ₁₆	4R4	0.54	5.20	5.94
3/4	1V4	0.49	5.22	6.02
	1B4	0.48	5.40	5.97
	1Q4	0.55	5.41	6.14
13/16	2B4	0.44	5.30	5.94
	2Q4	0.56	5.49	6.06
16	3B4	0.49	5.42	6.32
	3Q4	0.58	5.59	6.06
	4B4	0.49	5.50	6.06
	4Q4	0.56	5.29	6.05
2 1/4	1N4	0.43	4.86	3.79
2 1/2	1H4	0.60	5.95	6.52
	1A4	0.56	5.71	6.50
	1C4	0.53	6.01	6.68
3 1/8	2A4	0.55	5.74	6.51
	3A4	0.54	5.69	6.51
	4A4	0.54	5.72	6.44
Reference – 0	G101 Typical A588	_	6.14	6.67

Table 20: GDS measured carbon equivalency and corrosion indices from ASTM G101-20.

Note: "-" indicates that the *CE* can be calculated using the reference chemistry in ASTM G101, but it would not necessarily be representative of the product specification.

The calculated carbon equivalency provides a metric for the hardenability of the steel resulting from activities like welding. Low *CE* values (<0.28) indicate that the steel should be easily weldable, tolerant of little to no preheat, and is insensitive to low hydrogen practice. High *CE* values (>0.50) indicate steel which requires more care using a combination of low hydrogen practice, preheat, and perhaps post-heat treatment. Table 20 indicates that the majority of the measured specimens have *CE* values greater than 0.50 which, if proper welding procedures were not used, could have created embrittled heat-affected zones in the base metal from welding.

The calculated corrosion index provides a metric for corrosion resistance ranging from 0 to 10, where 0 represents the *CI* for pure iron and 10 represents a very corrosion resistant alloy. Table 19 indicates that nearly all of the measured specimens have a Townsend *CI* and a Larabee and Coburn *CI* below that of typical A588 steel.

Element mass fractions for each GDS burn per specimen are documented in Appendix F.

5.4 Metallographic results

Macroetching of the sectioned leg flange-to-endplate welds was conducted on December 16, 2022. Photographic documentation of all etches are provided in Appendix G. Each image includes two planar scales to measure weld size and crack properties. The first planar scale is a graded ruler placed directly on top of the specimen. The second scale is a protractor, with various additional calibration references, elevated to be at a plane common with the macroetch.

The sections below highlight general observations from all macros and then specific observations for the two welds per leg.

5.4.1 General Observations

The design plans for the bridge specified the leg flange-to-endplate weld as a single-sided U-groove with a far side reinforcing fillet. There was no information in the weld symbol tail indicating it was required to be a complete joint penetration weld.

• Each macroetch demonstrates these welds were fabricated as partial joint penetration welds using a double-bevel groove geometry.

The design plans for the bridge specified the leg web-to-endplate weld as a double bevel groove. There was no information in the weld symbol tail indicating it was required to be a complete joint penetration weld.

• Macroetches of the web-to-endplate weld were not specifically produced; however, in the extent seen in some of the macros complete joint penetration of the web to the endplate in the vicinity of the leg flanges was not observed.

In review of the 1969 Edition of AWS D2.0 "Specifications for Welded Highway and Railway Bridges," there were no prequalified T-joint partial-joint penetration welds. Thus, the fabricator would have had to specifically qualify this type of weld; however, with no preserved documentation of approved shop drawings, approved welding joint design, or approved welding procedures, it is unclear whether the weld type was qualified.

Based on macroetches taken over the leg webs (Figure G.3, Figure G.8, Figure G.13, Figure G.18, Figure G.43, Figure G.48), it appears that the leg I-shape (leg flanges and leg web) was welded first, then the leg

end was cut to the correct angle to mate against the endplate, then the endplate was welded. This sequence is evidenced through the leg flange welds which were not continuous through the leg web.

• The bevel preparation for the flange to the inside of the I-shape appears to have been cut with a drop bandsaw. The bandsaw cut through the flange, but also into the leg web for some distance that varied with each leg. The sawcut in the leg web was welded over to seal the cut.

The bevel preparation on the flange was not consistent between the four legs. Preparation was similar for the two Bent 1 legs, and also similar for the two Bent 2 legs, indicating each pair of bent legs was likely fabricated at different points in time.

None of the welds seemed to achieve significant fusion to either sidewall of the weld preparation. Sometimes there appeared to be no fusion. This indicated either poor access with the small bevel angles, particularly in the two Bent 1 legs, or inadequate welding procedure with either low heat input and/or poor angle of the electrode while welding.

5.4.2 Leg 1 (B1R)

Welds 1D# (where "#" is a number from 5 to 9, see Figure C.5) were flange welds where the web had the obtuse angle. 1D5 was on the north side of the leg (interior of bridge) while 1D9 was on the south side of the leg (exterior of bridge).

- All 1D# welds were cracked on the exterior acute angle and into the endplate base metal. It appears the crack may have originated at the toe of the weld at the center of the weld length (over the leg web) and fractured out a divot of endplate base metal from under the exterior acute angle weld. The divot was exacerbated towards the interior of the bridge where the crack even propagated into the obtuse weld from its root.
- The shape of the divots is not perpendicular to an expected stress field in the endplate; therefore, these are suspected to be fractures, not fatigue cracks.
- The divot crack in 1D5 was full of pack rust, indicating that its occurrence predated the collapse by some length of time. The remaining four macros did not have pack rust indicating those fractures were likely the result of the collapse.

Welds 1E# (where "#" is a number from 5 to 9, see Figure C.6) were flange welds where the web had the acute angle. 1E5 was on the north side of the leg (interior of bridge), 1E9 was on the south side of the leg (exterior of bridge).

- The 1E8 and 1E9 welds completely removed a divot of endplate base metal over half of the weld length to the exterior of the bridge. The divot went from the toe-to-toe of the two welds from each side of the joint.
- The 1E7 macro over the web shows two cracks extending into the endplate base metal. One crack originated from the exterior obtuse weld toe; the second crack originated from the root of the interior acute weld.
- The 1E5 and 1E6 welds on the interior side of the bridge had no observable cracks.

Figure 8 shows the weld profile for the design drawings and compares them against observed groove type, bevel pitch, and bevel depth.

Figure 8. Design weld profile versus the observed profile for B1R.

5.4.3 Leg 2 (B1L)

Welds 2D# (where "#" is a number from 5 to 9, see Figure C.15) were flange welds where the web had the obtuse angle. 2D5 was on the north side of the leg (exterior of bridge) while 2D9 was on the south side of the leg (interior of bridge).

• None of these welds were observed to have cracks.

Welds 2E# (where "#" is a number from 5 to 9, see Figure C.16) were welds where the web had the acute angle. 2E5 was on the north side of the leg (exterior of bridge) while 2E9 was on the south side of the leg (interior of bridge).

• None of these welds were observed to have cracks.

Figure 9 shows the weld profile for the design drawings and compares them against observed groove type, bevel pitch, and bevel depth.

Figure 9. Design weld profile versus the observed profile for B1L.

5.4.4 Leg 3 (B2L)

Welds 3E# (where "#" is a number from 5 to 9, see Figure C.22) were welds where the web had the acute angle. 3E5 was on the north side of the leg (exterior of bridge) while 3F9 was on the south side of the leg (interior of bridge).

- The leg flange, leg webs, and weld nuggets are missing from these macroetches because the fracture surface was retained by NTSB for a fractographic analysis.
- A portion of the endplate divoted out along with the weld, and even fractured the endplate through its thickness. Without the other side of the macro, more description cannot be made at this time.

Welds 3F# (where "#" is a number from 5 to 9, see Figure C.23) were welds where the web had the obtuse angle. 3F5 was on the north side of the leg (exterior of bridge) while 3F9 was on the south side of the leg (interior of bridge).

- 3F5 and 3F6 appear to have fractured along the fusion zone of the leg flange.
- 3F7 (over the centerline of the web) has no visible leg's web-to-endplate weld or leg's flange-toendplate acute weld, this is due to very poor fusion near the flange-web-end plate junction. There was a fracture through the fusion zone of the obtuse weld joining the flange to the endplate.
- 3F8 and 3F9 fractured in the base metal of the leg flange; the welds appear sound.

No information on the weld profile is provided for B2L due to insufficient information regarding the profile of the fractured weld nugget.

5.4.5 Leg 4 (B2R)

Welds 4E# (where "#" is a number from 5 to 9, see Figure C.29) were welds where the web had the acute angle. 4E5 was on the north side of the leg (interior of bridge) while 4E9 was on the south side of the leg (exterior of bridge).

- No cracks were observed in the welds; they all appeared sound.
- 4E7 (over the web), 4E8, and 4E9 show a fracture in the endplate base metal through its thickness originating at the toe of the outer weld nugget. 4E5 and 4E6 show that the fracture through the thickness of the base metal propagated beyond the weld toe, indicating that there was likely little to no fusion into the endplate over the exposed weld toe.

Welds 4F# (where "#" is a number from 5 to 9, see Figure C.30) were welds where the web had the obtuse angle. 4F5 was on the north side of the leg (interior of bridge), 4F9 was on the south side of the leg (exterior of bridge).

• No cracks we observed in the welds; they all appeared sound.

Figure 10 shows the weld profile for the design drawings and compares them against observed groove type, bevel pitch, and bevel depth.

Figure 10. Design weld profile versus the observed profile for B2R.

ACKNOWLEDGEMENTS

The authors would like to thank Federal and Contractor personnel from the TFHRC Structures Laboratory, Machine Shop, and Chemistry Laboratory for their many contributions from assisting in specimen extraction and testing to providing technical guidance. The authors would also like to acknowledge and thank personnel across FHWA's Headquarters, Resource Center, and Division Offices for providing technical guidance related to the investigation.

REFERENCES

AASHO (1969). "Standard Specifications for Highway Bridges.", 10th Edition, American Association of State Highway Officials, Washington, D. C.

ASTM A 6. (1968a). "Standard Specification for General Requirements for Delivery of Rolled Structural Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 6. (1970). "Standard Specification for General Requirements for Delivery of Rolled Structural Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 6. (1974). "Standard Specification for General Requirements for Delivery of Rolled Structural Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 588. (1969). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 588. (1970). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 588. (1971). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 588. (1974). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50,000 psi Minimum Yield Point to 4 in. Thick." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 588. (1997). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi Minimum Yield Point to 4 in. Thick." ASTM Annual Book of Standards, Part 4. ASTM International. West Conshohocken, PA.

ASTM A 588. (2001). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi [345 MPa] Minimum Yield Point to 4 in. [100-mm] Thick." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM A 588. (2019). "Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.ASTM A370. (2021). "Standard Test Methods and Definitions for Mechanical Testing of Steel Products." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM E23. (2018). "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM E29. (2022). "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM E83. (2016). "Standard Practice for Verification and Classification of Extensometer Systems." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM E415. (2021). "Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM G101. (2020). "Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM Proceedings (1971). "Committee Reports." Vol. 71. ASTM International. West Conshohocken, PA.

AWS D1.5 (2020). "Bridge Welding Code." 8th Edition, American Welding Society. Miami, FL.

AWS D2.0. (1969). "Specifications for Welded Highway and Railway Bridges." 8th Edition, American Welding Society. Miami, FL.

Dearden, J., and O'Neill, H. (1940). *A guide to the selection and welding of low alloy structural steels*. Trans. Inst. Weld. 3: 203-214.

NIST (2012). "SEMATECH e-Handbook of Statistical Methods." Accessed January 17, 2023. https://doi.org/10.18434/M32189 Appendix A: Record of Evidence prior to Cutting

Figure A.1. B1R – NTSB-STR-001.

Figure A.2. B1R – NTSB-STR-002 & NTSB-STR-003.

Figure A.3. B1R – NTSB-STR-004.

Figure A.4. B1R – NTSB-STR-005.

Figure A.5. B1R – NTSB-STR-006.

Figure A.6. B1R – NTSB-STR-007.

Figure A.7. B1R – NTSB-STR-008.

Figure A.8. B1R – NTSB-STR-009.

March 28, 2023 HWY22MH003

Figure A.9. B1R – NTSB-STR-010.

Figure A.10. B1R – NTSB-STR-011.

Figure A.11. B1L – NTSB-STR-012.

Figure A.12. B1L – NTSB-STR-013.

Figure A.13. B1L – NTSB-STR-014.

Figure A.14. B1L – NTSB-STR-015.

Figure A.15. B1L – NTSB-STR-016.

Figure A.16. B1L – NTSB-STR-017.

Figure A.17. B2L – NTSB-STR-018.

Figure A.18. B2L – NTSB-STR-019 & NTSB-STR-020.

Figure A.19. B2L – NTSB-STR-021.

Figure A.20. B2L – NTSB-STR-022.

Figure A.21. B2L – NTSB-STR-023.

March 28, 2023 HWY22MH003

Figure A.22. B2L – NTSB-STR-024.

Figure A.23. B2L – NTSB-STR-025.

Figure A.24. B2R – NTSB-STR-026.

Figure A.25. B2R – NTSB-STR-027.

Figure A.26. B2R – NTSB-STR-028A (Taken at TFHRC).

Figure A.27. B2R – NTSB-STR-028B (Taken at TFHRC).

Figure A.28. B2R – NTSB-STR-029.

Figure A.29. B2R – NTSB-STR-030.

Figure A.30. B2R – NTSB-STR-031.

Figure A.31. B2R – NTSB-STR-032.

Appendix B: Cutting Plan

Figure B.2. B1R – NTSB-STR-002.

Span 2

Figure B.3. B1R – NTSB-STR-006.

Span 1 Longitudinal Stiffener

Span 2

Figure B.6. B1R – NTSB-STR-009.

Figure B.7. B1L – NTSB-STR-012.

Span 1

Figure B.8. B1L – NTSB-STR-014.

Span 1

Figure B.9. B1L – NTSB-STR-016.

Figure B.10. B2L – NTSB-STR-018.

Span 2

Figure B.11. B2L – NTSB-STR-022.

Span 2

Figure B.13. B2R – NTSB-STR-026.

Span 3

Figure B.14. B2R – NTSB-STR-028B.

Span 2

Span 3

Figure B.15. B2R – NTSB-STR-029.

Span 3

Figure B.16. B2R – NTSB-STR-031.

Appendix C: Specimen Extraction Shop Drawings

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 1A with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.1. 1A – NTSB-STR-001.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced. ³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 1B with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.2. 1B – NTSB-STR-001.

¹Component names are punched on both ends of the coupons.

²All scrap is labeled 1C with a paint pen.

³Coupons have a 2.515in. grip width to allow taper in the gage length.

Figure C.3. 1C – NTSB-STR-002.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the blank and CVN strip.

⁴All scrap is labeled 1C with a paint pen.

⁵Blank has a 2.515in. grip width.

Figure C.4. 1C – NTSB-STR-002.

1D (NTSB-STR-004)

¹Cut lines are spaced 1in. from the weld toes

²Punch component names on both the east and west ends

³All scrap can be labeled 1D with a paint pen, spray paint, or punch

Figure C.5. 1D – NTSB-STR-004.

1E (NTSB-STR-003)

¹Cut lines are spaced 1in. from the weld toes ²Punch component names on both the east and west ends

³All scrap can be labeled 1E with a paint pen, spray paint, or punch

Figure C.6. 1E – NTSB-STR-003.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 1Q with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.7. 1Q – NTSB-STR-006.

9.00in. min

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 1H with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.8. 1H – NTSB-STR-007.

Federal Highway AdministrationPage 76 of 233Factual Report – Mechanical and Materials Testing

March 28, 2023 HWY22MH003

¹Component names are punched on both ends of the coupons.

²All scrap is labeled 1U with a paint pen.

³Coupons have a 2.515in. grip width to allow taper in the gage length.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width)

²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 1N with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.10. 1N – NTSB-STR-008.

-Min CVN thickness of 0.394in. Take CVNs from S1 if the plate thickness is greater end, and/or shift the CVN/coupon grouping left/right.

³Mill scale/patina layer from the CVN strip is not faced.

⁴Component names are punched on both ends of the coupons, blank, and CVN strip.

⁵All scrap is labeled 1T with a paint pen.

⁶Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.11. 1T – NTSB-STR-009.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width)

 2 CNV strip is offset to the right 5/16in. such that the 9in. strip starts on the edge of the bandsaw line to minimize the HAZ influence.

³Mill scale/patina layer from the CVN strip is not faced.

⁴Component names are punched on both ends of the coupons, blank, and CVN strip.

⁵All scrap is labeled 1V with a paint pen.

⁶Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.12. 1V – NTSB-STR-011.

9.00in. min

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 2A with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.13. 2A – NTSB-STR-012.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width)
²Mill scale/patina layer from the CVN strip is not faced.
³Component names are punched on both ends of the coupons, blank, and CVN strip.
⁴All scrap is labeled 2B with a paint pen.
⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.14. 2B – NTSB-STR-012.

Federal Highway AdministrationPage 80 of 233Factual Report – Mechanical and Materials Testing

March 28, 2023 HWY22MH003

2D (NTSB-STR-014)

¹Cut lines are spaced 1in. from the weld toes

²Punch component names on both the east and west ends

³All scrap can be labeled 2D with a paint pen, spray paint, or punch

Figure C.15. 2D – NTSB-STR-014.

2E (NTSB-STR-014)

¹Cut lines are spaced 1in. from the weld toes ²Punch component names on both the east and west ends

³All scrap can be labeled 2E with a paint pen, spray paint, or punch

Figure C.16. 2E – NTSB-STR-014.

³Component names are punched on both ends of the coupons, blank, and CVN strip. ⁴All scrap is labeled 2Q with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.17. 2Q - NTSB-STR-014.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 2T with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.18. 2T – NTSB-STR-016.

¹Component names are punched on both ends of the coupons.

²All scrap is labeled 2U with a paint pen.

³Coupons have a 2.515in. grip width to allow taper in the gage length.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip. ⁴All scrap is labeled 3A with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.20. 3A – NTSB-STR-018.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 3B with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.21. 3B – NTSB-STR-018.

3E (NTSB-STR-020)

¹Cut lines are spaced 1in. from the weld toes

²Punch component names on both the east and west ends

³All scrap can be labeled 3E with a paint pen, spray paint, or punch

Figure C.22. 3E – NTSB-STR-020.

3F (NTSB-STR-020)

¹Cut lines are spaced 1 in. from the weld toes ²Punch component names on both the east and west ends ³All scrap can be labeled 3F with a paint pen, spray paint, or punch

Figure C.23. 3F – NTSB-STR-020.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 3Q with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.24. 3Q – NTSB-STR-022.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 3T with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.25. 3T – NTSB-STR-024.

Federal Highway AdministrationPage 88 of 233Factual Report – Mechanical and Materials Testing

March 28, 2023 HWY22MH003

¹Component names are punched on both ends of the coupons.

²All scrap is labeled 3U with a paint pen.

³Coupons have a 2.515in. grip width to allow taper in the gage length.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width)

²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip. ⁴All scrap is labeled 4A with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.27. 4A – NTSB-STR-026.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 4B with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.28. 4B – NTSB-STR-026.

4E (NTSB-STR-028A)

¹Cut lines are spaced 1in. from the weld toes

²Punch component names on both the east and west ends ³All scrap can be labeled 4E with a

³All scrap can be labeled 4E with a paint pen, spray paint, or punch

Figure C.29. 4E – NTSB-STR-028A.

4F (NTSB-STR-028A)

¹Cut lines are spaced 1in. from the weld toes

²Punch component names on both the east and west ends

³All scrap can be labeled 4F with a paint pen, spray paint, or punch

Figure C.30. 4F – NTSB-STR-028A.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 4Q with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.31. 4Q – NTSB-STR-028B.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width) ²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 4R with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.32. 4R – NTSB-STR-029.

Federal Highway AdministrationPage 93 of 233Factual Report – Mechanical and Materials Testing

March 28, 2023 HWY22MH003

¹Component names are punched on both ends of the coupons.

²All scrap is labeled 4U with a paint pen.

³Coupons have a 2.515in. grip width to allow taper in the gage length.

¹CVNs are nested in the L-T orientation, rough cut into a 9.00in. x 0.5in. min strip including kerf for 0.035in. blade (i.e. at least 0.5in material remaining across the width)

²Mill scale/patina layer from the CVN strip is not faced.

³Component names are punched on both ends of the coupons, blank, and CVN strip.

⁴All scrap is labeled 4T with a paint pen.

⁵Coupons and blanks have a 2.515in. grip width to allow taper in the gage length.

Figure C.34. 4T – NTSB-STR-031.

Appendix D: Tensile Test Results

Figure D.1. Stress-strain curve for specimen 1A1.

Figure D.2. Stress-strain curve for specimen 1A2.

Figure D.3. Stress-strain curve for specimen 1B1.

Figure D.4. Stress-strain curve for specimen 1B2.

Figure D.5. Stress-strain curve for specimen 1C1.

Figure D.6. Stress-strain curve for specimen 1C2.

Figure D.7. Stress-strain curve for specimen 1H1.

Figure D.8. Stress-strain curve for specimen 1H2.

Figure D.9. Stress-strain curve for specimen 1N1.

Figure D.10. Stress-strain curve for specimen 1N2.

Figure D.11. Stress-strain curve for specimen 1Q1.

Figure D.12. Stress-strain curve for specimen 1Q2.

Figure D.13. Stress-strain curve for specimen 1T1.

Figure D.14. Stress-strain curve for specimen 1T2.

Figure D.15. Stress-strain curve for specimen 1V1.

Figure D.16. Stress-strain curve for specimen 1V2.

Figure D.17. Stress-strain curve for specimen 2A1.

Figure D.18. Stress-strain curve for specimen 2A2.

Figure D.19. Stress-strain curve for specimen 2B1.

Figure D.20. Stress-strain curve for specimen 2B2.

Figure D.21. Stress-strain curve for specimen 2Q1.

Figure D.22. Stress-strain curve for specimen 2Q2.

Figure D.23. Stress-strain curve for specimen 2T1.

Figure D.24. Stress-strain curve for specimen 2T2.

Figure D.25. Stress-strain curve for specimen 3A1.

Figure D.26. Stress-strain curve for specimen 3A2.

Figure D.27. Stress-strain curve for specimen 3B1.

Figure D.28. Stress-strain curve for specimen 3B2.

Figure D.29. Stress-strain curve for specimen 3Q1.

Figure D.30. Stress-strain curve for specimen 3Q2.

Figure D.31. Stress-strain curve for specimen 3T1.

Figure D.32. Stress-strain curve for specimen 3T2.

Figure D.33. Stress-strain curve for specimen 4A1.

Figure D.34. Stress-strain curve for specimen 4A2, where the DIC camera unexpectedly shutoff.

Figure D.35. Stress-strain curve for specimen 4A2 duplicate (machined from 4A3).

Figure D.36. Stress-strain curve for specimen 4B1.

Figure D.37. Stress-strain curve for specimen 4B2.

Figure D.38. Stress-strain curve for specimen 4Q1.

Figure D.39. Stress-strain curve for specimen 4Q2.

Figure D.40. Stress-strain curve for specimen 4R1.

Figure D.41. Stress-strain curve for specimen 4R2.

Figure D.42. Stress-strain curve for specimen 4T1.

Figure D.43. Stress-strain curve for specimen 4T2.

Figure D.44. Stress-strain curve for specimen 1U1.

Figure D.45. Stress-strain curve for specimen 2U1.

Figure D.46. Stress-strain curve for specimen 3U1.

Figure D.47. Stress-strain curve for specimen 4U1.

Figure D.48. Completed tensile and chemical specimens for plate 1A (1A1, 1A2, 1A4).

Figure D.49. Completed tensile and chemical specimens for plate 1B (1B1, 1B2, 1B4).

Figure D.50. Completed tensile and chemical specimens for plate 1C (1C1, 1C2, 1C4).

Figure D.51. Completed tensile and chemical specimens for plate 1H (1H1, 1H2, 1H4).

Figure D.52. Completed tensile and chemical specimens for plate 1N (1N1, 1N2, 1N4).

Figure D.53. Completed tensile and chemical specimens for plate 1Q (1Q1, 1Q2, 1Q4).

Figure D.54. Completed tensile and chemical specimens for plate 1T (1T1, 1T2, 1T4).

Figure D.55. Completed tensile and chemical specimens for plate 1V (1V1, 1V2, 1V4).

Figure D.56. Completed tensile and chemical specimens for plate 2A (2A1, 2A2, 2A4).

Figure D.57. Completed tensile and chemical specimens for plate 2B (2B1, 2B2, 2B4).

Figure D.58. Completed tensile and chemical specimens for plate 2Q (2Q1, 2Q2, 2Q4).

Figure D.59. Completed tensile and chemical specimens for plate 2T (2T1, 2T2, 2T4).

Figure D.60. Completed tensile and chemical specimens for plate 3A (3A1, 3A2, 3A4).

Figure D.61. Completed tensile and chemical specimens for plate 3B (3B1, 3B2, 3B4).

Figure D.62. Completed tensile and chemical specimens for plate 3Q (3Q1, 3Q2, 3Q4).

Figure D.63. Completed tensile and chemical specimens for plate 3T (3T1, 3T2, 3T4).

Figure D.64. Completed tensile and chemical specimens for plate 4A (4A1, 4A2, 4A3 (4A2 duplicate), 4A4).

Figure D.65. Completed tensile and chemical specimens for plate 4B (4B1, 4B2, 4B4).

Figure D.66. Completed tensile and chemical specimens for plate 4Q (4Q1, 4Q2, 4Q4).

Figure D.67. Completed tensile and chemical specimens for plate 4R (4R1, 4R2, 4R4).

Figure D.68. Completed tensile and chemical specimens for plate 4T (4T1, 4T2, 4T4).

Figure D.69. Completed tensile and chemical specimens for longitudinal stiffener plate (1U1, 2U1, 3U1, 4U1, 1U4, 2U4, 3U4, 4U4).

	Temperature	Gauge Length	Measured Area	Yield	Tensile	Elongation at Fracture	Reduction in Area	Reduced Area
Specimen	(°F)	(in)	(in ²) ^a	(ksi)	(ksi)	(%)	(%)	(in^2)
1A1	64.5	7.573	4.502	53.2	81.2	25.5	57.3	1.921
1A2	64.6	7.575	4.500	53.7	81.5	27.8	56.0	1.981
1B1	70.1	8.212	1.017	53.5	77.5	22.3	55.8	0.449
1B2	70.1	8.250	1.014	54.1	77.9	22.4	55.2	0.455
1C1	64.8	7.511	4.505	52.2	76.7	28.2	57.0	1.937
1C2	64.0	7.323	4.503	53.3	77.8	26.8	56.8	1.943
1H1	64.7	7.719	3.612	65.6	95.5	21.0	50.2	1.798
1H2	64.9	7.678	3.603	66.2	96.3	20.2	48.0	1.875
1N1	64.2	7.793	3.192	54.6	79.4	27.1	63.4	1.167
1N2	68.2	8.150	3.194	55.6	80.0	27.1	62.4	1.201
1Q1	69.1	8.027	1.097	59.4	86.9	20.1	51.8	0.529
1Q2	69.0	8.102	1.103	58.3	86.6	20.5	53.3	0.515
1T1	71.8	2.151	0.607	51.8	77.3	34.3	47.8	0.317
1T2	71.6	2.129	0.622	52.3	78.0	34.9	48.5	0.320
1U1	71.1	7.928	0.609	56.7	79.5	18.0	48.0	0.317
1V1	71.9	2.065	0.665	55.4	79.7	24.8	33.1	0.445
1V2	71.8	1.990	0.659	56.6	81.8	24.9	34.5	0.431
2A1	65.0	7.039	4.502	56.1	84.2	24.9	52.6	2.135
2A2	64.8	7.091	4.503	53.9	81.2	26.0	55.6	1.998
2B1	70.2	8.058	1.125	47.4	69.3	27.5	59.5	0.456
2B2	70.9	8.259	1.131	48.3	69.1	27.7	59.8	0.455

Table D-1: Tensile test results for all specimens

March 28, 2023 HWY22MH003

		Gauge	Measured			Elongation	Reduction	Reduced
	Temperature	Length	Area	Yield	Tensile	at Fracture	in Area	Area
Specimen	(°F)	(in)	(in ²) ^a	(ksi)	(ksi)	(%)	(%)	(in^2)
2Q1	69.2	8.120	1.128	59.8	88.3	17.9	52.6	0.535
2Q2	69.3	8.087	1.121	61.0	88.7	18.2	52.2	0.536
2T1	66.4	7.959	0.591	54.0	76.7	20.7	48.5	0.304
2T2	71.8	7.947	0.591	53.3	76.1	22.4	49.1	0.301
2U1	70.8	7.970	0.588	57.7	78.8	19.8	50.4	0.292
3A1	64.2	7.233	4.514	52.7	80.3	26.0	54.8	2.040
3A2	63.7	7.846	4.511	53.6	81.5	26.3	51.8	2.174
3B1	70.9	8.113	1.130	49.0	72.2	22.8	59.5	0.458
3B2	70.8	7.984	1.122	49.6	72.9	21.3	55.0	0.504
3Q1	67.1	7.907	1.119	59.4	89.0	17.7	51.7	0.540
3Q2	67.1	7.899	1.121	58.9	88.4	17.9	52.7	0.530
3T1	70.6	7.966	0.602	54.6	78.7	22.0	49.1	0.306
3T2	72.0	7.981	0.602	54.6	79.1	19.3	47.7	0.314
3U1	71.6	8.027	0.606	56.2	80.6	16.3	47.6	0.317
4A1	64.5	7.720	4.523	54.7	82.6	26.2	55.2	2.028
4A2	65.0	7.946	4.512	55.6	82.9	9.1	52.9	2.125
4A2								
(duplicate)	69.8	7.762	4.505	55.1	83.2	25.4	51.3	2.193
4B1	71.0	8.117	1.164	49.5	72.8	22.9	60.7	0.457
4B2	71.0	8.043	1.167	49.7	72.5	23.5	60.3	0.464
4Q1	67.3	7.990	1.095	58.4	86.2	19.4	49.8	0.550
4Q2	68.9	7.990	1.098	58.0	85.9	19.2	50.4	0.545
4R1	72.4	7.954	0.795	56.7	74.6	22.0	50.5	0.393
4R2	72.4	7.906	0.795	55.0	74.2	23.6	52.3	0.379
4T1	72.0	7.944	0.611	51.4	74.9	21.1	49.8	0.307
4T2	72.4	8.040	0.606	52.0	76.1	23.7	49.3	0.307
4U1	71.4	8.004	0.563	57.4	80.3	18.3	47.2	0.297

Table D-1 (cont.): Tensile test results for all specimens.

^aPer A370-21 Section 9.5.1, the CNC machined center width was within 0.001 in. for both the 8 in. and 2 in. gauge length specimens and was therefore not included in Table D-1; the nominal machined center width is 1.500 in. Thickness measurements represent an average of three caliper measurement, reported to the nearest 0.001 in.

Appendix E: CVN Test Results

Specimen	Temperature (°F)	Energy (ft-lbf)	Specimen	Temperature (°F)	Energy (ft-lbf)
1AX	40.6	71.0	3BX	39.6	139.0
1AY	39.5	48.0	3BY	39.5	251.0
1AZ	39.5	44.0	3BZ	39.5	142.0
1BX	39.5	26.0	3QX	39.6	15.0
1BY	39.5	41.0	3QY	39.6	23.0
1BZ	40.2	40.0	3QZ	39.6	27.0
1CX	39.6	93.0	3TX	39.6	73.0
1CY	39.6	101.0	3TY	39.6	73.5
1CZ	39.5	96.0	3TZ	39.6	48.5
1HX	39.3	24.0	4AX	40	51.0
1HY	39.2	17.5	4AY	39.5	41.0
1HZ	39.3	32.5	4AZ	39.5	36.0
1NX	39.2	120.0	4BX	39.4	60.5
1NY	39.2	138.0	4BY	39.3	117.5
1NZ	39.2	138.0	4BZ	39.4	125.0
1QX	39.5	24.0	4QX	39.4	65.5
1QY	39.5	26.5	4QY	39.4	69.0
1QZ	39.5	25.0	4QZ	39.4	62.5
1TX	39.1	73.5	4RX	39.4	95.0
1TY	39.1	56.0	4RY	39.5	86.0
1TZ	39	46.0	4RZ	39.5	89.0
1VX	40.1	20.5	4TX	39.4	88.0
1VY	39.1	15.0	4TY	39.5	73.0
1VZ	39.7	32.0	4TZ	39.5	66.0
2AX	40.6	28.5			
2AY	39.7	42.0			
2AZ	39.5	34.0			
2BX	39.5	102.5			
2BY	39.5	102.0			
2BZ	39.5	96.0			
2QX	39.5	29.0			
2QY	39.5	38.0			
2QZ	39.5	20.5			
2TX	39.5	78.0			
2TY	39.5	94.5			
2TZ	39.5	85.5			
3AX	39.5	40.0			
3AY	39.5	33.5			
3AZ	39.5	47.0			

Table E-1: CVN impact results in the L-T direction.

Figure E.1. Shear fracture surfaces for plate 1A.

Figure E.2. Shear fracture surfaces for plate 1B.

Figure E.3. Shear fracture surfaces for plate 1C.

Figure E.4. Shear fracture surfaces for plate 1H.

Figure E.5. Shear fracture surfaces for plate 1N.

Figure E.6. Shear fracture surfaces for plate 1Q.

Figure E.7. Shear fracture surfaces for plate 1T.

Figure E.8. Shear fracture surfaces for plate 1V.

Figure E.9. Shear fracture surfaces for plate 2A.

Figure E.10. Shear fracture surfaces for plate 2B.

Figure E.11. Shear fracture surfaces for plate 2Q.

Figure E.12. Shear fracture surfaces for plate 2T.

Figure E.13. Shear fracture surfaces for plate 3A.

Figure E.14. Shear fracture surfaces for plate 3B.

Figure E.15. Shear fracture surfaces for plate 3Q.

Figure E.16. Shear fracture surfaces for plate 3T.

Figure E.17. Shear fracture surfaces for plate 4A.

Figure E.18. Shear fracture surfaces for plate 4B.

Figure E.19. Shear fracture surfaces for plate 4Q.

Figure E.20. Shear fracture surfaces for plate 4R.

Figure E.21. Shear fracture surfaces for plate 4T.

	% Shear	% Shear		% Shear	% Shear
Sample	Fracture Area	Fracture Area	Sample	Fracture Area	Fracture Area
ID	(Mask Area	(Pixel Intensity	ID	(Mask Area	(Pixel Intensity
	Method)	Method)		Method)	Method)
1AX	25	30	3BX	95	15
1AY	20	15	3BY	-	-
1AZ	15	25	3BZ	100	35
1BX	40	30	3QX	35	15
1BY	45	40	3QY	55	20
1BZ	40	30	3QZ	40	25
1CX	25	25	3TX	85	45
1CY	30	30	3TY	80	40
1CZ	25	25	3TZ	40	25
1HX	10	5	4AX	10	5
1HY	10	10	4AY	5	5
1HZ	15	20	4AZ	5	5
1NX	40	25	4BX	25	10
1NY	40	40	4BY	50	15
1NZ	45	30	4BZ	55	15
1QX	25	25	4QX	90	50
1QY	30	25	4QY	100	50
1QZ	25	25	4QZ	90	50
1TX	70	65	4RX	100	30
1TY	50	30	4RY	100	40
1TZ	40	25	4RZ	100	40
1VX	55	15	4TX	90	35
1VY	50	10	4TY	70	30
1VZ	85	20	4TZ	75	35
2AX	5	15			
2AY	10	15			
2AZ	10	15			
2BX	100	45			
2BY	100	45			
2BZ	95	40			
2QX	45	30			
2QY	70	40			
2QZ	50	25			
2TX	80	35			
2TY	100	45			
2TZ	95	50			
3AX	5	5			
3AY	5	5			
3AZ	10	5			

Table E-2: Percent shear fracture areas of CVN specimens.

Figure E.22. Shear fracture areas for specimen 1AX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.23. Shear fracture areas for specimen 1AY using a Mask Area Method (left) and a Pixel Intensity Method (right).

March 28, 2023 HWY22MH003

Figure E.24. Shear fracture areas for specimen 1AZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.25. Shear fracture areas for specimen 1BX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.26. Shear fracture areas for specimen 1BY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.27. Shear fracture areas for specimen 1BZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.28. Shear fracture areas for specimen 1CX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.29. Shear fracture areas for specimen 1CY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.30. Shear fracture areas for specimen 1CZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.31. Shear fracture areas for specimen 1HX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.32. Shear fracture areas for specimen 1HY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.33. Shear fracture areas for specimen 1HZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.34. Shear fracture areas for specimen 1NX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.35. Shear fracture areas for specimen 1NY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.36. Shear fracture areas for specimen 1NZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.37. Shear fracture areas for specimen 1QX using a Mask Area Method (left) and a Pixel Intensity Method (right).

March 28, 2023 HWY22MH003

Figure E.38. Shear fracture areas for specimen 1QY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.39. Shear fracture areas for specimen 1QZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.40. Shear fracture areas for specimen 1TX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.41. Shear fracture areas for specimen 1TY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.42. Shear fracture areas for specimen 1TZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.43. Shear fracture areas for specimen 1VX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.44. Shear fracture areas for specimen 1VY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.45. Shear fracture areas for specimen 1VZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.46. Shear fracture areas for specimen 2AX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.47. Shear fracture areas for specimen 2AY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.48. Shear fracture areas for specimen 2AZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.49. Shear fracture areas for specimen 2BX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.50. Shear fracture areas for specimen 2BY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.51. Shear fracture areas for specimen 2BZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.52. Shear fracture areas for specimen 2QX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.53. Shear fracture areas for specimen 2QY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.54. Shear fracture areas for specimen 2QZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.55. Shear fracture areas for specimen 2TX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.56. Shear fracture areas for specimen 2TY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.57. Shear fracture areas for specimen 2TZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.58. Shear fracture areas for specimen 3AX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.59. Shear fracture areas for specimen 3AY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.60. Shear fracture areas for specimen 3AZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.61. Shear fracture areas for specimen 3BX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.62. Shear fracture areas for specimen 3BY using a Mask Area Method (left) and a Pixel Intensity Method (right). Note this specimen did not separate in two pieces.

Figure E.63. Shear fracture areas for specimen 3BZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.64. Shear fracture areas for specimen 3QX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.65. Shear fracture areas for specimen 3QY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.66. Shear fracture areas for specimen 3QZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.67. Shear fracture areas for specimen 3TX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.68. Shear fracture areas for specimen 3TY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.69. Shear fracture areas for specimen 3TZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.70. Shear fracture areas for specimen 4AX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.71. Shear fracture areas for specimen 4AY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.72. Shear fracture areas for specimen 4AZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.73. Shear fracture areas for specimen 4BX using a Mask Area Method (left) and a Pixel Intensity Method (right).

March 28, 2023 HWY22MH003

Figure E.74. Shear fracture areas for specimen 4BY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.75. Shear fracture areas for specimen 4BZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.76. Shear fracture areas for specimen 4QX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.77. Shear fracture areas for specimen 4QY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.78. Shear fracture areas for specimen 4QZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.79. Shear fracture areas for specimen 4RX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.80. Shear fracture areas for specimen 4RY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.81. Shear fracture areas for specimen 4RZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.82. Shear fracture areas for specimen 4TX using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.83. Shear fracture areas for specimen 4TY using a Mask Area Method (left) and a Pixel Intensity Method (right).

Figure E.84. Shear fracture areas for specimen 4TZ using a Mask Area Method (left) and a Pixel Intensity Method (right).

	Lateral				
Specimen	Expansion ¹ (in.)	A1 (in.)	A2 (in.)	A3 (in.)	A4 (in.)
1AX	0.080	0.066	0.066	0.066	0.063
1AY	0.069	0.060	0.060	0.061	0.060
1AZ	0.062	0.057	0.057	0.057	0.057
1BX	0.049	0.050	0.050	0.051	0.048
1BY	0.063	0.056	0.058	0.055	0.057
1BZ	0.060	0.056	0.056	0.056	0.055
1CX	0.103	0.077	0.073	0.075	0.078
1CY	0.105	0.080	0.074	0.077	0.077
1CZ	0.105	0.075	0.076	0.081	0.079
1HX	0.042	0.047	0.046	0.047	0.047
1HY	0.036	0.044	0.043	0.042	0.044
1HZ	0.048	0.048	0.049	0.051	0.050
1NX	0.115	0.084	0.077	0.083	0.078
1NY	0.109	0.076	0.073	0.082	0.085
1NZ	0.122	0.087	0.077	0.087	0.077
1QX	0.045	0.048	0.049	0.048	0.047
1QY	0.041	0.048	0.048	0.045	0.044
1QZ	0.040	0.046	0.046	0.045	0.046
1TX	0.076	0.062	0.060	0.066	0.064
1TY	0.063	0.059	0.056	0.056	0.056
1TZ	0.058	0.055	0.053	0.053	0.055
1VX	0.037	0.044	0.044	0.044	0.045
1VY	0.032	0.041	0.041	0.041	0.043
1VZ	0.045	0.047	0.047	0.050	0.049
2AX	0.037	0.045	0.045	0.044	0.043
2AY	0.050	0.048	0.052	0.050	0.050
2AZ	0.039	0.046	0.046	0.045	0.044
2BX	0.081	0.065	0.064	0.068	0.066
2BY	0.080	0.064	0.064	0.068	0.054
2BZ	0.083	0.056	0.066	0.055	0.069
2QX	0.032	0.041	0.039	0.043	0.039
2QY	0.037	0.041	0.047	0.040	0.042
2QZ	0.024	0.039	0.035	0.037	0.036
2TX	0.064	0.054	0.058	0.056	0.058
2TY	0.073	0.054	0.062	0.063	0.053
2TZ	0.064	0.059	0.052	0.057	0.054
3AX	0.034	0.042	0.043	0.043	0.043
3AY	0.029	0.040	0.038	0.040	0.041
3AZ	0.041	0.047	0.047	0.046	0.046

Table E-3: Lateral expansion of CVN specimens.

	Lateral				
Specimen	Expansion ¹ (in.)	A1 (in.)	A2 (in.)	A3 (in.)	A4 (in.)
3BX	0.094	0.074	0.064	0.072	0.067
3BY	-	-	-	-	-
3BZ	0.077	0.060	0.062	0.067	0.046
3QX	0.013	0.031	0.031	0.034	0.033
3QY	0.021	0.037	0.037	0.033	0.036
3QZ	0.024	0.038	0.039	0.037	0.036
3TX	0.061	0.055	0.052	0.058	0.056
3TY	0.056	0.050	0.055	0.052	0.053
3TZ	0.042	0.048	0.045	0.046	0.045
4AX	0.053	0.048	0.046	0.045	0.057
4AY	0.031	0.040	0.041	0.041	0.042
4AZ	0.029	0.040	0.040	0.039	0.041
4BX	0.049	0.049	0.050	0.051	0.050
4BY	0.083	0.067	0.067	0.068	0.063
4BZ	0.076	0.064	0.063	0.064	0.063
4QX	0.051	0.049	0.054	0.049	0.048
4QY	0.052	0.050	0.051	0.053	0.049
4QZ	0.051	0.049	0.052	0.047	0.051
4RX	0.069	0.062	0.056	0.058	0.059
4RY	0.068	0.059	0.058	0.061	0.054
4RZ	0.070	0.059	0.061	0.052	0.061
4TX	0.068	0.057	0.059	0.061	0.054
4TY	0.057	0.051	0.056	0.053	0.052
4TZ	0.052	0.051	0.052	0.051	0.052

Table E-3 (cont.): Lateral expansion of CVN specimens.

¹The lateral expansion is calculated by summing the maximum of (A1, A2) and (A3, A4), and subtracting out a dail indicator zero for both values. In this case the dial indicator zero is 0.026 in. A dail indicator zero greater than zero was used to ensure the ability to capture negative expansion (contraction), which did not occur in this data set.

Appendix F: GDS Results

Table F-1: Raw GDS measurements.

а ·		C	N	с.	р	C	λι,	C	м	C	17	T .	N.T1	7	Г
Specimen	Analysis Date	C	Mn	S1	P	8	N1	Cr	Mo	Cu	V	11	Nb	Zr	Fe
1B4 Burn 1	12/16/2022 10:17	0.139	1.027	0.207	0.005	0.010	0.343	0.462	0.004	0.237	0.035	0.000	0.005	0.003	97.20
1B4 Burn 2	12/16/2022 10:22	0.137	1.031	0.212	0.005	0.010	0.342	0.464	0.005	0.238	0.035	0.000	0.005	0.003	97.19
1Q4 Burn 1	12/16/2022 10:26	0.163	1.151	0.218	0.015	0.012	0.081	0.561	0.012	0.282	0.037	0.000	0.002	0.004	97.21
1Q4 Burn 2	12/16/2022 10:30	0.179	1.219	0.225	0.017	0.033	0.084	0.581	0.013	0.293	0.040	0.001	0.003	0.004	97.10
1T4 Burn 1	12/16/2022 10:35	0.163	1.176	0.217	0.015	0.028	0.081	0.569	0.012	0.284	0.037	0.001	0.003	0.005	97.22
1T4 Burn 2	12/16/2022 10:38	0.173	1.190	0.223	0.016	0.024	0.084	0.571	0.013	0.288	0.038	0.001	0.002	0.004	97.18
1V4 Burn 1	12/16/2022 10:42	0.133	1.025	0.207	0.005	0.013	0.341	0.460	0.004	0.237	0.034	0.000	0.004	0.003	97.27
1V4 Burn 2	12/16/2022 10:46	0.147	1.058	0.218	0.005	0.022	0.349	0.470	0.004	0.249	0.035	0.000	0.004	0.004	97.25
2B4 Burn 1	12/16/2022 10:54	0.110	0.898	0.214	0.005	0.008	0.306	0.474	0.005	0.235	0.032	0.001	0.003	0.007	97.55
2B4 Burn 2	12/16/2022 11:00	0.120	0.913	0.218	0.006	0.010	0.311	0.481	0.006	0.241	0.033	0.001	0.003	0.004	97.51
2T4 Burn 1	12/16/2022 11:05	0.132	1.116	0.214	0.013	0.017	0.078	0.557	0.012	0.270	0.036	0.001	0.002	0.005	97.35
2T4 Burn 2	12/16/2022 11:09	0.135	1.096	0.210	0.012	0.014	0.077	0.553	0.012	0.268	0.036	0.000	0.002	0.004	97.43
2Q4 Burn 1	12/16/2022 11:14	0.180	1.187	0.216	0.015	0.018	0.084	0.582	0.015	0.274	0.038	0.001	0.003	0.000	97.18
2Q4 Burn 2	12/16/2022 11:18	0.173	1.193	0.221	0.016	0.021	0.084	0.584	0.014	0.275	0.038	0.000	0.002	0.000	97.17
2A4 Burn 1	12/16/2022 11:23	0.156	1.161	0.273	0.014	0.024	0.352	0.557	0.007	0.265	0.030	0.001	0.004	0.000	96.79
2A4 Burn 2	12/16/2022 11:26	0.155	1.153	0.281	0.014	0.022	0.351	0.553	0.007	0.265	0.030	0.001	0.004	0.000	96.75
3B4 Burn 1	12/16/2022 11:30	0.122	1.085	0.251	0.007	0.023	0.350	0.498	0.007	0.264	0.038	0.000	0.002	0.000	97.25
3B4 Burn 2	12/16/2022 11:33	0.122	1.054	0.256	0.008	0.019	0.350	0.503	0.007	0.267	0.038	0.000	0.002	0.000	97.21
3U4 Burn 1	12/16/2022 11:35	0.095	1.116	0.257	0.007	0.011	0.309	0.578	0.011	0.230	0.053	0.000	0.002	0.000	97.28
3U4 Burn 2	12/16/2022 11:37	0.090	1.125	0.264	0.007	0.008	0.314	0.580	0.011	0.231	0.055	0.000	0.002	0.000	97.17
3Q4 Burn 1	12/16/2022 11:40	0.173	1.313	0.235	0.017	0.024	0.085	0.588	0.016	0.270	0.038	0.000	0.002	0.000	97.13
3Q4 Burn 2	12/16/2022 11:42	0.174	1.290	0.229	0.016	0.018	0.084	0.584	0.015	0.267	0.038	0.000	0.002	0.000	97.12
3T4 Burn 1	12/16/2022 11:45	0.161	1.342	0.245	0.025	0.033	0.090	0.612	0.016	0.289	0.040	0.001	0.002	0.000	97.00
3T4 Burn 2	12/16/2022 11:47	0.152	1.276	0.232	0.018	0.028	0.085	0.592	0.015	0.273	0.038	0.001	0.003	0.000	97.17
3A4 Burn 1	12/16/2022 11:49	0.148	1.183	0.246	0.019	0.025	0.345	0.548	0.009	0.265	0.030	0.001	0.003	0.000	96.93
3A4 Burn 2	12/16/2022 11:51	0.145	1.186	0.245	0.019	0.023	0.344	0.549	0.008	0.265	0.030	0.001	0.002	0.000	96.91
4U4 Burn 1	12/16/2022 11:56	0.094	1.119	0.253	0.008	0.022	0.322	0.582	0.011	0.239	0.054	0.000	0.003	0.000	97.11
4U4 Burn 2	12/16/2022 11:58	0.088	1.102	0.255	0.007	0.017	0.318	0.578	0.011	0.235	0.053	0.000	0.004	0.000	97.10
4B4 Burn 1	12/16/2022 12:00	0.126	1.064	0.210	0.007	0.014	0.307	0.549	0.008	0.240	0.026	0.001	0.004	0.000	97.14
4B4 Burn 2	12/16/2022 12:02	0.122	1.070	0.209	0.008	0.014	0.308	0.551	0.009	0.240	0.026	0.001	0.004	0.000	97.19
4Q4 Burn 1	12/16/2022 12:05	0.171	1.197	0.219	0.014	0.024	0.085	0.585	0.015	0.273	0.039	0.000	0.002	0.000	97.12
4Q4 Burn 2	12/16/2022 12:07	0.169	1.201	0.221	0.016	0.030	0.085	0.588	0.016	0.273	0.039	0.000	0.003	0.000	97.10

Federal Highway Administration Factual Report – Mechanical and Materials Testing

Table F-1 (cont.): Raw GDS measurements.

Specimen	Analysis Date	С	Mn	Si	Р	S	Ni	Cr	Mo	Cu	V	Ti	Nb	Zr	Fe
4A4 Burn 1	12/16/2022 12:09	0.147	1.136	0.275	0.013	0.020	0.351	0.554	0.008	0.260	0.031	0.001	0.002	0.000	96.84
4A4 Burn 2	12/16/2022 12:12	0.148	1.127	0.274	0.012	0.022	0.349	0.552	0.008	0.257	0.030	0.001	0.004	0.000	96.85
4R4 Burn 1	12/16/2022 12:15	0.167	1.192	0.217	0.014	0.031	0.084	0.582	0.015	0.268	0.038	0.000	0.003	0.000	97.10
4R4 Burn 2	12/16/2022 12:17	0.158	1.134	0.213	0.013	0.021	0.082	0.571	0.015	0.261	0.037	0.000	0.003	0.000	97.17
4T4 Burn 1	12/16/2022 12:19	0.142	1.131	0.209	0.012	0.014	0.082	0.571	0.015	0.260	0.037	0.000	0.003	0.000	97.19
4T4 Burn 2	12/16/2022 12:22	0.155	1.166	0.217	0.014	0.016	0.084	0.580	0.016	0.267	0.037	0.000	0.003	0.000	97.17
1U4 Burn 1	12/16/2022 12:24	0.090	1.105	0.255	0.007	0.016	0.320	0.584	0.012	0.240	0.055	0.000	0.003	0.000	97.02
1U4 Burn 2	12/16/2022 12:26	0.089	1.104	0.252	0.007	0.016	0.319	0.582	0.011	0.239	0.055	0.000	0.004	0.000	97.00
1N4 Burn 1	12/16/2022 12:29	0.077	1.276	0.487	0.021	0.026	0.068	0.119	0.011	0.103	0.024	0.010	0.003	0.000	97.81
1N4 Burn 2	12/16/2022 12:31	0.067	1.423	0.624	0.023	0.027	0.066	0.109	0.011	0.095	0.024	0.015	0.006	0.000	97.56
1H4 Burn 1	12/16/2022 12:35	0.183	1.205	0.217	0.015	0.015	0.161	0.641	0.015	0.334	0.062	0.001	0.003	0.000	96.93
1H4 Burn 2	12/16/2022 12:38	0.185	1.207	0.215	0.015	0.016	0.161	0.640	0.016	0.331	0.063	0.001	0.004	0.000	96.84
1A4 Burn 1	12/16/2022 12:45	0.158	1.187	0.240	0.018	0.024	0.341	0.551	0.009	0.265	0.030	0.001	0.002	0.000	96.91
1A4 Burn 2	12/16/2022 12:48	0.148	1.242	0.258	0.018	0.025	0.341	0.551	0.008	0.266	0.030	0.001	0.003	0.000	96.93
2U4 Burn 1	12/16/2022 12:50	0.097	1.152	0.256	0.007	0.014	0.318	0.591	0.011	0.238	0.055	0.000	0.002	0.000	97.16
2U4 Burn 2	12/16/2022 12:52	0.094	1.085	0.245	0.006	0.017	0.314	0.577	0.012	0.231	0.054	0.000	0.003	0.000	97.21
1C4 Burn 1	12/16/2022 12:55	0.092	1.228	0.266	0.009	0.018	0.337	0.599	0.013	0.325	0.075	0.000	0.003	0.000	96.91
1C4 Burn 2	12/16/2022 12:57	0.097	1.239	0.268	0.009	0.018	0.339	0.599	0.012	0.326	0.075	0.000	0.002	0.000	96.84

Table F-7. Averaged (TDS measurements	ner snecimen
Tuble 1 2. Averaged GDB measurements	per speemien.

Specimen	С	Mn	Si	Р	S	Ni	Cr	Mo	Cu	V	Ti	Nb	Zr	Fe
1B4	0.138	1.029	0.210	0.005	0.010	0.343	0.463	0.005	0.238	0.035	0.000	0.005	0.003	97.20
1Q4	0.171	1.185	0.222	0.016	0.023	0.083	0.571	0.013	0.288	0.039	0.001	0.003	0.004	97.16
1T4	0.168	1.183	0.220	0.016	0.026	0.083	0.570	0.013	0.286	0.038	0.001	0.003	0.005	97.20
1V4	0.140	1.042	0.213	0.005	0.018	0.345	0.465	0.004	0.243	0.035	0.000	0.004	0.004	97.26
2B4	0.115	0.906	0.216	0.006	0.009	0.309	0.478	0.006	0.238	0.033	0.001	0.003	0.006	97.53
2T4	0.134	1.106	0.212	0.013	0.016	0.078	0.555	0.012	0.269	0.036	0.001	0.002	0.005	97.39
2Q4	0.177	1.190	0.219	0.016	0.020	0.084	0.583	0.015	0.275	0.038	0.001	0.003	0.000	97.18
2A4	0.156	1.157	0.277	0.014	0.023	0.352	0.555	0.007	0.265	0.030	0.001	0.004	0.000	96.77
3B4	0.122	1.070	0.254	0.008	0.021	0.350	0.501	0.007	0.266	0.038	0.000	0.002	0.000	97.23
3U4	0.093	1.121	0.261	0.007	0.010	0.312	0.579	0.011	0.231	0.054	0.000	0.002	0.000	97.23
3Q4	0.174	1.302	0.232	0.017	0.021	0.085	0.586	0.016	0.269	0.038	0.000	0.002	0.000	97.13
3T4	0.157	1.309	0.239	0.022	0.031	0.088	0.602	0.016	0.281	0.039	0.001	0.003	0.000	97.09
3A4	0.147	1.185	0.246	0.019	0.024	0.345	0.549	0.009	0.265	0.030	0.001	0.003	0.000	96.92
4U4	0.091	1.111	0.254	0.008	0.020	0.320	0.580	0.011	0.237	0.054	0.000	0.004	0.000	97.11
4B4	0.124	1.067	0.210	0.008	0.014	0.308	0.550	0.009	0.240	0.026	0.001	0.004	0.000	97.17
4Q4	0.170	1.199	0.220	0.015	0.027	0.085	0.587	0.016	0.273	0.039	0.000	0.003	0.000	97.11
4A4	0.148	1.132	0.275	0.013	0.021	0.350	0.553	0.008	0.259	0.031	0.001	0.003	0.000	96.85
4R4	0.163	1.163	0.215	0.014	0.026	0.083	0.577	0.015	0.265	0.038	0.000	0.003	0.000	97.14
4T4	0.149	1.149	0.213	0.013	0.015	0.083	0.576	0.016	0.264	0.037	0.000	0.003	0.000	97.18
1U4	0.090	1.105	0.254	0.007	0.016	0.320	0.583	0.012	0.240	0.055	0.000	0.004	0.000	97.01
1N4	0.072	1.350	0.556	0.022	0.027	0.067	0.114	0.011	0.099	0.024	0.013	0.005	0.000	97.69
1H4	0.184	1.206	0.216	0.015	0.016	0.161	0.641	0.016	0.333	0.063	0.001	0.004	0.000	96.89
1A4	0.153	1.215	0.249	0.018	0.025	0.341	0.551	0.009	0.266	0.030	0.001	0.003	0.000	96.92
2U4	0.096	1.119	0.251	0.007	0.016	0.316	0.584	0.012	0.235	0.055	0.000	0.003	0.000	97.19
1C4	0.095	1.234	0.267	0.009	0.018	0.338	0.599	0.013	0.326	0.075	0.000	0.003	0.000	96.88

Table F-3: NIST SRM 1269 checks.

Name	Analysis Date	С	Mn	Si	Р	S	Ni	Cr	Mo	Cu	V	Ti	Nb	Zr	Fe
Initial Check	12/16/2022 10:01	0.300	1.376	0.190	0.010	0.003	0.104	0.190	0.034	0.090	0.011	0.008	0.001	0.006	97.49
Intermediate Check	12/16/2022 10:50	0.293	1.373	0.190	0.011	0.004	0.104	0.192	0.034	0.091	0.011	0.007	0.002	0.005	97.61
Intermediate Check	12/16/2022 11:53	0.300	1.401	0.184	0.011	0.003	0.106	0.200	0.038	0.085	0.011	0.007	0.000	0.000	97.47
Final Check	12/16/2022 12:59	0.300	1.389	0.182	0.011	0.002	0.107	0.198	0.039	0.084	0.011	0.007	0.000	0.000	97.43

Table F-4: Drift check with condition block.

Conditioning															
Sample	Analysis Date	С	Mn	Si	Р	S	Ni	Cr	Mo	Cu	V	Ti	Nb	Zr	Fe
1	12/16/2022 7:34	0.088	1.356	0.392	0.015	0.001	0.294	0.545	0.054	0.320	0.063	0.009	0.006	0.000	96.87
2	12/16/2022 8:43	0.097	1.367	0.389	0.015	0.000	0.300	0.539	0.053	0.324	0.061	0.002	0.004	0.005	96.90
3	12/16/2022 8:50	0.099	1.333	0.389	0.015	0.001	0.300	0.529	0.052	0.321	0.062	0.001	0.004	0.004	96.86
4	12/16/2022 8:59	0.090	1.274	0.387	0.016	0.002	0.300	0.533	0.052	0.323	0.062	0.001	0.006	0.003	96.83
5	12/16/2022 9:30	0.250	0.530	0.056	0.009	0.035	0.028	0.026	0.005	0.063	0.007	0.000	0.005	0.003	98.76
6	12/16/2022 9:37	0.251	0.528	0.056	0.008	0.036	0.028	0.026	0.005	0.063	0.008	0.000	0.005	0.003	98.82
7	12/16/2022 9:44	0.244	0.533	0.056	0.009	0.037	0.029	0.026	0.005	0.063	0.008	0.000	0.005	0.004	98.88
8	12/16/2022 9:52	0.250	0.532	0.056	0.008	0.039	0.028	0.026	0.005	0.063	0.007	0.000	0.006	0.003	98.81

Appendix G: Macroetches

Figure G.1. Macroetch of 1D5 with planar reference scales.

Figure G.2. Macroetch of 1D6 with planar reference scales.

Figure G.3. Macroetch of 1D7 with planar reference scales.

Figure G.4. Macroetch of 1D8 with planar reference scales.

Figure G.5. Macroetch of 1D9 with planar reference scales.

Figure G.6. Macroetch of 1E5 with planar reference scales.

Figure G.7. Macroetch of 1E6 with planar reference scales.

Figure G.8. Macroetch of 1E7 with planar reference scales.

Figure G.9. Macroetch of 1E8 with planar reference scales.

Figure G.10. Macroetch of 1E9 with planar reference scales.

Figure G.11. Macroetch of 2D5 with planar reference scales.

Figure G.12. Macroetch of 2D6 with planar reference scales.

Figure G.13. Macroetch of 2D7 with planar reference scales.

Figure G.14. Macroetch of 2D8 with planar reference scales.

Figure G.15. Macroetch of 2D9 with planar reference scales.

Figure G.16. Macroetch of 2E5 with planar reference scales.

Figure G.17. Macroetch of 2E6 with planar reference scales.

Figure G.18. Macroetch of 2E7 with planar reference scales.

Figure G.19. Macroetch of 2E8 with planar reference scales.

Figure G.20. Macroetch of 2E9 with planar reference scales.

Figure G.31. Macroetch of 3E5 with planar reference scales.

Figure G.32. Macroetch of 3E6 with planar reference scales, taken in the vertical position (90degree planar rotation) for improved camera focus.

Figure G.33. Macroetch of 3E7 with planar reference scales, taken in the vertical position (90degree planar rotation) for improved camera focus.

Figure G.34. Macroetch of 3E8 with planar reference scales. The right half of the specimen separated during preparation and is supported by a machined 1-2-3 block.

Figure G.35. Macroetch of 3E9 with planar reference scales.

Figure G.36. Macroetch of 3F5 with planar reference scales.

Figure G.37. Macroetch of 3F6 with planar reference scales.

Figure G.38. Macroetch of 3F7 with planar reference scales.

Figure G.39. Macroetch of 3F8 with planar reference scales.

Figure G.40. Macroetch of 3F9 with planar reference scales.

Figure G.41. Macroetch of 4E5 with planar reference scales.

Figure G.42. Macroetch of 4E6 with planar reference scales.

Figure G.43. Macroetch of 4E7 with planar reference scales.

Figure G.44. Macroetch of 4E8 with planar reference scales.

Figure G.45. Macroetch of 4E9 with planar reference scales.

Figure G.46. Macroetch of 4F5 with planar reference scales.

Figure G.47. Macroetch of 4F6 with planar reference scales.

Figure G.48. Macroetch of 4F7 with planar reference scales.

Figure G.49. Macroetch of 4F8 with planar reference scales.

Figure G.50. Macroetch of 4F9 with planar reference scales.

Appendix H: Supporting Calibration, Service, and SRM Documentation

Customer Address: 6300 Georgetown Pike McLean, VA 22101 US

MTS Field Service

MTS Systems Corporation

14000 Technology Drive Eden Prairie, MN 55344-2290

Certificate of Calibration

 Customer
 Name: Federal Highway Adminitstration
 Certificate Number: 11210-319

 System ID: 222
 MTS System No: US1_39341
 Site: 505729

 Machine ID: 222
 Location: Structures Lab
 Country: US

Device Type: Length Device ID: LVDT Conditioner Model: 494.16 AC S2-J3A Readout Device Model: 494.06 Model: 244.51 Manufacturer: MTS Serial No.: 2054484 Serial No.: 2070160 Serial No.: 1029526 Manufacture Date: None

Channel: Displacement

MTS Field Service is accredited by the American Association for Laboratory Accreditation (A2LA Cert. No. 1145.01). The basis for this accreditation is the international standard for calibration laboratories, ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories".

Defined and documented measurement assurance techniques or uncertainty analyses are used to verify the adequacy of the measurement processes.

Calibrations are performed with standards whose values and measurements are traceable to the International System of Units (SI) through a National Metrology Institute (NMI).

The results of this calibration relate only to the items calibrated.

When parameter(s) are reported to be within specified tolerance(s), the measured value(s) shall fall within the appropriate specification limit and the uncertainty of the measured value(s) shall be stated.

CALIBRATION INFORMATION

In Tolerance 09-Aug-2022 As Found: Calibration Date: As Left: In Tolerance Calibration Due: 09-Aug-2023 В Class: Calibration Procedure: FS-CA 2124 Rev. G ASTM E2309/E2309M-20 Full Scale Ranges: 3 in Return to zero errors are not included in the Classification Criteria. Note:

STANDARDS USED FOR CALIBRATION

MTS Asset Number	Manufacturer	Model Number	Description	Cal. Date	<u>Cal. Due</u>
26928	Rotronic	HL-20D	Temp & Hum Meter	10-Aug-21	10-Aug-22
22355	MTS	MTS 1800	Displacement Calibrator	7-Jul-21	24-Aug-22

Performed by

Issued on: 9-Aug-22

Calibration Report

Baseline The Source and Tag an	Notion Type: The control of the contrel of the control of the contrel of the control of the contrel o	Customor		Namo	Endoral Llia		nitetration					Dop	Page	: 2 01 3		
Matchine US: 22 Location: Shuckares Lab Country: US upperative Device Di: VUDT Manufactures: MTS Samita No:: 1028565 Device Di: VUDT Manufactures: MTS Manufactures Date: None Conditioner Model: 404.16 AC 38.3.0A Samita No:: 2007465 Channel: Diglacement Conditioner Model: 404.16 AC 38.3.0A Samita No:: 2007465 Channel: Diglacement Conditioner Model: 404.16 AC 38.3.0A Samita No:: 2007465 Channel: Diglacement Conditioner Model: 404.16 AC 38.0A ASTM E2309/E2309M.20 Channel: Diglacement Matte Directorer Model: 404.16 AC 38.0A ASTM E2309/E2309M.20 Sanotard Aster No:: 2056 David Weight Set: KA Canotard Aster No:: 2056 Sanotard Aster No:: 2056 Organization: KA DMM: NA Standardstree: NA Condent Canotard Aster No:: 2056 Organization: KA DMM: NA Standardstree: NA Condent Canotard Aster No:: 2056 Organization: KA ASTM E2309/Classification: NA Cable Linght: 30 Feet Final Feenperature: 75 F Intell Humidit: 00.5000 Final Feenperature: 75 F Final Feenperature: 75 F Final Feenperature: 76 F Readifyrade: 10000 Tork	Machine Dr. 202 Inclusion: Structures Lab Country: US Appending Device Tip: US Mandradurus: MTS Serial No:: 1020566 Analysis Mandradurus: MTS Mandradurus: Date: None Mandradurus: Date: None Conditioner Model: 404.16 AOS 53.34 Serial No:: 202066 Mandradurus: Date: None Mandradurus: Date: None Calibration Insis bein performed In according with: ASTM E2309/E2300M.20 Mandradurus: Date: None Market Mathematical Mathmatematical Mathematical Mathematical Mathematical Mathma	Justomer		System ID:	200	Inway Aurin	MTS	System No:	1151 30341			нер	Sito	505720		
puppent Device Tigs: Length Model: 244.51 Serial No.: 10/20266 Device Tigs: Length Device Tigs: Length Manufacture: MS Manufacture: Date: None Readout Device Model: 444.65 Safetal No.: 2026/86 Channel: Displacement Conciliationer Model: 444.66 Safetal No.: 2027/166 Channel: Displacement Calibration has been proformed maccordance with: ASTM E2300/E2000/E200 ACIS Version: 12.1 Calibration has been proformed maccordance with: ASTM E2300/E2000/E200 Calibration Na Standard.aset No.: 2280 Allow of Version: NA DMM: NA Digital Indicator: NA Lower Limit: NA Lower Limit: NA Torprorration: X SF Final Temperature: 75 F Build and text: 200 Additional Equipment: NA Standardzer: NA Lower Limit: NA Intellar Temperature: X Final Humidity: 60 % Plantardy: Provide: Na Cable Length: 30 Feel Intellar Temperature: X Final Humidity: 60 % Plantardy: Provide: Na Cable Length: 30 Feel Intellar Temperature: X Final Humidity: 60 % Plantardy: Plantardy: Plantardy: Plantardy: Plantardy: Plantardy:	Instrument Device Type: Length Model: 244.51 Sorial No.: 1020536 Device Type: Length Manufacture VIIS Manufacture Date: None Readout Device Mode: 444.65 OS 23.33 Sorial No.: 200160 Channel: Depicement Calization for Mode: 444.65 OS 23.34 Sorial No.: 200160 Channel: Depicement Calization has been performed in accordance with: ASTM E2309/E2300M.20 ACS Version: 12.1 Calization has been performed in accordance with: ASTM E2309/E2300M.20 Standard Asset No.: 2236 Device Support Tamporture Readout:: 75 F Final Temperature: 75 F Tamporture Readout:: 75 F Final Temperature: 75 F Final Temperature: 75 F Initial HumidBy: 60 % Final HumidBy: 60 % Final HumidBy: 60 % Initial HumidBy: 00 % Final HumidBy: 60 % Final HumidBy: Final HumidBy: Initial HumidBy: 00 % Final HumidBy: Final HumidBy: Final HumidBy: Final HumidBy: Initial HumidBy: 00 % Final HumidBy: Final HumidBy: Final HumidBy: Final HumidBy: <		Machine ID: 222 Location: Structures Lab Country: US													
Device Type: Length Mode: 24.51 Serial No.: 102968 Device DI: LYDT Manufacture: MTS Manufacture: Date: None Conditionar Mode: 44.16 ACS 25.3A Serial No.: 205484 Manufacture: Date: None Conditionar Mode: 44.06 Serial No.: 205484 Control Date: Displacement Conditionar Mode: 44.06 Serial No.: 205484 Control Date: Displacement Conditionar Mode: 44.06 Serial No.: 2056 Channel: Displacement Mathematic Name Statule 2008/2008/2008 Control Name Control Name Mathematic Name Statule 2008/2008/2008 Statule 2008/2008/2008 Control Name	Device Tip: Device Tip: Device Tip: Series Tip: Series Tip: Series Tip: Series Tip: eduar Mandacleure:	auipment		Widdhine ID.				Loouton.	Oli dolarco E				oounay			
Dovid D: UVDT Manufacturer MTs Manufacture Date: None Raddout Devide Model: 44.06 Sertal No: 2070160 Channel: Displacement MTS Procedure: FSCA 214 44.06 Sertal No: 2070160 Channel: Displacement ACS Version: 12.1 Calination Date base per performant Method Battanon Equipment Asset No: STM E2300F2300H200 Standard Asset No: 2285 Mattanon Equipment Asset No: Devid Weight Sei: NA Standard Asset No: 2285 Standard Asset No: 2285 Mattanon Equipment Asset No: Devid Weight Sei: NA Standard Asset No: 2285 Standard Asset No: 2285 Mattanon Equipment Asset No: Temperature Resolut: 20028 Addition Equipment: NA Standard Asset No: 2285 Mattanon Equipment NA Standard Asset No: 2285 Addition Equipment: NA Standard Asset No: 2285 Mattanon Equipment NA Standard Asset No: 20005 Standard Asset No: 2005 Standard Asset No: 2005 Mattanon Equipment NA As Found State NA Standard Asset No: 2005 Standard Asset No: 2005 Mattanon Equipment NA As Found State NA Standard Asset No: 2005 Standard Asset No: 2005 Mattanon Equipment NA As Found State State State NO: 2005 Found State NO: 20	Dovid Dir. VLDT Manufachuro: MTS Manufachuro: MTS Manufachuro: Jassi Zamani Kanani Zamani Zam	CA CA		Device Type:	Length			Model:	244.51		Serial No.:	1029526				
Conditioner Moder: 44.1 & ACS 25/34. Senter No: 207484 Total Total Nove Moder: 44.0 & Senter No. 20748 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.20 Calibration has been parformed in accordance with: AST ME 2500/E20004.2000.100 Calibration has been parformed in accordance with: Calibration has been parformed in accordance with: AST ME 2500/E20004.2000.10000.100 Calibration has been parformed in accordance with: Calor Difference Calor Difference As Adjusted: Calibration has been parformed in accordance with: Calor Difference As Adjusted: Calibration has been parformed in accordance with: Pase: 42.000 Calor Difference Fall Ammidity: Pase: 42.000 Sante Adjusted: Calor Difference Calor Difference Total Adjust	<text>Conditioner Model: 49.14 AC 82.94.04Sortial No.: 205484 Sertial No.: 20570160Channet: DisplacementCatorMits Procedure: FS-CA 2124 Rev.0 Catoration has been performed in accordance with: Catoration has been performed in accordance with: Cato</text>			Device ID:	LVDT		Ma	anufacturer:	MTS		Manufa	acture Date:	None			
	Radout Dovice Model: 24.06 Sential No: 2070160 Channel: Displacement MTS Procedure: FS CA 2124 RPr G. Calination for hacoutanov mittic: ASTM E2309/E2309M-20 ACS version: 21.1 Mathing of Verification: Follow-the-Displacement Method Statement Master No. State E2309/E2309M-20 Standard Asset No. Temperature Readout: 5928 Additional Equipment: NA Digital indicator: NA Uncomposation: NA Temperature Readout: 5928 Standard Asset No. Temperature Readout: 5928 Additional Equipment: NA Standard Metric NA Temperature: Roadout: 5928 Calination (State 100, State		Cond	itioner Model:	494.16 AC	S2-J3A		Serial No.:	2054484							
<text><table-container> To Production: PS-CA 2124 EPA (. 1) STM E 2004 DPA: 15.00 47.00 10.000 1</table-container></text>	And the second participant is a constrained with		Readout D	evice Model:	494.06			Serial No.:	2070160		Channel:	Displaceme	ent			
MTS Proceeding in accordance of the Displacement Mathed attraction table one profession of the accordance of the Displacement Mathed attraction componentiation is accordance of the Displacement Mathed Attraction Protein Componentiation is accordance of the Displacement Attraction accordance	MTS Proceedure: FS-CA 212 APP.0 ACS Version: 12.1 Catarbation base how proferement methods ASTM E2309/E2309M-20 Method of Verification: Foldow the Displacement Method Sature 2309/E2309M-20 Componention: K Sature 2309/E2309M-20 Temperature Readou: 26628 Additional Equipment: NA Standard Asset No: 2305 Temperature Readou: 26628 Additional Equipment: NA Standard Asset No: 2305 Temperature Readou: 26628 Additional Equipment: NA Standard Asset No: 2305 Temperature Readou: 26628 Additional Equipment: NA Standard Asset No: 2305 Temperature: Readou: 2675 Build in Colonal: NA Calo Length: 20 Fed Temperature: Readou: 2676 As Found: Temperature: Readou: 2676 Readou: 2676 Temperature: Readou: 2676 As Found: Temperature: Readou: 2676 Readou: 2676 Temperature: Readou: 2676 Temperature: Readou: 2676 Readou: 2676 Readou: 2676 Temperature: Readou: 2676 Temperature: Readou: 2676 Readou: 2676 Readou: 2676 Readou: 2676 Temperature: Readou: 2676 Readou: 26767 Readou: 2676 Readou: 2676	Procedure										80				
Calibration has bone parformed in accordance with the table Badd Veight Sam: A Badd Veight Sam: A Decod Veight Sam: A <td>Although has been proformed in accordance with Marking ASTM E 2308/E2308/04 20 Determinant Asset Name Determinant Asset Name Standard Asset Name Standard Asset Name Determinant Asset Name Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Name Determinant Determinant</td> <td></td> <td>MT</td> <td>S Procedure:</td> <td>FS-CA 212</td> <td>4 Rev. G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A</td> <td>CS Version:</td> <td>12.1</td>	Although has been proformed in accordance with Marking ASTM E 2308/E2308/04 20 Determinant Asset Name Determinant Asset Name Standard Asset Name Standard Asset Name Determinant Asset Name Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Asset Name Determinant Asset Name Determinant Asset Name Determinant Asset Name Offer Composition: NA Determinant Name Determinant		MT	S Procedure:	FS-CA 212	4 Rev. G								A	CS Version:	12.1
Method of Verification: Follow the Olsplacement Method Standard Asset No: 2386 Birdinde Equipment Asset No: Decemporation: NA Decemporation: NA Standard Asset No: 2386 Comporation: PA Beadout: 28928 Additional Equipment: NA Standard.cer: NA Cale Length: 20 Fer Initial Ferenard: Comporation: PA Standard.cer: NA Standard.cer: NA Cale Length: 20 Fer Initial Ferenard: Comporation: Comporatin: Comporatin: Comporatin: Comporation: Comporation: Comporation:	Mathematical Verification: Follow the Displacement Method Standard Mass No. Standard Mass No. Dead Weigh Sei: NA Temperature Readout: 26828 Additional Equipment: NA StandardZer: NA Temperature Readout: 26828 Additional Equipment: NA StandardZer: NA Temperature: 75 F Final Temperature: 75 F Budinectional: NA Cable Length: 30 Fed Ortano: As Adjusted As Found: Temperature: 75 F Dataffy(-): Refraction Cable Length: 30 Fed Ortano: As Adjusted As Found: Temperature: 75 F Pater 12000 Temperature: 75 F Cable Length: 30 Fed Ortano: Temperature: 75 F Final Ferrer: Temperature: 75 F Pater 12000 Temperature: 75 F Cable Length: 30 Fed Ortano: Temperature: 75 F Final Self Pater 12000 Temperature: 75 F Cable Length: 30 Fed Ortano: Temperature: 75 F Pater 12000 Final Self Final Self Temperature: 75 F Temperature: 76 F Pater 12000 Final Self Final Self Final Self Temperature: 75 F Temperature: 76 F Pater 12000 Final Self		Calibration h	as been perfo	ormed in acc	cordance wit	h:		ASTM E230	9/E2309M-20						
alibration Equipment Asset Main Dead Wolgh TSA Temperature Readout: 26928 Million Consumption: YAA Temperature Readout: 26928 Million Consumption: YAA Temperature Readout: 26928 Million Consumption: YAA Million Consumption: YAAA Million Consumption: YAAAA Million Consumption: YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	bitability Display field and Vales field. Bitability Display field and Vales field. Standard Asset Mar. 2018. Div Componention: NA construction field and Vales field. Div Componention: NA construction field and Vales field. Standard Asset Mar. 2018. diama Mar. 2018. Div Componention: NA construction field. Standard Asset Mar. 2018. diama Mar. 2018. Div Componention: NA construction field. Standard Asset Mar. 2018. diama Mar. 2018. Div Componention: NA construction field. Cable Length: 30 Feed. diama As Found: Construction. As Found: Construction. Construction. Construction. diama Mar. 2018. Dive Arg. 2018. Dive Arg. 2018. Construction. Construction. diama Mar. 2018. Dive Arg. 2018. Dive Arg. 2018. Dive Arg. 2018. Construction. Construction. diama Dive Arg. 2018. Dive Arg. 2018. Dive Arg. 2018. Dive Arg. 2018. Construction.		Method o	f Verification:	Follow-the-	Displaceme	nt Method									
Dead Weight Sit: WA Temperature Readout: 26928 DMI: NA Additional Equipment: NA Temperature Readout: 26928 DMI: NA Additional Equipment: NA Temperature Readout: 26928 Lover Limit: NA Temperature Readout: 26928 Lover Limit: NA Temperature Readout: 26928 Lover Limit: NA Temperature Readout: 26928 Cable Length: 30 Feat Initial Temperature: 75 F. Read Fundation: Final Temperature: 75 F. Read Fundation: Bidine Closes: NA Temperature: Cable Length: 30 Feat Initial Temperature: 75 F. Read Fundation: As Fundation: Cable Length: 30 Feat Initial Temperature: 75 F. Read Fundation: As Fundation: Cable Length: 30 Feat Initial Temperature: Temperature: Temperature: Read Fundation: Cable Length: 30 Feat Initial Temperature: Temperature: Temperature: Peating: Temperature: Cable Length: 30 Feat Initiant Temperature: Read Fundation: Data: Temperature: Temperature: Pating: Temperature: Temperature: Temperature: Temperature: Pating: Temperature: <td>Dead Weight Sei: NA Temperature Readout: 26028 Additional Equipment: NA Digital Indicator: RA StundardZer: NA Lower Linit: NA attom Timilar Temperature: 75 F. Intel Temperature: 60 % Final Temperature: 75 F. Intel Temperature: 75 F. Intel Temperature: 75 F. Intel Temperature: 75 F. ButinetConal: NA Cable Length: 30 Feet corrance: Intel Temperature: 75 F. Intel Temperature: 7</td> <td>alibration</td> <td>Equipment</td> <td>Asset No.</td> <td>i onon ano</td> <td>Diopiaconio</td> <td>in mounda</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dead Weight Sei: NA Temperature Readout: 26028 Additional Equipment: NA Digital Indicator: RA StundardZer: NA Lower Linit: NA attom Timilar Temperature: 75 F. Intel Temperature: 60 % Final Temperature: 75 F. Intel Temperature: 75 F. Intel Temperature: 75 F. Intel Temperature: 75 F. ButinetConal: NA Cable Length: 30 Feet corrance: Intel Temperature: 75 F. Intel Temperature: 7	alibration	Equipment	Asset No.	i onon ano	Diopiaconio	in mounda									
DW Componention: WA Tomperature Readout: 26928 millial Temperature: 75 F. Final Temperature:	DW Compensation: NA temporaturo Roadout: 25028 DMI: NA Additional Equipment: NA Standardter: NA Digital Indicator: NA Standardter: NA Lower Limit: NA Standardter: NA etime Miles Temporature: Sola Standardter: NA Standardter: NA Cable Length: 30 Fed. etime Miles Temporature: Sola As Fourt 1205 Billine Cloads: MA Cable Length: 30 Fed. etime Miles Temporature: Sola As Fourt 1205 Free are: 0. Cable Length: 30 Fed. etimes Restandardter: 1205 Free are: 0. Cable Length: 30 Fed. Cable Length: 30 Fed. etimes Restandardter: NA Standardter: NA Cable Length: 30 Fed. Cable Length: 30 Fed. etimes Restandardter: 1205 Free are: 0. Free are: 0. Cable Length: 30 Fed. etimes Restandardter: NA Standardter: NA Cable Length: 30 Fed. Cable Length: 30 Fed. etimes Restandardter: NA Free are: 1000 Free are: 0.0000 Free are: 0.0000 Cable Length: 30 Fed. etimes Restandardter: NA Restandardter: NA Standardter: NA Cable Length: 30 Fed. Cable Length: 30 Fed. etimes Restandardter: NA Restandardter: NA Standardter: NA Cable Length: 30 Fed. Cable Length: 30 Fed. etimes Restandardter: NA Restandardter: NA		Dea	d Weight Set:	N/A									Standard	Asset No.:	22355
Temperature Readou: 26928 Additional Equipment: NA Standardzer: NA Standardzer: NA millior millior Millior Exprenduto: 75 F Final Humidhy: 60 % Cable Length: 30 Fedt initial Humidhy: 60 % Final Humidhy: 60 % As Found System Condition: Cable Length: 30 Fedt initial Humidhy: 60 % Final Humidhy: 60 % As Found System Condition: Cable initial Humidhy: 60 % Final Cable: 12 MSB Fina: 2000 Cable: 12 MSB Fina: 2000 conditioner Parameter Resolution: 0.0000 Fina: 3 Fina: 3 Fina: 40 Gent	Temperaturo Readout: 26928 Additional Equipment: NA Standardizer: NA Standardizer: NA Miterial Initial Temperature: 75 F Final Temperature: 75 F Bidle Const: NA Cable Length: 30 Feat Initial Temperature: 60 % Final Temperature: 75 F Final Temperature: 75 F Bidle Const: NA Cable Length: 30 Feat Initial Temperature: Cable Length: 20 MB As Fourci: Cable Length: 30 Feat Cable Length: 30 Feat Initial Temperature: Cable Length: 20 MB As Fourci: Cable Length: 20 MB Feat: 20 MB Initial Temperature: Reading: Cable: 12 MB Feat: 20 MB Feat: 20 MB Initial Temperature: Reading: Reading: Temperature: Feat: 20 MB Initial Temperature: Reading: Reading: Reading: Feat: 20 MB Initial Temperature: Reading: Reading: Reading: Reading: Initial Temperature: Reading: R		DW C	ompensation:	N/A			DMM:	N/A	Digit	al Indicator:	N/A		lower Limit:	N/A	
Onderson Description of the second seco	Nation National Comparison of the State Stat		Temperat	ture Readout:	26928		Additional	Equipment:	N/A	St	tandardizer.	N/A		Lonor Linn		
Initial Temporature: 26 F. Final Humidity: 60 H. Edited course MA Cable Length: 20 Feet In Gerance Image: Second Secon	Initial Tengorature: Y.B. Final Tengrature: Y.B. Butting Linear, M.A. Cable Length: 20 and () Orderance: Initial Hunding: 60 % Initial Hunding: 60 % Initial Hunding: 60 % Initial Hunding: Cable Length: 10 methods: Orderance: Image: Im	onditions	rempera	tore neutoott.	LUGLU		Additional	Equipment.		0	turiuluzer.					
Initial Humidity: Engl Potentify(-1): Retraction Description of the transmitter of the tran	Initial Hundliff: 60 % Polarity(-): Refraction Description of total Organization As A point As A point As The Early of the condition: Good Officience Image: A point As A point: As The Early of the condition: Good Station of point Market point Total and the condition: Good Good Station of point Market point Total and the condition: Good Good Station of point Market point Total and the condition: Good	onunions	Initial	Temperature:	75 F	Final To	omnoraturo.	75 F		в	idirectional:	N/A	C	able Length:	30 Feet	
District of Tokerance X Description X Description X Description X To forwance X As Adjusted; X As TM E2300 Classification: B Good conditioner Parameters Palarin; Normal Todel Gain; 12:008 Fine zero: 0.0 Excellation: 0.0 Volts Polaring pair: 13:4137 Plase: 7	Instrumentation Oto N Instrumentation Out O Instrumentation colorance Image: Normal As Adjusted: As Found: As Adjusted: As The E200 Classification: B difficience Image: Normal Pre-mp gain: 0.005 Fine zero: 0.0 difficience Pre-mp gain: 0.005 Fine zero: 0.0 Destination: 10.0045 Pre-mp gain: 0.005 Fine zero: 0.0 Pre-mp gain: 0.0005 Ford and gain: 1.811/3 Pre-mp gain: 0.005 Pre-motion Resolution: 0.0005 Full Scale: 3 The colorability of the scale gain 1.811/3 spreid Series 1 Terror Ford Ford spreid Series 1 Terror Ford Ford Ford spreid Macdade Indicated Ford		In	itial Humidity:	60 %	Fin	al Humidity:	60 %			Polarity(+)	Retraction	U	able Lengui.	ourcet	
ND kranch ut of Toleranch X As Found: As Adjusted: X STM E2200 flashed.mit. m. conditioner entitioner mitter Pearler, Normal Pearler, Normal Barter, Norman Barter, Normal Barter, Normal Barter, Norman Barter	Solution Standial As Found: X As STM E2200 Classification: B As Soluta System Condition: dodd distorer Parmeters into one of the soluta into one of the soluta intoone of the soluta into one of the soluta into one of t			indi Hamidity.	00 /0		arrianiary.	00 /0			rolang(1).	netraotion				
tu di Tolerance	of Toferance	n Tolerano	e	X	1		As Found	X		ASTM E230	Classifica	tion: B				
Image: Section of the sectio	ditioner Parameters Total Gain: 12090 Fine zero: 0.0 citationer Parameters Total Gain: 12090 Prost-amp gain: 1.34137 Prost-20.0 breiten Dat Range: 1 Post-amp gain: 1.34137 Prost-20.0 netton Dat Range: 1 Discutation: 0.0005 Full State: 3 and Units: In In Series 2 Ford amp gain: 1.34137 Prost-amp gain: 2.0005 according Descending Descending Descending Prost-amp gain: 2.0005 Prost-amp gain: 2.0007 according Descending	out of Tole	rance		1	A	s Adjusted:			As Fou	ind System	Condition	Good			
Inditional Parameters Total Gain: 12/059 Fine zero: 0.0 Polarity: Normal Polarity: Normal Excitation: 10.0/volts Polarity: Normal Post-amp pain: 34/137 Phase: 42.0 deg Interaction B Report Lifts: In Resolution: 10.0/volts Polarity: Normal Post-amp pain: 13/137 Phase: 42.0 deg Applied Series 1 Berles 1 Percent Percent of Indicated Indicated Units Percent Percent Percent Error Percent Error Percent Reading Percent Percent Percent Error Percent Error Percent Reading Percent Percent Percent Error Percent Error Percent Percent Percent Error Percent Error Percent Percent Percent Error Percent Error Percent Error Percent Percent Percent Error <	ditioner Parameters Total Claim 12:1059 Fine zero: 0.0 Potanty: Normal Pre-amp gain: 0.3005 Phase: 42.0 deg Innsion Resolution: 10.0 Volts Post-amp gain: 1.34137 Phase: 42.0 deg series 1 Brange: 1 Series 1 Pre-amp gain: 1.34137 Phase: 42.0 deg splied Series 1 Processing pain: 1.34137 Phase: 42.0 deg Percent splied Series 1 Processing Series 2 Percent Units Percent splied Series 1 Processing Percent Indicated Indicated Units Percent Error angth Asconding Desconding Desconding Desco Desco Asc Desc Asc Desc Asc Desc Asc Desc Asc Desc Asc Asc <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>			L					1		,					
Pointry: Kormal Pre-amp gain: 1.94137 Pre-amp gain: 2.94137 Pre-amp gain: 2.94137 Pre-amp gain: 2.94137 atteration Data Range: 1 Series 1 Pre-amp gain: 2.94137 <	Plante: Pre-arrog pair: 0.94/05	onditioner l	Parameters				Total Gain:	1.21059		Fine zero:	0.0					
Excitation: 10.0 Volts Posk-amp gain: 1.34137 Phase: 42.0 deg altration Data Resolution: 0.00005 Full Scale: 3 applied in the second of the s	Excitation: Total collastice: Total collastice: Post-amp gain: 1.54137 Phase: 42.0 deg Instion Resolution: 0.00005 Full Scale: 3 3 Statistice: Indicated Indicated </td <td></td> <td></td> <td>Polarity:</td> <td>Normal</td> <td>F</td> <td>Pre-amp gain:</td> <td>0.9025</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Polarity:	Normal	F	Pre-amp gain:	0.9025								
alibration Date and the sense of the sense	brance Data Bange: 1 indicated Rescut: 0.00072 Julicated Indicated			Excitation:	10.0 Volts	P	ost-amp gain:	1.34137		Phase:	42.0 deg					
generation nesouration Dubboling Pail is caller 3 Applied Indicated Indicate	meson method meson meson meson meson meson network	alibration D	ata	Range:	1		E.I. Ossilar									
Barle Indicated	Different Series 1 Series 1 Series 2 Series 2 Series 2 Series 2 Form Percent Units Percent Error Error<	Xtension	in	Resolution:	0.00005		Full Scale:	3								
Caperation Defines 1 Contras 1 Percent	Operation Operation <t< td=""><td>Applied</td><td>III Sor</td><td>ine 1</td><td></td><td>Sorice</td><td>1 Errore</td><td></td><td>Sor</td><td>ine 2</td><td></td><td>Soriae</td><td>2 Errore</td><td></td><td>Dopos</td><td>tability</td></t<>	Applied	III Sor	ine 1		Sorice	1 Errore		Sor	ine 2		Soriae	2 Errore		Dopos	tability
Full Scale Reading Reading Encor Error Error Reading Desc Ascending Desc Asc Desc -2 -0.055927 - -0.00074 -1.23 - -0.05924 - -0.00161 - - 0.037 - - 0.037 - 0.033 - 0.011 - -	Mill Scale Reading Reading Reading Reading Ford Error Error Reading Reading Desc Ascending Desc	Percent of	Indicated	Indicated	Indicated	Percent	Units	Percent	Indicated	Indicated	Units	Percent	Units	Percent	Per	cent
Length Ascending Descending Asc Desc Ascending Descending Asc Desc <	argh Ascending Descending Asc Desc Asc	Full Scale	Beading	Beading	Error	Error	Error	Error	Beading	Beading	Error	Error	Error	Error	En	ror
0 0.00005 0.00005 0.00005 0.00005 0.00014 0.00012 0.00003 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.0014	0 0.00005 0.00005 0.00005 0.00007 0.00003 0.000 - 0.00076 - - 0.003 - - 0.00143 - 0.007 - 0.016 - 0.006 - 0.006 - 0.007 - 0.016 - 0.006 - 0.007 - 0.006 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 0.00220 0.017 - 0.006 -<	Length	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Des
-2 -0.05927 - -0.00074 -1.23 - - -0.05924 - - 0.00076 +1.26 - - 0.03 -6 -0.11888 - - 0.01896 - - 0.01184 0.66 - - 0.07 -6 -0.17883 - 0.00147 -0.82 - - - 0.17882 - 0.00143 0.66 - - 0.06 -10 -0.28831 - 0.00168 0.66 - - 0.29852 - 0.00143 0.60 - 0.07 -20 0.58742 - 0.00258 0.43 - - 0.59778 - 0.00210 0.17 - 0.06 -70 -2.08850 - 0.0150 0.55 - - 2.0880 - 0.011 0.53 - - 0.01 -100 2.99380 - 0.00520 0.21 - - - - - - - - 0.01 1 -1000 <td>-2 0.05927 - 0.00076 -1.28 - - 0.03 - 4.4 0.11888 - 0.00112 0.9.8 - - 0.0118 - 0.0016 - 0.0076 - 0.0016 - 0.007 - 0.07 - 0.07 - 0.07 - 0.07 - 0.07 - 0.0118 - 0.0016 - 0.006 - 0.008 - - 0.016 - 0.008 - 0.02857 - 0.0016 0.66 - - 0.008 - - 0.02852 - 0.00148 0.408 - - 0.007 - 0.006 - - 0.006 - - 0.006 - - 0.006 - - 0.007 - 0.007 - 0.007 - 0.002 - - 1.007 - 0.006 - - 0.007 - 0.0012 0.0022 0.037 - 0.0101 - 0.006 - - 0.0112 - <t< td=""><td>0</td><td>0.00005</td><td>0.00050</td><td>0.00005</td><td>0.00</td><td>23</td><td>-</td><td>0.00003</td><td>0.00012</td><td>0.00003</td><td>0.00</td><td>200</td><td>-</td><td>1223</td><td>28</td></t<></td>	-2 0.05927 - 0.00076 -1.28 - - 0.03 - 4.4 0.11888 - 0.00112 0.9.8 - - 0.0118 - 0.0016 - 0.0076 - 0.0016 - 0.007 - 0.07 - 0.07 - 0.07 - 0.07 - 0.07 - 0.0118 - 0.0016 - 0.006 - 0.008 - - 0.016 - 0.008 - 0.02857 - 0.0016 0.66 - - 0.008 - - 0.02852 - 0.00148 0.408 - - 0.007 - 0.006 - - 0.006 - - 0.006 - - 0.006 - - 0.007 - 0.007 - 0.007 - 0.002 - - 1.007 - 0.006 - - 0.007 - 0.0012 0.0022 0.037 - 0.0101 - 0.006 - - 0.0112 - <t< td=""><td>0</td><td>0.00005</td><td>0.00050</td><td>0.00005</td><td>0.00</td><td>23</td><td>-</td><td>0.00003</td><td>0.00012</td><td>0.00003</td><td>0.00</td><td>200</td><td>-</td><td>1223</td><td>28</td></t<>	0	0.00005	0.00050	0.00005	0.00	23	-	0.00003	0.00012	0.00003	0.00	200	-	1223	28
-4 0.1188 - 0.00112 -0.033 - - 0.17896 - 0.00104 -0.087 - 0.07 -8 0.23837 - 0.00163 -0.68 - - 0.023857 - 0.00143 -0.66 - - 0.07 -20 0.23837 - 0.00163 -0.68 - - 0.23857 - 0.00143 -0.66 - - 0.07 -20 0.59742 - 0.00240 -0.22 -0.37 - 0.06 -40 1.19760 - -0.0240 -0.20 - - 1.19790 - 0.00210 -0.17 - 0.03 -10 2.98380 - -0.0120 -0.53 - 0.011 - - - 0.11 - - - 0.11 - - - - - - 0.011 - - - 0.011 - - -	4 0.11888 - - 0.0118 - - 0.0118 0.00104 0.087 - - 0.007 C 4 0.17853 - 0.00147 -0.82 - - 0.17882 - 0.00118 -0.66 - - 0.016 - 0.016 - 0.016 - 0.016 - 0.016 - 0.02867 - 0.00148 - 0.029 - - 0.02867 - 0.00148 - 0.029 - - 0.02867 - 0.00148 - 0.029 - - - 0.059778 - 0.00210 - - 0.001 - 0.001 - 0.001 - 0.001 - 0.00210 - - - 0.01150 - 0.55 - - - - 0.01120 -0.53 - - 0.0111 - - - 0.0111 - - - 0.0111 - - 0.0111 - - - 0.0111 - - 0.	-2	-0.05927	2	-0.00074	-1.23	22	2	-0.05924	22	-0.00076	-1.26	100	81283	0.03	<u>-</u> 22
	6 0.17853 - - 0.017853 - - 0.017853 - - 0.017853 - - 0.017853 - - 0.017853 - - 0.0188 - - 0.028877 - 0.00183 -0.00180 - 0.00180 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.007 - 0.008 - - 0.028878 - - 0.028878 - 0.00222 0.037 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.007 - 0.006 0.0022 0.007 - 0.006 0.0021 0.011 0.006 0.0221 - - - 0.0011 0.011 <	-4	-0.11888	-	-0.00112	-0.93	53	-	-0.11896	127	-0.00104	-0.87	350	272	0.07	50
	8 - - - - - - - - 0.0013 - - - 0.0013 - - 0.0013 - - 0.0013 - - 0.0013 - - 0.0013 - - 0.0011 0.001 1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 1 0.00001 1	-6	-0.17853	-	-0.00147	-0.82	-	-	-0.17882		-0.00118	-0.66	1		0.16	-
-10 -0.29831 - -0.00168 -0.48 - - 0.007 -20 -0.59742 - -0.00288 -0.43 - - -0.59778 - - 0.0022 -0.37 - - 0.06 -40 -1.19760 - -0.00240 -0.20 - - - 1.119790 - - 0.03 -70 -2.08850 - -0.01150 -0.55 - - - 0.01120 -0.53 - - 0.011 -100 -2.99880 - -0.01620 -0.21 - - - 0.01150 - 0.11 - - 0.011 - 0.01150 - 0.011 - 0.01150 - 0.011 - 0.01150 - 0.011 - 0.01150 - 0.011 - 0.01150 - 0.011 - - 0.011 - - 0.01150 - 0.011 - - 0.00060 - - 0.011 - - 0.011 -	-10 -0.28831 - -0.00169 -0.56 - - -0.2982 - -0.00148 -0.49 - - 0.07 1 20 -0.59742 - -0.00248 -0.43 - - -0.59778 - - 0.06 r - 0.06 r - 0.0021 - - 0.01 r - 0.03 r - 0.06 r - 0.0021 - - 0.0021 - - 0.0021 - - 0.0021 - - 0.0021 - - 0.0021 - - 0.0021 - - 0.011 - 0.03 - - 0.011 - 0.03 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - <t< td=""><td>-8</td><td>-0.23837</td><td>-</td><td>-0.00163</td><td>-0.68</td><td>25</td><td>-</td><td>-0.23857</td><td></td><td>-0.00143</td><td>-0.60</td><td>045</td><td>2-23</td><td>0.08</td><td>25</td></t<>	-8	-0.23837	-	-0.00163	-0.68	25	-	-0.23857		-0.00143	-0.60	045	2 - 23	0.08	25
-20 -0.59742 - -0.00222 -0.37 - - 0.06 -40 -1.19760 - -0.00240 -0.20 - - -1.19790 - -0.00210 -0.17 - 0.03 - -70 -2.08850 - 0.01150 -0.55 - - 2.08860 - - 0.011 - 0.011 -100 - - - - - - - 0.01120 - 0.32 - - 0.011 -101 - - - - - - - 0.011 <	-20 -0.00258 -0.43 - -0.05778 - -0.00221 -0.37 - - 0.06 r -40 -1.19760 - -0.00220 -0.27 - - 0.06 r -70 -2.08850 - -0.00110 -0.055 - - -2.08880 - - 0.011 r -	-10	-0.29831	-	-0.00169	-0.56	21	2	-0.29852	222	-0.00148	-0.49	123	S29	0.07	22
-40 -1.19760 - -0.00210 -0.17 - - 0.03 -70 -2.08850 - -0.01150 -0.55 - - 2.08880 - - 0.01 -100 -2.99380 - -0.00120 -0.53 - - 0.01 -100 -2.99380 - - - - - 0.011 - 0.01 - - - - - - - - 0.011 - 0.011 - - - - - - - - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011 - - 0.011	-40 -1.19760 - -0.00240 -0.20 - - -1.19760 - -0.00110 -0.011 - 0.03 - -70 -2.98850 - -0.01150 -0.55 - - -2.98860 - 0.01120 -0.53 - - 0.011	-20	-0.59742	5	-0.00258	-0.43	58	-	-0.59778	1073	-0.00222	-0.37	125	272	0.06	-
-70 -2.08850 - - -0.01120 -0.53 - - 0.01 -100 -2.99380 - -0.00620 -0.21 - - -2.99040 - -0.00960 -0.32 - - 0.11 -100 - - - - - - - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.11 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0.111 - 0	-70 -2.08850 - -0.01120 -0.032 - - 0.01 - 100 -2.99380 - -0.0620 -0.21 - - -2.99940 - -0.00960 -0.32 - 0.011 - Image: 1 - - - - - - - 0.01120 -0.032 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 0.011 - 0.011 - 0.011 - 0.011 - 0.011 <	-40	-1.19760	-	-0.00240	-0.20	-	-	-1.19790	-	-0.00210	-0.17		-	0.03	-
-100 -2.9980 - -0.0020 -0.21 - - 0.11 - - - - - - - - - 0.11 Applied Series 1 Series 1 Series 1 Crosshead Start Position: N/A Retraction Indicated Indicated Units Percent Units Percent Error Error<	-100 -2.99040 - -0.00960 -0.32 - - 0.11 - - - - - - - - - 0.11 - - 0.11 - 0.11 - 0.11 0.11 0.12 - - 0.11 0	-70	-2.08850	-	-0.01150	-0.55		-	-2.08880	- 10-11 1900	-0.01120	-0.53	0-0	-	0.01	23
Range: 1 Crosshead Start Position: N/A Applied Percent of Indicated Series 1 Series 1 Errors Series 2 Series 2 Errors Repeatability Percent Full Scale Reading Reading Reading Reading Percent Units Percent Error Er	Range: 1 Crosshead Start Position: NA Retraction Series 1 Series 1 Series 1 Repeatability upplied Indicated Indicated Units Percent Indicated Units Percent Units Percent Error	-100	-2.99380	-	-0.00620	-0.21		-	-2.99040		-0.00960	-0.32	. (<u>1</u>		0.11	20
Image: 1 Otostread start Position: NAX Applied Percent of Full Scale Series 1 Series 1 Errors Series 2 Series 2 Errors Repeatability Percent of Full Scale Indicated Reading Units Percent Units Percent Units Percent Units Percent Units Percent Units Percent Error Asc Asc Desc Desc Descending Asc Desc	Attraction Display the start point. Here Applied tratemation Series 1 Series 1 From Series 2 Series 2 Series 2 Percent Units Percent Percent Indicated Indicated Units Percent Error	-	-	Ranco	-		5	5	270		Crosshood G	tart Position	- N/A		100	5
Applied Series 1 Series 1 Errors Series 2 Series 2 Errors Repeatability Percent of Full Scale Indicated Indicated Units Percent Units Percent Units Percent Units Percent Units Percent Units Percent Error Error <tde< td=""><td>Series 1 Series 1 Series 1 Series 2 Series 2 Series 2 Series 2 Procent Units Percent Percent Indicated Indicated Units Percent Units Percent Units Percent Units Percent Units Percent Error Error</td><td>Retraction</td><td></td><td>nange.</td><td>6) 14</td><td></td><td></td><td></td><td></td><td></td><td>Ciussileau c</td><td>Mart I Usition.</td><td></td><td></td><td></td><td></td></tde<>	Series 1 Series 1 Series 1 Series 2 Series 2 Series 2 Series 2 Procent Units Percent Percent Indicated Indicated Units Percent Units Percent Units Percent Units Percent Units Percent Error	Retraction		nange.	6) 1 4						Ciussileau c	Mart I Usition.				
Percent of Full Scale Indicated Reading Indicated Error Indicated Error Indicated Error Indicated Error Units Error Percent Error Units Error Percent Error Units Error Percent Error Units Error Percent Error Units Error Percent Error Percent Error <t< td=""><td>recent of Indicated It Scale Reading Indicated Reading Indicated Fror Indicated Fror Indicated Fror Units Fror Percent Fror Units Fror Percent Fror 0 0.00002 -0.00002 0.00002 0.00002 0.00007 0.0007 0.000 - - 0.0007 0.000 - - 0.0007 0.000 - - 0.0007 0.000 - - 0.000 - - 0.0007 0.000 - - 0.0007 0.000 - - 0.000 - - 0.00007 0.000 - - 0.000 - - 0.000 - - 0.000 - - 0.000 - - 0.001 - - 0.001 -<</td><td>Applied</td><td>Ser</td><td>ies 1</td><td></td><td>Series</td><td>1 Errors</td><td></td><td>Ser</td><td>ies 2</td><td></td><td>Series</td><td>2 Errors</td><td></td><td>Repeat</td><td>tability</td></t<>	recent of Indicated It Scale Reading Indicated Reading Indicated Fror Indicated Fror Indicated Fror Units Fror Percent Fror Units Fror Percent Fror 0 0.00002 -0.00002 0.00002 0.00002 0.00007 0.0007 0.000 - - 0.0007 0.000 - - 0.0007 0.000 - - 0.0007 0.000 - - 0.000 - - 0.0007 0.000 - - 0.0007 0.000 - - 0.000 - - 0.00007 0.000 - - 0.000 - - 0.000 - - 0.000 - - 0.000 - - 0.001 - - 0.001 -<	Applied	Ser	ies 1		Series	1 Errors		Ser	ies 2		Series	2 Errors		Repeat	tability
Full Scale Reading Reading Error Error Error Beading Desc Desc Desc Ascending Desc Desc Ascending Desc Desc Ascending Desc Desc Ascending Desc Desc Asc Desc Desc </td <td>Ball Scale ength Reading Ascending Descending Descending Error Asc Asc Desc Asc Desc</td> <td>Percent of</td> <td>Indicated</td> <td>Indicated</td> <td>Units</td> <td>Percent</td> <td>Units</td> <td>Percent</td> <td>Indicated</td> <td>Indicated</td> <td>Units</td> <td>Percent</td> <td>Units</td> <td>Percent</td> <td>Per</td> <td>cent</td>	Ball Scale ength Reading Ascending Descending Descending Error Asc Asc Desc	Percent of	Indicated	Indicated	Units	Percent	Units	Percent	Indicated	Indicated	Units	Percent	Units	Percent	Per	cent
Length Ascending Descending Asc Asc Desc Desc Ascending Descending Asc Desc <	Ascending Descending Asc Asc Desc Desc Ascending Descending Asc Desc Asc Desc 0 0.00002 -0.00002 0.00002 0.00002 0.00002 0.00007 0.00002 0.00007 0.00007 0.000 - 0.00002 0.0007 0.000 - - - 0.0002 0.0007 0.000 - - 0.008 - - 0.008 - - 0.0001 - - 0.001 - - 0.001 - - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011	Full Scale	Reading	Reading	Error	Error	Error	Error	Reading	Reading	Error	Error	Error	Error	En	ror
0 0.00002 -0.00002 0.00002 0.00007 0.0007 0.0007 0.00 - - - - - - 0.00007 0.0007 0.00 - 0.0087 - - 0.0081 - - 0.0011 - - 0.001 - - 0.011 - - 0.011 - - 0.011 - 0.01 - 0.01 - - 0.011 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.001	0 0.00002 -0.00002 0.00002 0.00002 0.00007 0.00007 0.000 - 0.0002 0.0007 0.00 - - - 0.0007 0.0002 0.0007 0.00 - - 0.008 - - 0.0005 0.08 - - 0.0011 - 0.0011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.011 - 0.001	Length	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Des
2 0.05960 - -0.00040 -0.67 - - 0.05955 - -0.00045 -0.76 - - 0.08 4 0.11913 - -0.00087 -0.72 - 0.11919 - -0.0081 -0.68 - - 0.05 6 0.17861 - -0.0139 -0.77 - - 0.11919 - -0.00141 -0.78 - 0.01 8 0.23818 - -0.0182 -0.76 - - 0.23827 - -0.0173 -0.72 - - 0.04 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 20 0.59663 - - 0.29799 - -0.00201 -0.67 - 0.01 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.0020 - - 0.00 100 2.99590 - -0.00444 -	2 0.05960 - -0.00040 -0.67 - - 0.05955 - -0.00045 -0.76 - - 0.08 - 4 0.11913 - -0.00087 -0.72 - - 0.11919 - -0.00081 -0.68 - - 0.05 - 6 0.17861 - -0.00182 -0.76 - - 0.17859 - -0.00173 -0.72 - - 0.01 - 8 0.23818 - -0.00182 -0.76 - - 0.23827 - -0.00173 -0.72 - - 0.04 - 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 -	0	0.00002	-0.00002	0.00002	0.00		н	0.00007	0.00002	0.00007	0.00	543	-	8943) 	Ð
4 0.11913 - -0.00087 -0.72 - - 0.11919 - -0.00081 -0.68 - - 0.05 6 0.17861 - -0.00139 -0.77 - - 0.17859 - -0.00141 -0.78 - 0.01 8 0.23818 - -0.00182 -0.76 - - 0.23827 - -0.00173 -0.72 - - 0.04 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 20 0.59663 - - 0.59667 - - 0.01 - - 0.01 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00410 -0.20 - 0.01 100 2.99590 - -0.00590 -0.20 - - 2.99590 - -0.00410 -0.20 - - 0.00 - 100 2.99590 <	4 0.11913 - -0.00087 -0.72 - - 0.11919 - -0.00081 -0.68 - - 0.05 - 6 0.17861 - -0.00139 -0.77 - - 0.17859 - -0.00141 -0.78 - - 0.01 - 8 0.23818 - -0.00182 -0.76 - - 0.23827 - -0.00173 -0.72 - - 0.04 - 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - 0.01 - 20 0.59663 - - 0.59667 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 <td>2</td> <td>0.05960</td> <td>2</td> <td>-0.00040</td> <td>-0.67</td> <td><u>ia</u>)</td> <td></td> <td>0.05955</td> <td></td> <td>-0.00045</td> <td>-0.76</td> <td>740</td> <td>140</td> <td>0.08</td> <td>22</td>	2	0.05960	2	-0.00040	-0.67	<u>ia</u>)		0.05955		-0.00045	-0.76	740	140	0.08	22
6 0.17861 - -0.00139 -0.77 - - 0.17859 - -0.00141 -0.78 - - 0.01 8 0.23818 - -0.00182 -0.76 - 0.23827 - -0.00173 -0.72 - - 0.04 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 20 0.59663 - -0.00337 -0.56 - - 0.59667 - - 0.01 40 1.19470 - -0.00530 -0.44 - - 1.19480 - - 0.01 70 2.09590 - -0.00410 -0.20 - - 2.09590 - 0.00 - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 -	6 0.17861 - - 0.017859 - - 0.00141 -0.78 - - 0.01 8 0.23818 - -0.00182 -0.76 - 0.23827 - -0.00173 -0.72 - - 0.04 - 10 0.29975 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 - 20 0.59663 - -0.00337 -0.56 - - 0.59667 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - - 0.01 - -	4	0.11913		-0.00087	-0.72			0.11919	d 959	-0.00081	-0.68	1 15202	2.72	0.05	-
8 0.23818 - -0.00182 -0.76 - 0.23827 - -0.00173 -0.72 - - 0.04 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 20 0.59663 - - 0.59667 - - 0.01 40 1.19470 - - 0.0044 - - 1.19480 - - 0.01 70 2.09590 - -0.00410 -0.20 - - 2.09590 - - 0.00 100 2.99410 - - 0.29410 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 <	8 0.23818 - -0.00182 -0.76 - - 0.23827 - -0.00173 -0.72 - - 0.04 10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 - 20 0.59663 - - 0.59667 - - 0.00333 -0.56 - - 0.01 - 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 - 70 2.09590 - -0.00410 -0.20 - - 2.09590 - 0.00 - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - </td <td>6</td> <td>0.17861</td> <td>-</td> <td>-0.00139</td> <td>-0.77</td> <td>78</td> <td>-</td> <td>0.17859</td> <td></td> <td>-0.00141</td> <td>-0.78</td> <td>0.00</td> <td>-</td> <td>0.01</td> <td>5</td>	6	0.17861	-	-0.00139	-0.77	78	-	0.17859		-0.00141	-0.78	0.00	-	0.01	5
10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 20 0.59663 - -0.00337 -0.56 - - 0.59667 - -0.00333 -0.56 - - 0.01 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 70 2.09590 - -0.00410 -0.20 - - 2.09590 - 0.004 100 2.99410 - -0.00590 - - 0.299400 - -0.00410 -0.20 - - 0.00 100 2.99410 - - - - - - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - -	10 0.29795 - -0.00205 -0.68 - - 0.29799 - -0.00201 -0.67 - - 0.01 - 20 0.59663 - -0.00337 -0.56 - - 0.59667 - -0.00333 -0.56 - - 0.01 - 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 - 70 2.09590 - -0.00410 -0.20 - - 2.09590 - 0.00410 -0.20 - - 0.00 - 0.00 - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - -	8	0.23818	-	-0.00182	-0.76	-	-	0.23827	(H)	-0.00173	-0.72	543	-	0.04	-
20 0.59663 - -0.00337 -0.56 - - 0.01 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 70 2.09590 - -0.00500 - - 2.09590 - - 0.00 100 2.99410 - - 0.20 - - 2.99400 - - 0.00 - - - - - 2.99400 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - -	20 0.59663 - -0.00337 -0.56 - - 0.01 - 40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 - 70 2.09590 - -0.00410 -0.20 - - 2.09590 - 0.00410 -0.20 - - 0.00	10	0.29795	2	-0.00205	-0.68	20	-	0.29799	14-1 1-1	-0.00201	-0.67	. 240	. 823	0.01	2
40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 70 2.09590 - -0.00410 -0.20 - - 2.09590 - - 0.00 100 2.99410 - -0.00590 -0.20 - - 2.99400 - -0.00600 -0.20 - - 0.00 100 2.99410 - - - - - - 0.00 -	40 1.19470 - -0.00530 -0.44 - - 1.19480 - -0.00520 -0.43 - - 0.01 - 70 2.09590 - -0.00410 -0.20 - - 2.09590 - -0.00410 -0.20 - - 0.00 - -	20	0.59663		-0.00337	-0.56	71	N 2	0.59667	2 553	-0.00333	-0.56	1 N. 201		0.01	2
100 2.09390 - -0.00410 -0.20 - - 0.00 100 2.99410 - -0.00590 -0.20 - - 0.00 100 2.99410 - -0.00590 -0.20 - - 0.00 100 2.99410 - -0.00590 -0.20 - - 0.00 100 - - - - - - 0.00 - 0.00 100 - - - - - - - 0.00 - - 0.00 100 - - - - - - - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 - - 0.00 -<	2.09390 - -0.00410 -0.20 - - 2.09590 - - 0.00 - 100 2.99410 - -0.00590 -0.20 - - 2.99400 - -0.00600 -0.20 - - 0.00 - 100 2.99410 - - 0.00590 -0.20 - - 0.00 - 0.00 - 0.00 - -	40	1.19470	-	-0.00530	-0.44	57 	-	1.19480	3 -	-0.00520	-0.43	87 7 7	1	0.01	2
100 2.89+10 - - - - - - 0.00 - - - - - - - - - 0.00 rors at Zero are computed in % of Rage. - <td>Interview Interview Interview</td> <td>100</td> <td>2.09590</td> <td></td> <td>-0.00410</td> <td>-0.20</td> <td>-9 10</td> <td>-</td> <td>2.09590</td> <td></td> <td>-0.00410</td> <td>-0.20</td> <td>2000 2000</td> <td>-</td> <td>0.00</td> <td>-</td>	Interview	100	2.09590		-0.00410	-0.20	-9 10	-	2.09590		-0.00410	-0.20	2000 2000	-	0.00	-
Table entries with a (-) are left intentionally blank. coertainty of the calibration data supplied is equal to or less than the greater of, ±0.25% of reading or ±50µ inches, for a coverage factor of k=2 and an approximate confidence level of 95%. Table entries with a (-) are left intentionally blank. Table	Table entries with a (-) are left intentionally blank. rtainty of the calibration data supplied is equal to or less than the greater of, ±0.25% of reading or ±50µ inches, for a coverage factor of k=2 and an approximate confidence level of 95%. report shall not be reproduced except in full, without the written approval of the laboratory. rican Association of Laboratory Accreditation Certificate Number: 1145.01 Nothing to note at this time.	100	2.99410	-	-0.00390	-0.20	-	-	2.99400	-	-0.00600	-0.20		-	0.00	-
nertainty of the calibration data supplied is equal to or less than the greater of, ±0.25% of reading or ±50µ inches, for a coverage factor of k=2 and an approximate confidence level of 95%. It is report shall not be reproduced except in full, without the written approval of the laboratory. Dut of Tolerance in % column nerican Association of Laboratory Accreditation Certificate Number: 1145.01	ritainly of the calibration data supplied is equal to or less than the greater of, ±0.25% of reading or ±50µ inches, for a coverage factor of k=2 and an approximate confidence level of 95%. The port shall not be reproduced except in full, without the written approval of the laboratory. Trican Association of Laboratory Accreditation Certificate Number: 1145.01 Nothing to note at this time.	Tors at Zero at	e computed in %	of Ranne.					100	3 ST	8 N	S 1659	Table entries	with a (-) are left	intentionally bla	nk.
is report shall not be reproduced except in full, without the written approval of the laboratory. Out of Tolerance in % column nerican Association of Laboratory Accreditation Certificate Number: 1145.01	report shall not be reproduced except in full, without the written approval of the laboratory. Out of Tolerance in % column rican Association of Laboratory Accreditation Certificate Number: 1145.01 Nothing to note at this time.	ncertainty of th	e calibration data	supplied is equal	to or less than t	the greater of, ±	0.25% of readin	g or ±50µ inche	s, for a coverage	factor of k=2 and	an approximate	confidence lev	el of 95%.	אונוים (-) מוס וסוני	menuonany bia	TIN.
nerican Association of Laboratory Accreditation Certificate Number: 1145.01	rican Association of Laboratory Accreditation Certificate Number: 1145.01 Nothing to note at this time.	is report shall	not be reproduce	ed except in full, w	ithout the writte	n approval of th	e laboratory.							Out of Toleran	ce in % column	
iserican Association of Laboratory Accreditation Certificate Number: 1145.01	Nothing to note at this time.	and and the second	intion of Labor 1	Anna diata - C	artificate blue t											
	Nothing to note at this time.	ierican Assoc	auton of Laborato	bry Accreditation C	ventricate Numb	er: 1145.01										

Performed By: \$

Calibration Report

_

Customor		Nama: E	odoral Highway Ad	Iminitetration			Page: 3 of 3 Poport Number: 11010-319
Customer		Name. F	euerai niyriway Au oo	MTS Suc	tom No:	1161 20241	Report Number: 11210-319
		System ID: 2	22	INTO Sys	ocation:	Structures La	b Country: US
Fauinment		Machine ID. 24		L	_ocalion.	Oliuciules La	
Equipment	П	evice Type: L	enath		Model:	244 51	Serial No : 1029526
	D	Device ID: L	VDT	Manu	ifacturer:	MTS	Manufacture Date: None
	Conditi	oner Model: 4	94.16 AC S2-J3A	Se	erial No.:	2054484	
	Readout De	vice Model: 4	94.06	Se	erial No.:	2070160	Channel: Displacement
				-			
Range:	1						
Full Scale:	3	Units:	in	Linea	rization	Table	
				Standard		Conditioner	
As Found:	Х						
As Adjusted:				-5.00000		-5.00000	
				-3.50000		-3.50000	
				-2.00000		-2.00000	
				-1.00000		-1.00000	
				-0.50000		-0.50000	
				-0.40000		-0.40000	
				-0.30000		-0.30000	
				-0.20000		-0.20000	
				-0.10000		-0.10000	
				0.00000		0.00000	
				0.10000		0.10000	
				0.20000		0.20000	
				0.30000		0.30000	
				0.40000		0.40000	
				1.00000		1.00000	
				2 00000		2 00000	
				3 50000		3 50000	
				5,00000		5.00000	
				-		-	
				-		-	
				-		-	

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

US

Customer Address: 6300 Georgetown Pike McLean, VA 22101

MTS Field Service

MTS Systems Corporation

14000 Technology Drive Eden Prairie, MN 55344-2290

Certificate of Calibration

Page: 1 of 3

Name: Federal Highway Adminitstration Certificate Number: 11210-320 Customer System ID: 222 MTS System No: US1_39341 Site: 505729 Machine ID: 222 Location: Structures Lab Country: US Equipment Device Type: Force Model: 661.31E-01 Serial No.: 10295782 Device ID: Load Cell Manufacturer: MTS Manufacture Date: None Conditioner Model: 494-26 DC S2-J4A Serial No.: 2124926 Readout Device Model: 494.06 Serial No.: 2070160 Channel: Force

MTS Field Service is accredited by the American Association for Laboratory Accreditation (A2LA Cert. No. 1145.01). The basis for this accreditation is the international standard for calibration laboratories, ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories".

Defined and documented measurement assurance techniques or uncertainty analyses are used to verify the adequacy of the measurement processes.

Calibrations are performed with standards whose values and measurements are traceable to the International System of Units (SI) through a National Metrology Institute (NMI).

MTS Reference Force Transducers are calibrated in compliance with ASTM E74.

The results of this calibration relate only to the items calibrated.

When parameter(s) are reported to be within specified tolerance(s), the measured value(s) shall fall within the appropriate specification limit and the uncertainty of the measured value(s) shall be stated.

CALIBRATION INFORMATION

As Found:	In Tolerance	e	Calibration Date:	09-Aug-2022	
As Left:	In Tolerance	e	Calibration Due:	09-Aug-2023	
Tolerance:	+/-1.0% of a	Applied Force			
Calibration P	rocedure:	FS-CA 2122 Rev. F	ASTM E4-20		
Full Scale Ra	anges:	200 kip			
Note:					

STANDARDS USED FOR CALIBRATION

MTS Asset Number	<u>Manufacturer</u>	<u>Model Number</u>	Description	<u>Cal. Date</u>	<u>Cal. Due</u>
26546	Interface	9840	mV/V Indicator	10-Aug-21	10-Aug-22
26928	Rotronic	HL-20D	Temp & Hum Meter	10-Aug-21	10-Aug-22
26545	Interface	CX-0220-1	Bridge Simulator	11-Aug-21	11-Aug-22
26585	Interface	2160EEA-220K	Load Cell	28-Feb-22	28-Feb-23

Performed by:

Issued on: 9-Aug-22

Calibration Report

•			F								Page:	2 of 3		
Customer		Name:	Federal Hig	jhway Admir	nitstration	0				Rep	ort Number:	11210-320		
		System ID:	222		MIS	System No:	US1_39341				Site	505729		
-		Machine ID:	222			Location:	Structures L	ab			Country:	US		
Equipment		Deules Trees	F			Mandala			Ordel No.	40005700				
		Device Type:	Force			Model:	661.31E-01		Serial No.:	10295782				
	Orad	Device ID:	Load Cell	00.144	Ma	anutacturer:	MIS		Manufa	icture Date:	None			
	Cond	tioner Model:	494-26 DC	S2-J4A		Serial No.:	2124926			-				
_	Readout L	evice Model:	494.06			Serial No.:	2070160		Channel:	Force				
Procedure														
	MT	S Procedure:	FS-CA 212	2 Rev. F								A	CS Version:	12.1
	Calibration h	as been perfo	ormed in acc	cordance wit	h:		ASTM E4-20)						
	Method o	f Verification:	Follow-the-	Force Metho	od using Ela	stic Calibrat	ion Devices							
Calibration	Equipment /	Asset No.												
	Dea	d Weight Set:	N/A									Standard	Asset No.:	26585
	DW C	ompensation:	N/A			DMM:	N/A	Digit	tal Indicator:	26546		Lower Limit:	4 kip	
	Temperat	ure Readout:	26928		Additional	Equipment:	N/A	S	tandardizer:	26545				
Conditions														
	Initial	Temperature:	75 F	Final Te	emperature:	75 F		B	Bidirectional:	N/A	Ca	able Length:	30 Feet	
	In	itial Humidity:	61 %	Fin	al Humidity:	60 %			Polarity(+):	Tension				
			_				_	Ma	ximum Rela	ative Error:	-0.64	%		
In Tolerance	е	X			As Found:	Х	1	Tolerance: +	+/-1.0% of A	pplied Ford	e			
Out of Toler	rance			A	s Adjusted:		1	As Fou	und System	Condition:	Good	l		
							-		-					
Conditioner F	Parameters				Total Gain:	465.2121		Fine zero:	-0.094					
		Polarity:	Normal	F	^p re-amp gain:	285.98								
		Excitation:	9.171 Volts	P	ost-amp gain:	1.62673								
Calibration D	ata	Range:	1		E. Boseler	000								
Compression Report Unite:	kin	Resolution:	0.014		Full Scale:	200								
Applied	KIP Sor	1		Corios	1 Errore		Cor			Corios	Errore		Doposi	ability
Applied Porcont of	Indicated	Indicated	Indicated	Porcont	Unite	Porcont	Indicated	Indicated	Unite	Porcont		Porcont	nepea Dor	Cont
Full Scale	Reading	Reading	Error	Error	Error	Error	Reading	Beading	Error	Error	Error	Error	Fei	
Force	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Dasc
0	-0.003	0.001	-0.003	0.00	Desc	Desu		0.001	0.000	0.00	Desc	Desc	7.50	Desc
-2	-0.003	0.001	-0.003	-0.52	-	-	-3.974	0.001	-0.026	-0.64		-	0.12	
-2	-7.958		-0.021	-0.52	-	-	-7.957		-0.028	-0.64		-	0.12	
-4	-11 940		-0.042	-0.52	-	-	-11 038		-0.043	-0.53		-	0.01	
-0	-15 924		-0.000	-0.00		-	-15.926		-0.002	-0.02			0.02	
-10	-10.024		-0.070	-0.40		-	-10.020		-0.074	-0.49			0.01	
-20	-39.807	-	-0 193	-0.48	-		-39.814	-	-0.186	-0.47		-	0.02	-
-40	-79.651	-	-0.349	-0.44	-		-79.654	-	-0.346	-0.43		-	0.00	-
-70	-139.330	-	-0.670	-0.48	-	-	-139.330	-	-0.670	-0.48	-	-	0.00	-
-100	-198,910	-	-1.090	-0.54	-	-	-198,910	-	-1.090	-0.54	-	-	0.00	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	•	Range:	1		•			1				1		
Tension														
Applied	Ser	ies 1		Series	1 Errors		Ser	ies 2		Series	2 Errors		Repea	tability
Percent of	Indicated	Indicated	Units	Percent	Units	Percent	Indicated	Indicated	Units	Percent	Units	Percent	Per	cent
Full Scale	Reading	Reading	Error	Error	Error	Error	Reading	Reading	Error	Error	Error	Error	Er	ror
Force	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Desc
0	0.000	0.001	0.000	0.00	-	-	0.000	-0.001	0.000	0.00	-	-	-	-
2	3.983	-	-0.017	-0.42	-	-	3.984	-	-0.016	-0.40	-	-	0.03	-
4	7.972	-	-0.028	-0.35	-	-	7.964	-	-0.036	-0.45	-	-	0.10	-
6	11.957	-	-0.043	-0.36	-	-	11.950	-	-0.050	-0.42	-	-	0.06	-
8				-0.36	-	-	15.939	-	-0.061	-0.38	-	-	0.02	-
10	15.943	-	-0.057	0.00			10.000	1	0.007	0.22		-	0.03	-
10	15.943 19.926	-	-0.057	-0.37	-	-	19.933	-	-0.067	-0.00				
20	15.943 19.926 39.998		-0.057 -0.074 -0.002	-0.37 0.00	-	-	39.995	-	-0.067	-0.01	-	-	0.01	-
20 40	15.943 19.926 39.998 80.066	- - - -	-0.057 -0.074 -0.002 0.066	-0.37 0.00 0.08		-	39.995 80.061	-	-0.067 -0.005 0.061	-0.01 0.08	-	-	0.01	-
20 40 70	15.943 19.926 39.998 80.066 140.260	- - - -	-0.057 -0.074 -0.002 0.066 0.260	-0.37 0.00 0.08 0.19			39.995 80.061 140.260		-0.067 -0.005 0.061 0.260	-0.01 0.08 0.19	-		0.01 0.01 0.00	
10 20 40 70 100	15.943 19.926 39.998 80.066 140.260 200.460	- - - - -	-0.057 -0.074 -0.002 0.066 0.260 0.460	-0.37 0.00 0.08 0.19 0.23	- - - -	- - - -	19.933 39.995 80.061 140.260 200.460		-0.067 -0.005 0.061 0.260 0.460	-0.01 -0.08 0.19 0.23	-		0.01 0.01 0.00 0.00	
10 20 40 70 100	15.943 19.926 39.998 80.066 140.260 200.460	- - - - -	-0.057 -0.074 -0.002 0.066 0.260 0.460 -	-0.37 0.00 0.08 0.19 0.23 -	- - - - -	- - - - -	19,933 39,995 80.061 140.260 200.460	- - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 -0.08 0.19 0.23 -	- - - - - -	- - - -	0.01 0.01 0.00 0.00	-
20 40 70 100 - Errors at Zero ar	15.943 19.926 39.998 80.066 140.260 200.460 - -	- - - - - of Range.	-0.057 -0.074 -0.002 0.066 0.260 0.460 -	-0.37 0.00 0.08 0.19 0.23 -	- - - - -	- - - - - -	19.933 39.995 80.061 140.260 200.460	- - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 -0.08 0.19 0.23 -	- - - - Table entries v	- - - - vith a (-) are left	0.01 0.01 0.00 - intentionally blas	- - - - nk.
20 40 70 100 - Errors at Zero ar Uncertainty of th This report shall	15.943 19.926 39.998 80.066 140.260 200.460 - re computed in % e data supplied is not be reproduce	- - - - - - of Range. s equal to or less t d except in full, w	-0.057 -0.074 -0.002 0.066 0.260 0.460 - -	-0.37 0.00 0.08 0.19 0.23 - reading for a conn approval of the	- - - - - verage factor of e laboratory.	- - - - - k=2 and an app	19.933 39.995 80.061 140.260 200.460 -	- - - - - - - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 -0.08 0.19 	- - - Table entries v	- - - vith a (-) are left	0.01 0.01 0.00 - intentionally blar ce in % column	- - - - nk.
20 40 70 100 - Errors at Zero ar Uncertainty of th This report shall MTS Reference	15.943 19.926 39.998 80.066 140.260 200.460 - re computed in % e data supplied in not be reproduce Force Transduce	- - - of Range. s equal to or less t d except in full, w rs are lemperatur	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - than ±0.25% of ithout the writtle e compensated	-0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range of	- - - - - - verage factor of e laboratory. of use.	- - - - - k=2 and an app	19.933 39.995 80.061 140.260 200.460 -	- - - - - - - - - - - - - - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 -0.08 -0.19 	- - - - Table entries v	- - - vith a (-) are left	0.01 0.01 0.00 - intentionally blas ce in % column	- - - nk.
20 40 70 100 - Errors at Zero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 	- - - of Range. s equal to or less t d except in full, w rs are temperatur ny Accreditation C	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - han ±0.25% of i thout the writtle e compensated certificate Numb	-0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range ver: 1145.01	- - - - - verage factor of e laboratory. of use.	- - - - - k=2 and an app	19,933 39,995 80.061 140.260 200.460 -	- - - - - - - - - - - - - - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 -0.01 0.08 0.19 0.23 -	- - - - Table entries v	- - - vith a (-) are left	0.01 0.00 0.00 - intentionally blas	- - - -
20 40 70 Errors at Zero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 - re computed in % the data supplied is not be reproduce force Transduce itation of Laborate	- - - of Range. s equal to or less t d except in full, w rs are temperature y Accreditation C	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - han ±0.25% of ithout the writte e compensated Sertificate Numb	-0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range of per: 1145.01	- - - - - - - - - - - - - - - - - - -	- - - - - k=2 and an app	19.933 39.995 80.061 140.260 200.460 - proximate confide	- - - - - - - - - - - - - - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left i	0.01 0.00 0.00 - intentionally blar ce in % column	- - - -
20 40 70 Errors at Zero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 - re computed in % the data supplied is not be reproduce Force Transduce isation of Laborate Nothing to	- - - of Range. s equal to or less t d except in full, w rs are temperaturn ry Accreditation C note at this time	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - han ±0.25% of ithout the writte e compensated Sertificate Numb	-0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range of ber: 1145.01	- - - - - - - - - - - - - - - - - - -	- - - - - k=2 and an app	19.933 39.995 80.061 140.260 200.460 -	- - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left	0.01 0.00 0.00 - intentionally blas ce in % column	- - - nk.
20 40 70 Errors at Zero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 	- - - of Range. s equal to or less t d except in full, w rs are temperatum ry Accreditation C note at this time	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - 	-0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range wer: 1145.01	- - - - - verage factor of e laboratory. of use.	- - - - - k=2 and an app	19.933 39.995 80.061 140.260 200.460 -	- - - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left Out of Toleran	0.01 0.00 0.00 - intentionally blas ce in % column	- - - - nk.
10 20 40 70 100 - Errors at Zero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 	- - - of Range. s equal to or less t d except in full, w rs are temperatur ry Accreditation C note at this time	-0.057 -0.074 -0.002 0.066 0.260 0.460 - 	-0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range wer: 1145.01	- - - - - verage factor of e laboratory. of use.	- - - - - k=2 and an app	39,995 80,061 140,260 200,460	- - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left Out of Toleran	0.01 0.00 0.00 - intentionally blar ce in % column	- - - - nk.
20 40 70 100 Errors at Zero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 - - re computed in % e data supplied is not be reproduce Force Transduce iation of Laborato	- - - of Range. s equal to or less t d except in full, w rs are lemperatur ry Accreditation C note at this time	-0.057 -0.074 -0.002 0.066 0.260 0.460 - 	-0.37 -0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of the over the range - ber: 1145.01	- - - - - verage factor of e laboratory. of use.	- - - - - k=2 and an app	39,995 80,061 140,260 200,460 -	- - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left	0.01 0.00 0.00 - intentionally blar ce in % column	- - - nk.
20 40 70 100 Errors atZero ar Uncertainty of th This report shall MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 - - re computed in % the data supplied is not be reproduce Force Transduce iation of Laborato Nothing to	- - - of Range. s equal to or less t d except in full, w rs are lemperatur ry Accreditation C	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - than ±0.25% of i tithout the writtle e compensated certificate Numb	-0.37 -0.37 0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range ver: 1145.01 vice Engineer	- - - - - verage factor of e laboratory. of use.	- - - - - k=2 and an app	39,995 80,061 140,260 200,460 -	- - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left	0.01 0.01 0.00 - intentionally blas ce in % column	- - - nk
20 40 70 100 Errors at Zero at Uncertainty of th MTS Reference American Assoc	15.943 19.926 39.998 80.066 140.260 200.460 - re computed in % e data supplied in Force Transduce force Transduce iation of Laborato	- - - of Range. s equal to or less t d except in full, w rs are lemperatur ny Accreditation C	-0.057 -0.074 -0.002 0.066 0.260 0.460 - - than ±0.25% of 1 tithout the writtle compensated Certificate Numb	-0.37 -0.00 0.08 0.19 0.23 - reading for a con n approval of th over the range of wer: 1145.01 vice Engineer	- - - - - - verage factor of e (aboratory. of use.	- - - - - k=2 and an app	39,995 80,061 140,260 200,460 -	- - - - - - - - - - - - - - - - - - -	-0.067 -0.005 0.061 0.260 0.460 -	-0.01 0.08 0.19 0.23 -	- - - Table entries v	- - - vith a (-) are left	0.01 0.00 0.00 - intentionally bla ce in % column	- - - - nk

Calibration Report

Customer	Nemer Federal Lisburg	Administration	Page: 3 of 3
Customer	Name: Federal Highway	Administration	
	System ID: 222 Machine ID: 222	Into System No. US1_3934	+1 Site: 505/29
Equipment			
-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Device Type: Force	Model: 661.31E-0	1 Serial No.: 10295782
	Device ID: Load Cell	Manufacturer: MTS	Manufacture Date: None
	Conditioner Model: 494-26 DC S2-J4	4A Serial No.: 2124926	
	Readout Device Model: 494.06	Serial No.: 2070160	Channel: Force
_			
Range:		Linearization Table	_
Full Scale.	200 Dints. Rip		
		Standard Condition	er
As Found:	X		
As Adjusted:		-220.000 -220.000)
		-154.000 -154.000)
		-88.000 -88.000	
		-44.000 -44.000	
		-22.000 -22.000	
		-17.600 -17.600	
		-13.200 -13.200	
		-8.800 -8.800	_
		-4.400 -4.400	_
		0.000 0.000	_
		8 800 8 800	—
		13 200 13 200	—
		17.600 17.600	-
		22.000 22.000	
		44.000 44.000	
		88.000 88.000	
		154.000 154.000	
		220.000 220.000	
			_

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Customer Address: 6300 Georgetown Pike McLean, VA 22101 US

MTS Field Service

MTS Systems Corporation

14000 Technology Drive Eden Prairie, MN 55344-2290

Certificate of Calibration

			rage. rere
Customer	Name: Federal Highway Adr	ninitstration	Certificate Number: 11210-366
	System ID: 100279394	MTS System No: 311.41_550Kip	Site: 505729
	Machine ID: 10441081	Location: Federal Highway	Country: US
Equipment			

Device Type: Length Device ID: LVDT Conditioner Model: 494.16 AC S2-J1A Readout Device Model: 494.06 Model: 311.41 Manufacturer: MTS Serial No.: 9022586 Serial No.: 9025058 Serial No.: 10438863 Manufacture Date: None

Page: 1 of 3

Channel: Displacement

MTS Field Service is accredited by the American Association for Laboratory Accreditation (A2LA Cert. No. 1145.01). The basis for this accreditation is the international standard for calibration laboratories, ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories".

Defined and documented measurement assurance techniques or uncertainty analyses are used to verify the adequacy of the measurement processes.

Calibrations are performed with standards whose values and measurements are traceable to the International System of Units (SI) through a National Metrology Institute (NMI).

The results of this calibration relate only to the items calibrated.

When parameter(s) are reported to be within specified tolerance(s), the measured value(s) shall fall within the appropriate specification limit and the uncertainty of the measured value(s) shall be stated.

	CALIBRATION	INFORMATION
--	-------------	-------------

As Found:	In Toleranc	e	Calibration Date:	28-Oct-2022
As Left:	In Toleranc	e	Calibration Due:	28-Oct-2023
Class:	С			
Calibration F	Procedure:	FS-CA 2124 Rev. G	ASTM E2309/E2309M-20	
Full Scale R	anges:	6 in		
Note:	Return to z	ero errors are not included i	in the Classification Criteria.	

STANDARDS USED FOR CALIBRATION

MTS Asset Number	Manufacturer	Model Number	<u>Description</u>	Cal. Date	<u>Cal. Due</u>
26928	Rotronic	HL-20D	Temp & Hum Meter	23-Aug-22	23-Aug-23
23112	MTS	MTS 1800	Displacement Calibrator	22-Aug-22	22-Dec-23

Performed by

Issued on: 28-Oct-22

Calibration Report

Customer										-	Fage.	2013		
		Name:	Federal Hig	hway Admir	litstration		011 11 550			Rep	ort Number:	11210-366		
		System ID: Machina ID:	1002/9394		MIS	System No:	311.41_550	KIP			Site:	505729		
quinment		Machine ID:	10441081			Location:	Federal Higr	way			Country:	05		
-quipment		Device Type:	Length			Model:	311.41		Serial No :	10438863				
		Device ID:	IVDT		M	anufacturer:	MTS		Manufa	acture Date:	None			
	Condi	tioner Model:	494.16 AC	S2-J1A		Serial No.:	9022586		Withingto	lotare bate.	Tione .			
	Readout D	evice Model:	494.06			Serial No.:	9025058		Channel:	Displaceme	ent			
Procedure	nouted b		101100			oona non	0020000		onamon	Diopidoonia				
loceduic	мт	S Procedure:	FS-CA 212	4 Rev. G								AC	CS Version:	12.1
	Calibration h	as been perfo	ormed in acc	cordance wit	h:		ASTM E230	9/E2309M-20						
	Method o	f Verification:	Follow-the-	Displaceme	nt Method									
alibration	Equipment A	Asset No.												
	Dead	d Weight Set:	N/A									Standard	Asset No.:	23112
	DW Co	ompensation:	N/A			DMM:	N/A	Digit	al Indicator:	N/A		Lower Limit:	N/A	
	Temperat	ure Readout:	26928		Additional	Equipment:	N/A	St	andardizer:	N/A				
onditions														
	Initial	Temperature:	62 F	Final Te	emperature:	65 F		В	idirectional:	N/A	Ca	able Length:	15 Feet	
	Ini	itial Humidity:	42 %	Fin	al Humidity:	40 %			Polarity(+):	Retraction				
n Toleranc	е	X			As Found:	X		ASTM E2309	Classifica	tion: C				
ut of Tole	rance		l	As	Adjusted:			As Fou	ind System	Condition:	Good			
onditioner F	Parameters	Delevitor	Marmal		Total Gain:	2.37968		Fine zero:	0.0					
		Polarity: Excitation:	Normal 10.0 Volts	P	re-amp gain:	0.9025		Phase -	67.0 deg					
alibration D	ata	Range:	1		ist amp gain.	2.00011		Thase.	or to deg					
xtension		Resolution:	0.00012		Full Scale:	6								
leport Units:	in						-							
Applied	Ser	ies 1	 	Series 1	Errors		Ser	ies 2		Series	2 Errors		Repeat	ability
Percent of	Indicated	Indicated	Indicated	Percent	Units	Percent	Indicated	Indicated	Units	Percent	Units	Percent	Perc	ænt
Full Scale	Reading	Reading	Error	Error	Error	Error	Reading	Reading	Error	Error	Error	Error	Err	or
Length	Ascending	0.00170	ASC -0.00010	ASC	Desc	Desc	Ascending	Descending	ASC -0.0002	ASC 0.00	Desc	Desc	ASC	Desc
-2	-0.00010	0.00179	-0.00010	0.00	-	-	-0.00002	0.00041	0.0002	0.00	-	-	0.21	-
-4	-0.24132	-	0.00132	0.55	-	-	-0.24156	-	0.00156	0.65	-	-	0.10	-
-6	-0.36334	-	0.00334	0.93	-	-	-0.36356	-	0.00356	0.99	-	-	0.06	-
-8	-0.48557	-	0.00557	1.16	-	-	-0.48579	-	0.00579	1.21	-	-	0.05	-
-10	-0.60616	-	0.00616	1.03	-	-	-0.60639	-	0.00639	1.06	-	-	0.04	-
-20	-1.20770	-	0.00770	0.64	-	-	-1.20750	-	0.00750	0.62	-	-	0.02	-
-40	-2.40860	-	0.00860	0.36		-	0 400 40							
-70	-4.20430		1	0.00	-		-2.40840	-	0.00840	0.35	-	-	0.01	-
-100	-6 00420	-	0.00430	0.10	-	-	-2.40840	-	0.00840	0.35	-	-	0.01	-
	-0.00420	-	0.00430	0.10	-	-	-2.40840 -4.20430 -6.00440		0.00840 0.00430 0.00440	0.35 0.10 0.07			0.01 0.00 0.00	-
-		- - - Bange'	0.00430 0.00420 -	0.10 0.07 -	-		-2.40840 -4.20430 -6.00440 -	- - - -	0.00840 0.00430 0.00440 -	0.35 0.10 0.07 -	- - - - N/A		0.01 0.00 0.00 -	-
Retraction	-	- - Range:	0.00430 0.00420 - 1	0.10	-	- -	-2.40840 -4.20430 -6.00440 -	- - -	0.00840 0.00430 0.00440 - Crosshead S	0.35 0.10 0.07 - Start Position:	- - - N/A	- - -	0.01 0.00 0.00	-
Retraction		- - Range:	0.00430 0.00420 - 1	0.10 0.07 - Series 1	- - - Errors	-	-2.40840 -4.20430 -6.00440 -	- - - ies 2	0.00840 0.00430 0.00440 - Crosshead S	0.35 0.10 - Start Position: Series 2	- - - N/A 2 Errors	-	0.01 0.00 - Repeat	- - -
Retraction Applied Percent of	- Ser	- - Range: les 1 Indicated	0.00430 0.00420 - 1 Units	0.10 0.07 - Percent	- - - I Errors Units	- - - Percent	-2.40840 -4.20430 -6.00440 - Ser Indicated	- - - - ies 2 Indicated	0.00840 0.00430 0.00440 - Crosshead S	0.35 0.10 0.07 - Start Position: Series 2 Percent	- - - N/A 2 Errors Units	- - - Percent	0.01 0.00 - Repeat Perc	- - - sability xent
Retraction Applied Percent of Full Scale	- Seri Indicated Reading	- - Range: ies 1 Indicated Reading	0.00430 0.00420 - 1 Units Error	0.10 0.07 - Percent Error	- - - Units Error	- - - Percent Error	-2.40840 -4.20430 -6.00440 - Indicated Reading	- - - - Indicated Reading	0.00840 0.00430 0.00440 - Crosshead S Units Error	0.35 0.10 0.07 - Start Position: Series 2 Percent Error	- - N/A 2 Errors Units Error	- - - Percent Error	0.01 0.00 - - Repeat Perc	ability cor
Retraction Applied Percent of Full Scale Length	- Seri Indicated Reading Ascending	- Range: Indicated Reading Descending	0.00430 0.00420 - 1 Units Error Asc	0.10 0.07 - Series 1 Percent Error Asc	- - Units Error Desc	- - Percent Error Desc	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending	- - - Indicated Reading Descending	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc	0.35 0.10 0.07 - Start Position: Series 2 Percent Error Asc	- - N/A Units Error Desc	- - - Percent Error Desc	0.01 0.00 - - Repeat Perc Err Asc	ability cant cor Des
Retraction Applied Percent of Full Scale Length 0	- Seri Indicated Reading Ascending 0.00034	- Range: Indicated Reading Descending -0.00213	0.00430 0.00420 - 1 Units Error Asc 0.00034	0.10 0.07 - Percent Error Asc 0.01	- - Units Error Desc -	- - - Percent Error Desc -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002	- - - Indicated Reading Descending -0.00107	0.00840 0.00430 	0.35 0.10 0.07 	- - N/A 2 Errors Error Desc -	- - - Percent Error Desc -	0.01 0.00 0.00 - Repeat Perc Err Asc - -	ability xent ror Des
Retraction Applied Percent of Full Scale Length 0 2		- Range: Indicated Reading Descending -0.00213 -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00116	0.10 0.07 - Percent Error Asc 0.01 0.97	- - Units Error Desc - -	- - - - Error Desc - -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103	- - - Indicated Reading Descending -0.00107 -	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc 0.00002 0.00103 0.0022	0.35 0.10 0.07 	- - N/A 2 Errors Units Error Desc - -	- - - - Percent Error Desc - -	0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01	ability cent or
Retraction Applied Percent of Full Scale Length 0 2 4 6		- Range: Indicated Reading Descending -0.00213 -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198	0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84	- - Units Error Desc - -	- - - - Error Desc - - -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.32325	- - - Indicated Reading Descending -0.00107 -	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00200	0.35 0.10 0.07 	- - N/A 2 Errors Units Error Desc - - -	- - - - - Percent Error Desc - - - -	0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.05	ability sent for Des
Retraction Applied Percent of Full Scale Length 0 2 4 6 8		es 1 Indicated Reading Descending -0.00213 - -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304	0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75	I Errors Units Error Desc - - -	- - - - Error Desc - - - -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370	- - - Indicated Reading Descending -0.00107 - -	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00325	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77	- - N/A 2 Errors Units Error Desc - - - -	- - - - - Percent Error Desc - - - - - -	0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02	ability cent or
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10		es 1 Indicated Reading Descending -0.00213 - -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00304	0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50	I Errors Units Error Desc - - - -	- - - - Error Desc - - - - - -	-2.40840 -4.20430 -6.00440 - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297	Indicated Reading Descending -0.00107	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00297	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50	- - N/A 2 Errors Error Desc - - - - - - -	- - - - - - - - - - - - - - - - - - -	0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00	-
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20		es 1 Indicated Reading Descending -0.00213 - - - -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00361 0.00361 0.00299 0.00750	0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62	I Errors Units Error Desc - - - - -	- - - - Error Desc - - - - - - - - -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760	Indicated Reading Descending -0.00107	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00297 0.00760	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63	- - N/A 2 Errors 2 Error Desc - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01	- - - - - - - - - - - - - - - - - - -
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20 40		es 1 Indicated Reading Descending -0.00213 - - - - - - - - - - - - - - -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00304 0.00361 0.00299 0.00750 0.00950	0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40	I Errors Units Error Desc - - - - - - - - - - - - - - - - - - -	Percent Error Desc	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910	Indicated Reading Descending -0.00107	0.00840 0.00430 0.00440 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00370 0.00297 0.00760 0.00910	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38	- - N/A 2 Errors 2 Error Desc - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02	
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20 40 70		- Range: Range: Indicated Reading Descending -0.00213 	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00361 0.00299 0.00750 0.00950 0.00890	0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21	I Errors Units Error Desc - - - - - - - - - - - - -		-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890	Indicated Reading Descending -0.00107	0.00840 0.00430 - Crosshead S - Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00297 0.00297 0.002910 0.00890	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21	- - N/A 2 Errors 2 Error Desc - - - - - - - - - - - - - - - - - - -		0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00	ability cent for - - - - - - - - - - - - - - - - - -
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20 40 70 100		Range: - Range: Indicated Reading Descending - 0.00213 	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00361 0.00299 0.00750 0.00950 0.00950 0.00890 0.01340	Series Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21			-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890 6.01380	Indicated Reading Descending0.00107	0.00840 0.00430 	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21 0.23	- - N/A 2 Errors 2 Error Desc - - - - - - - - - - - - - - - - - - -		0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00	-
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20 40 70 100	Ser Indicated Reading 0.00034 0.12116 0.24198 0.36304 0.48361 0.60299 1.20750 2.40950 4.20890 6.01340		0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00304 0.00304 0.00299 0.00750 0.00950 0.00890 0.01340 -	0.10 0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21 0.22	I Errors Units Error Desc		-2.40840 -4.20430 -6.00440 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890 6.01380 -	Indicated Reading Descending0.00107	0.00840 0.00430 - Crosshead S - Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00297 0.00297 0.00760 0.00910 0.00910 0.00910 0.00890 0.01380 -	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21 0.23 -	N/A Units Error Desc		0.01 0.00 0.00 - - Repeat Perc Err Asc 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 - -	ability sent or Dess - - - - - - - - - - - - - - - - - -
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20 40 70 100	Ser Indicated Reading 0.00034 0.12116 0.24198 0.36304 0.48361 0.60299 1.20750 2.40950 4.20890 6.01340	- Range: Indicated Reading Descending -0.00213 - - - - - - - - - - - - - - - - -	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00304 0.00304 0.00361 0.00299 0.00750 0.00950 0.00950 0.00950 0.00950 0.00950 0.00340 -	0.10 0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21 0.22 -	I Errors Units Error Desc		-2.40840 -4.20430 -6.00440 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890 6.01380 -	Indicated Reading Descending -0.00107	0.00840 0.00430 0.00430 - Crosshead S Units Error Asc 0.0002 0.00103 0.00200 0.00325 0.00370 0.00297 0.00760 0.00297 0.00760 0.00910 0.00890 0.00890 0.01380 -	0.35 0.10 0.07 - Start Position: Series : Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21 0.23 -			0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 1.00 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00	-
Retraction Applied Percent of Full Scale Length 0 2 4 6 8 10 20 40 70 100 	O.30420 O.30420 O.30420 O.30420 O.30420 O.484 O.48361 O.60299 1.20750 2.40950 4.20890 6.01340 o calibration data obte percoduce othere of the second secon	- Range: Range: Indicated Reading Descending -0.00213	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00361 0.00299 0.00750 0.00950 0.00950 0.00950 0.00890 - - to or less than 1 tithout the writes	0.10 0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21 0.22 - the greater of, ± 1 approval of the			-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.00002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890 6.01380 - - s, for a coverage		0.00840 0.00430 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00325 0.00370 0.00297 0.00760 0.00297 0.00760 0.00910 0.00890 0.01380 - an approximate	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21 0.23 - confidence level	- - N/A 2 Errors 2 Error Desc - - - - - - - - - - - - - - - - - - -		0.01 0.00 0.00 - - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.0	-
Retraction Applied Percent of -ull Scale Length 0 2 4 6 8 10 20 40 70 100 - ors at Zero ar 2 artainty of th s report shall	Series Indicated Reading 0.00034 0.12116 0.24198 0.36304 0.48361 0.60299 1.20750 2.40950 4.20890 6.01340 - re computed in % ve calibration data not be reproduce	- Range: Range: Indicated Reading Descending 0.00213	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00304 0.00304 0.00304 0.00304 0.00299 0.00750 0.00950 0.00950 0.00890 0.01340 - - - - - - - - - - - - -	Series 0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21 - he greater of, ±1	I Errors Units Error Desc - - - - - - - - - - - - - - - - - - -	- - - Error Desc - - - - - - - - - - - - - - - - - - -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.0002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890 6.01380 - - s, for a coverage	Indicated Reading Descending -0.00107	0.00840 0.00430 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00297 0.00760 0.00297 0.00760 0.00910 0.00890 0.01380 - an approximate	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21 0.23 - confidence level	N/A 2 Errors 2 Error Desc		0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00	ability cor Des - - - - - - - - - - - - - - - - - - -
Retraction Applied Percent of -ull Scale Length 0 2 4 6 8 10 20 40 70 100 	Octobe Octobe	- Range: Range: Indicated Reading Descending -0.00213	0.00430 0.00420 - 1 Units Error Asc 0.00034 0.00116 0.00198 0.00304 0.00304 0.00304 0.00304 0.00304 0.00304 0.00304 0.00390 0.00950 0.00890 0.01340 - to or less than t ithout the written	Series 0.10 0.07 - Percent Error Asc 0.01 0.97 0.83 0.84 0.75 0.50 0.62 0.40 0.21 - he greater of, ±1 n approval of the er: 1145.01	I Errors Units Error Desc - - - - - - - - - - - - - - - - - - -	- - - Error Desc - - - - - - - - - - - - - - - - - - -	-2.40840 -4.20430 -6.00440 - - Indicated Reading Ascending 0.0002 0.12103 0.24200 0.36325 0.48370 0.60297 1.20760 2.40910 4.20890 6.01380 - - s, for a coverage	Indicated Reading Descending -0.00107	0.00840 0.00430 - Crosshead S Units Error Asc 0.00002 0.00103 0.00200 0.00325 0.00370 0.00297 0.00760 0.00910 0.009910 0.00890 - an approximate	0.35 0.10 0.07 - Start Position: Percent Error Asc 0.00 0.86 0.83 0.90 0.77 0.50 0.63 0.38 0.21 0.23 - confidence level	N/A Units Error Desc		0.01 0.00 0.00 - Repeat Perc Err Asc - 0.11 0.01 0.06 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01	-

Performed By:

Field Service Engineer

Calibration Report

_

							Page: 3 of 3
Customer		Name: F	ederal Highway Adn	ninitstration			Report Number: 11210-366
		System ID: 1	00279394	MTS Sys	stem No:	311.41_550k	Kip Site: 505729
		Machine ID: 1	0441081	l	_ocation:	Federal High	way Country: US
Equipment	_						
	L	Device Type: L	ength		Model:	311.41	Serial No.: 10438863
	O a ra aliti	Device ID: L		Manu	facturer:	MIS	Manufacture Date: None
	Conditi Decident Dr	ioner Model: 4	94.16 AC 52-JIA	Serial No.: 9022366		9022586	Obarradu Disala arrant
	Readout De	evice iviodei: 4	94.06	Senai No.: 9025056			Channel: Displacement
	1						
Range:	1 6 Units: in						
Full Scale:	6	Units:	in	Linea	rization	Table	
				Standard		Conditioner	
As Found:	x			Otandara		Conditioner	
As Adjusted:				-6.00000		-6.05440	
,				-4.80000		-4.83000	
				-3.90000		-3.92130	
				-3.30000		-3.31160	
				-2.70000		-2.70930	
				-2.10000		-2.10480	
				-1.50000		-1.50320	
				-0.90000		-0.90075	
				-0.30000		-0.29933	
				0.00000		0.00000	
				0.30000		0.30030	
				0.90000		0.89469	
				1.50000		1.49370	
				2.10000		2.09320	
				3 30000		3 28520	
				3 90000		3 89100	
				4 80000		4 79810	
				6.00000		6.00040	
				-		-	
				_		_	

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Customer Address: 6300 Georgetown Pike McLean, VA 22101 US

MTS Field Service

MTS Systems Corporation

14000 Technology Drive Eden Prairie, MN 55344-2290

Page: 1 of 3

Certificate of Calibration

Customer	Name: Federal Highway Admini	tstration	Certificate Number: 11210-367
	System ID: 100279394	MTS System No: 311.41_550Kip	Site: 505729
	Machine ID: 10441081	Location: Federal Highway	Country: US
Equipment			
	Device Type: Force	Model: 661.36D-03	Serial No.: 10436789
	Device ID: Load Cell	Manufacturer: MTS	Manufacture Date: None
	Conditioner Model: 494.26 DC S2-J2A	Serial No.: 9033379	
Rea	dout Device Model: 494.06	Serial No.: 9025058	Channel: Force

MTS Field Service is accredited by the American Association for Laboratory Accreditation (A2LA Cert. No. 1145.01). The basis for this accreditation is the international standard for calibration laboratories, ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories".

Defined and documented measurement assurance techniques or uncertainty analyses are used to verify the adequacy of the measurement processes.

Calibrations are performed with standards whose values and measurements are traceable to the International System of Units (SI) through a National Metrology Institute (NMI).

MTS Reference Force Transducers are calibrated in compliance with ASTM E74.

The results of this calibration relate only to the items calibrated.

When parameter(s) are reported to be within specified tolerance(s), the measured value(s) shall fall within the appropriate specification limit and the uncertainty of the measured value(s) shall be stated.

CALIBRATION INFORMATION

As Found:	In Tolerance	9		Calibration Date:	28-Oct-2022
As Left:	In Tolerance	e		Calibration Due:	28-Oct-2023
Tolerance:	+/-1.0% of	Applied Force			
Calibration P	rocedure:	FS-CA 2122 Rev. G	ASTM E4-2	20	
Full Scale Ra	anges:	500 kip			
Note:					

STANDARDS USED FOR CALIBRATION

MTS Asset Number	<u>Manufacturer</u>	<u>Model Number</u>	Description	<u>Cal. Date</u>	<u>Cal. Due</u>
26546	Interface	9840	mV/V Indicator	22-Aug-22	22-Aug-23
26928	Rotronic	HL-20D	Temp & Hum Meter	23-Aug-22	23-Aug-23
26545	Interface	CX-0220-1	Bridge Simulator	22-Aug-22	22-Aug-23
18329	StrainSense	SST105U	Load Cell	9-Feb-21	9-Dec-22

Performed by:

Issued on: 28-Oct-22

Calibration Report

										_	Page:	2 of 3		
Customer		Name:	Federal Hig	ihway Admir	hitstration	0	044 44 550			Rep	ort Number:	11210-367		
		System ID:	1002/9394		MIS	System No:	311.41_550	кір			Site:	505729		
Equipmont		Machine ID:	10441081			Location:	Federal Higr	way			Country:	08		
Equipment			Form			Model	CC1 2CD 02		Coriol No :	10426790				
		Device Type.			M	WUQEI.	001.30D-03		Senarivo	10430709	Nono			
	Condi	itionor Modol:	ADA 26 DC	50 104	IVIC	Sorial No :	0033370							
	Doadout C	ovico Model:	404.06	02-024		Sorial No :	0025058		Channol:	Forco				
Procedure	neadout L	evice model.	434.00			Genaria	3020000		onanner.	1 Olde				
locedule	МТ	S Procedure:	ES-CA 212	2 Rev G								Δ	CS Version:	121
	Calibration h	as been perfe	armod in acc	ordance wit	h:		ASTM F4-20							12.1
	Method	f Verification:	Follow-the-	Force Metho	nd using Fla	stic Calibrat	ion Devices							
alibration	Equipment A	Asset No.												
	Dea	d Weight Set:	N/A									Standard	Asset No.:	18329
	DW C	ompensation:	N/A			DMM:	N/A	Digit	al Indicator:	26546		ower Limit:	20 kip	10020
	Temperat	ure Readout:	26928		Additional	Fauipment:	N/A	S	tandardizer:	26545			20100	
onditions	rempera		LUGLU		ruanona	Equipment.		0	andarazor.	20040				
	Initial	Temperature:	67 F	Final Te	emperature:	68 F		В	idirectional:	N/A	Ca	able Lenath:	15 Feet	
	In	itial Humidity:	40 %	Fin	al Humidity:	41 %		_	Polaritv(+):	Tension				
								Ма	ximum Rel	ative Error:	0.45	%		
n Tolerance	e	X	1		As Found:	X		Tolerance: +	⊦/-1.0% of A	pplied Ford	e			
Out of Tole	rance		1	A	Adjusted:			As Fou	ind System	Condition:	Good			
					•									
Conditioner F	Parameters				Total Gain:	436.85962		Fine zero:	0.064	5	Shunt Cal (+):	426.4661 Kip)	
		Polarity:	Normal	F	re-amp gain:	285.98								
		Excitation:	10.0 Volts	P	ost-amp gain:	1.52759								
Compression	ata	Range: Resolution:	0.012		Full Scale:	500								
Report Units:	kip	ricsolution.	0.012		i un oouic.	000								
Applied	Ser	ies 1		Series	1 Errors		Ser	ies 2		Series	2 Errors		Repea	tability
Percent of	Indicated	Indicated	Indicated	Percent	Units	Percent	Indicated	Indicated	Units	Percent	Units	Percent	Per	cent
Full Scale	Reading	Reading	Error	Error	Error	Error	Reading	Reading	Error	Error	Error	Error	Er	ror
Force	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Desc
0	-0.017	0.000	-0.017	0.00	-	-	-0.023	0.001	-0.023	0.00	-	-	-	-
-4	-20.089	-	0.089	0.45	-	-	-20.079	-	0.079	0.40	-	-	0.05	-
-6	-30.098	-	0.098	0.33	-	-	-30.098	-	0.098	0.33	-	-	0.00	-
-8	-40.122	-	0.122	0.31	-	-	-40.077	-	0.077	0.19	-	-	0.00	-
-10	-100 170	-	0.170	0.22	-	-	-100 140	-	0.140	0.22	-	-	0.00	-
-40	-200.080	-	0.080	0.04	-	-	-200.090	-	0.090	0.04	-	-	0.00	-
-70	-349.680	-	-0.320	-0.09	-	-	-349.670	-	-0.330	-0.09	-	-	0.00	-
-100	-498.940	-	-1.060	-0.21	-	-	-498.900	-	-1.100	-0.22	-	-	0.01	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Range:	1											
Tension			1				-						_	
Applied	Ser	les 1	l lait-	Series	Linit	Derer -	Ser Ser	les 2	l Init-	Series 2	2 Errors	Derecht	Repea	ability
Full Socia	Reading	Booding	Error	Fricent	Error	Fricent	Reading	Boading	Error	FreiCent	Error	Fricent	Per	Jent For
Force	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Deer
0	0,007	0,002	0,007	0.00	-	-	0,012	-0,002	0,012	0.00	-	-	-	
4	20.062	-	0.062	0.31	-	-	20.053	-	0.053	0.26	-	-	0.05	-
6	30.107	-	0.107	0.36	-	-	30.065	-	0.065	0.22	-	-	0.14	-
8	40.151	-	0.151	0.38	-	-	40.127	-	0.127	0.32	-	-	0.06	-
10	50.175	-	0.175	0.35	-	-	50.154	-	0.154	0.31	-	-	0.04	-
20	100.290	-	0.290	0.29	-	-	100.290	-	0.290	0.29	-	-	0.00	-
40	200.620	-	0.620	0.31	-	-	200.570	-	0.570	0.29	-	-	0.02	-
70	351.250	-	1.250	0.36	-	-	351.180	-	1.180	0.34	-	-	0.02	-
100	502.060	-	2.060	0.41	-	-	501.980	-	1.980	0.40	-	-	0.02	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	of Dance	-	-	-	-	-	-	-	-	- Table entries ::	(ith a () ono loff	-	-
certainty of th is report shall IS Reference	e data supplied in a not be reproduce Force Transduce	s equal to or less t d except in full, w rs are temperatur	than ±0.25% of r rithout the writter e compensated	eading for a cov n approval of the over the range (verage factor of a laboratory. of use.	k=2 and an app	roximate confide	nce level of 95%.		I	Table entries w	Out of Toleran	ce in % column	IR.
nerican Assoc	iation of Laborate	ory Accreditation C	Certificate Numb	er: 1145.01										
	Nothing to	note at this time	2											
	Nothing to	note at this time	,											
rformed By:			Field Sen	vice Engineer					Date:	28-Oct-22				

ACSRepRevBL

Calibration Report

Page: 3 of 3 Report Number: 11210-367 Customer Name: Federal Highway Adminitstration System ID: 100279394 MTS System No: 311.41_550Kip Site: 505729 Machine ID: 10441081 Location: Federal Highway Country: US Equipment Model: 661.36D-03 Serial No.: 10436789 Device Type: Force Device ID: Load Cell Manufacturer: MTS Manufacture Date: None Conditioner Model: 494.26 DC S2-J2A Serial No.: 9033379 Readout Device Model: 494.06 Serial No.: 9025058 Channel: Force Range: 1 Full Scale: 500 Units: Linearization Table kip Standard Conditioner As Found: Х -550.000 -550.000 As Adjusted: -440.000 -440.000 -357.500 -357.500 -302.500 -302.500 -247.500 -247.500 -192.500 -192.500 -137.500 -137.500 -82.500 -82.500 -27.500 -27.500 0.000 0.000 27.500 27.500 82.500 82.500 137.500 137.500 192.500 192.500 247.500 247.500 302.500 302.500 357.500 357.500 440.000 440.000 550.000 550.000 _ _ _ --

-

-

-

-

_

_

-

-

-

_

_

-

-

-

-

-

-

-

-

-

-

-

-

-

--

-

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology 325 Broadway Boulder, CO 80305-3337

August 31, 2022

Genex Systems / Turner Fairbank Highway Research Center 6300 Georgetown Pike, Structures Laboratory TO-130 Mclean, Virginia 22101 USA

Dear

Charpy verification specimens tested on the 406.7 J (300.0 ft-lbf) capacity Tinius Olsen Machine, Serial No. 195892, have been received for evaluation along with the completed questionnaire. We have analyzed the results (see attached table) and find that the average values fall within the acceptable ranges at all the energy levels tested, in accordance with the current ASTM E23 standard. The following paragraphs describe further analysis of the questionnaire, the test results, and the fractured specimens.

This machine satisfies the indirect verification requirements of the current ASTM E23 standard from an absorbed energy level of 8.5 J (6.3 ft-lbf) to 80 % of the maximum capacity of the machine.

Enclosed is a Charpy Verification Sticker to attach to your machine.

If the machine is moved or undergoes any major repairs or adjustments, this verification becomes invalid and the machine must be rechecked (see ASTM E23). If a specimen stops the pendulum during a test, the machine should be checked to assure that the pendulum is straight, the anvils and striker have not been damaged, and that all bolts are still tight.

If you have any questions concerning the verification of your machine, you may contact me by phone at +1-303-497-3351, by fax at +1-303-497-5939, or by email at charpy@boulder.nist.gov.

Sincerely,

Applied Chemicals & Materials Division

3 Enclosures

National Institute of Standards and Technology **Applied Chemicals & Materials Division** 325 Broadway, Boulder, CO 80305-3328

Facility: Genex Systems / Turner Fairbank Highway Research Center, 6300 Georgetown Pike, Structures Laboratory TO-130 Mclean, Virginia 22101 USA

Machine Manufacturer: Tinius Olsen

Serial Number: 195892

Test Date: 8/31/2022

Reference Standard: ASTM E23

SERIES	PT*		CLI	ENT VALU	JES			AVERA	GE (J)	DIFFEDENCE	REGULT	
NUMBER	Code	1	2	3	4	5	UNITS	CLIENT	NIST	DIFFERENCE	RESULI	
Low LL-187	100315	17.0	16.3	12.9	16.3	15.6	J	15.6	15.2	0.4 J	Pass	
High HH-180	100316	84.7	84.1	86.1	81.4	85.4	J	84.3	80.6	4.6%	Pass	
Super-High SH-60H	100317	211.5	208.8	207.4	202.0	210.2	J	208.0	204.2	1.9%	Pass	

Allowable difference is 1.4 J or 5 %, whichever is greater.

* Proficiency Test (PT) results for your data are available online. To access the PT data, you need to go to the PT website and enter the Series Number and PT Code for each energy level of interest.

Additional Information

The information contained in Table 1 can be used to compute the uncertainty for a new material tested in your laboratory using the procedure outlined in NIST SP 960-18 [1].

See also: https://www.nist.gov/programs-projects/nist-impact-verification-program.

Series Number		Client	Statistics	NIST SRM Statistics					
	Client Average \overline{V} (J)	Standard Deviation S_V (J)	Number of Tests n_V	$S_V / \sqrt{n_V}$ (J)	Degrees Of Freedom df_V	Certified Reference Value <i>R</i> (J)	Combined Uncertainty u(R) (J)	Degrees Of Freedom df_R	Expanded Uncertainty U (J)
LL-187	15.6	1.59	5	0.71	4	15.2	0.119	68	0.238
HH-180	84.3	1.83	5	0.82	4	80.6	0.217	72	0.432
SH-60H	208.0	3.66	5	1.64	4	204.2	0.535	104	1.06

Table 1. Summary statistics for SRM materials and customer's verification test result.

The fifth column, labeled $S_V / \sqrt{n_V}$, is the uncertainty of the verification test mean, \overline{V} , if there are no additional sources of systematic error that need to be included. It is the customer's responsibility to determine the final uncertainty of \overline{V} .

The expanded uncertainty of the NIST reference value (*U*), corresponding to a 95 % uncertainty interval, is based on a coverage factor from the Student's *t* distribution with df_R degrees of freedom. The expanded uncertainties include sources of error in the measurement and testing process at NIST, and are not the expanded uncertainties of the individual verification specimens or the uncertainties of tests performed in your laboratory.

Reference

[1] Splett, J. D., McCowan, C. N., Iyer, H. K., Wang, C.-M., "NIST Recommended Practice Guide: Computing Uncertainty for Charpy Impact Machine Test Results," NIST Special Publication 960-18, September, 2007 (available at: <u>https://www.nist.gov/sites/default/files/documents/mml/acmd/structural_materials/SP9602-18Final-2.pdf</u>).

 NIST Char This machine me requirements of the	arpy Verification Sticker eets the indirect verification a current ASTM Standard E23
Machine Serial Number:	195892
Verification Date:	August 31, 2022
Range of Verification:	From 8.5 J (6.3 ft-lbf) to 80% of the machine capacity
Signature:	
 , National Institute	Charpy Program Coordinator of Standards and Technology

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology 325 Broadway Boulder, CO 80305-3337

August 31, 2022

Genex Systems / Turner Fairbank Highway Research Center 6300 Georgetown Pike, Structures Laboratory TO-130 Mclean, Virginia 22101 USA

Dear

Charpy verification specimens tested on the 406.7 J (300.0 ft-lbf) capacity Tinius Olsen Machine, Serial No. 195892, have been received for evaluation along with the completed questionnaire. We have analyzed the results (see attached table) and find that they satisfy the requirements of the current ISO 148-2 standard. The following paragraphs describe further analysis of the questionnaire, the test results, and the fractured specimens.

This machine satisfies the indirect verification requirements of the current ISO 148-2 Standard at the energy levels tested.

Enclosed is a Charpy Verification Sticker to attach to your machine.

If the machine is moved or undergoes any major repairs or adjustments, this verification becomes invalid and the machine must be rechecked (ISO 148-2). If a specimen stops the pendulum during a test, the machine should be checked to assure that the pendulum is straight, the anvils and striker have not been damaged, and that all bolts are still tight.

If you have any questions concerning the verification of your machine, you may contact me by phone at +1-303-497-3351, by fax at +1-303-497-5939, or by email at charpy@boulder.nist.gov.

Sincerely,

Applied Chemicals & Materials Division

3 Enclosures

National Institute of Standards and Technology Applied Chemicals & Materials Division 325 Broadway, Boulder, CO 80305-3328

Facility: Genex Systems / Turner Fairbank Highway Research Center, 6300 Georgetown Pike, Structures Laboratory TO-130 Mclean, Virginia 22101 USA

Machine Manufacturer: Tinius Olsen Serial Number: 195892

Test Date: 8/31/2022

Reference Standard: ISO 148-2

SERIES		CLI	ENT VALU	JES			AVERA	GE (J)	BIAC		BEOULT
NUMBER	1	2	3	4	5	UNITS	CLIENT	NIST	BIAS	REPEATABILITY	RESULT
Low LL-187	17.0	16.3	12.9	16.3	15.6	J	15.6	15.2	0.4 J	4.1	Pass
High HH-180	84.7	84.1	86.1	81.4	85.4	J	84.3	80.6	4.6%	5.88%	Pass
Super High SH-60H	211.5	208.8	207.4	202.0	210.2	J	208.0	204.2	1.9%	4.65%	Pass

Allowable bias is 4 J or 10 %, whichever is greater; allowable repeatability is 6 J or 15 %, whichever is greater (ISO Standard 148-2).

Additional Information

The information contained in Table 1 can be used to compute the uncertainty for a new material tested in your laboratory using the procedure outlined in NIST SP 960-18 [1].

See also: https://www.nist.gov/programs-projects/nist-impact-verification-program.

		Client S	Statistics		NIST SRM Statistics				
Series Number	Client Average \overline{V} (J)	Standard Deviation S_V (J)	Number of Tests n_V	$S_V / \sqrt{n_V}$ (J)	Degrees Of Freedom df_V	Certified Reference Value <i>R</i> (J)	Combined Uncertainty u(R) (J)	Degrees Of Freedom df_R	Expanded Uncertainty U (J)
LL-187	15.6	1.59	5	0.71	4	15.2	0.119	68	0.238
HH-180	84.3	1.83	5	0.82	4	80.6	0.217	72	0.432
SH-60H	208.0	3.66	5	1.64	4	204.2	0.535	104	1.06

Table 1. Summary statistics for SRM materials and customer's verification test result.

The fifth column, labeled $S_V / \sqrt{n_V}$, is the uncertainty of the verification test mean, \overline{V} , if there are no additional sources of systematic error that need to be included. It is the customer's responsibility to determine the final uncertainty of \overline{V} .

The expanded uncertainty of the NIST reference value (*U*), corresponding to a 95 % uncertainty interval, is based on a coverage factor from the Student's *t* distribution with df_R degrees of freedom. The expanded uncertainties include sources of error in the measurement and testing process at NIST, and are not the expanded uncertainties of the individual verification specimens or the uncertainties of tests performed in your laboratory.

Reference

[1] Splett, J. D., McCowan, C. N., Iyer, H. K., Wang, C.-M., "NIST Recommended Practice Guide: Computing Uncertainty for Charpy Impact Machine Test Results," NIST Special Publication 960-18, September, 2007 (available at: <u>https://www.nist.gov/sites/default/files/documents/mml/acmd/structural_materials/SP9602-18Final-2.pdf</u>).

GDS500A Maintenance Checklist Rev. 7

1. GDS500A Maintenance Checklist

Customer Number					
Service Call Number		8789			
Assignment Number		3508	3508		
Customer / Company Name		FEDERAL HIGHWAY ADMI	NISTRATION		
Customer/Company Address		6300 Georgetown pike			
Primary Contact					
Telephone					
E-mail					
Secondary Contact					
Telephone					
E-mail					
Instrument		Gds500a			
Serial Number		14406			
Client Asset ID Number		110084			
Software Version		1.81			
2. Major Components					
Table name					
Description / Model No.		S/N	Software Version		
Gds500a	14406		1.81		
Computer Brand & Model		Нр440			
PC Serial Number		14214			
Operating System		WIN7			
Specify if other OS is selected					
Application		Metal testing			

3. Procedure

Take a screen capture of the ambient monitor & system counters	Yes	No
Corrective Action / Comments		•
Analyze Drift standards and take a screen capture of the calculated results	Yes	No
Corrective Action / Comments		· · · · · ·
Remove all .bak files under the GDS500A database	Yes	No
Corrective Action / Comments		
Backup all methods & copy the GDS500A folder. Return backups & copy of GDS500A folder to LECO	Yes	No
Corrective Action / Comments		
Change the vacuum pump oil	Yes	No

LECO Corporation - 3000 Lakeview Avenue - 49085 Saint Joseph, MI

Corrective Action / Comments		
Clean the cone filter on the rough pump inlet	Yes	No
Corrective Action / Comments		
Inspect the odor/mist filter (replace every 12 months)	Yes	No
Corrective Action / Comments	Replaced	
Check and record the resistance of the water before replacing it. Be sure to disconnect the HV BNC cable from the lamp. With the water pump running, place red lead on the HV connection. ($<20M\Omega =$ change water). Replace the 607-437 Tubing if necessary.	Replaced water	
MΩ before		
MΩ after		
Corrective Action / Comments		
Leak check the argon tank, inlet lines, pneumatic pistons and solenoids	Pass	
Corrective Action / Comments		
Check and record the anode depth (should be 0.12 to 0.17mm)	0.13	
Corrective Action / Comments		
Check reamer bit, pulley and motor operation and clean where needed	Yes	No
Corrective Action / Comments		
Remove the GD lamp and clean the outer lens (clean the inner lens as needed)	Cleaned outer lens	
Corrective Action / Comments		
Clean the GD lamp. Rebuild the lamp & anneal the anode if necessary	Cleaned	
Corrective Action / Comments		
Inspect and clean the poppet valve (vacuum enable valve), replace it if necessary.	Cleaned	
Corrective Action / Comments		
Inspect and clean the 611-351-263 poppet valve (vacuum enable valve) solenoid, replace it if necessary.	Cleaned	
Corrective Action / Comments		
Perform a lamp vacuum test (0.03 Torr or less)	Pass	
Corrective Action / Comments		
Check the function of the dead man switch	Pass	
Corrective Action / Comments		
Check the alignment of the analysis door and align it if necessary	Pass	
Corrective Action / Comments		
Check the alignment of the safety interlock magnets	Pass	
Corrective Action / Comments		

GDS500A Maintenance Checklist Rev. 7

	Date	24/03/22	Page	3	/	3
--	------	----------	------	---	---	---

Clean the air inlet dust filters on the front of the instrument	Yes	□ No
Corrective Action / Comments		
Clean the tower air inlet dust filters	Yes	No
Corrective Action / Comments		
Check the function of the three cooling fans	Pass	
Corrective Action / Comments		
Check and record the AC line voltage	Yes	No
Voltage in VAC	217	
Corrective Action / Comments		
Reset all the counters that had maintenance performed on them	Yes	No
Corrective Action / Comments		
Verify the GDL vacuum solenoid counter is set for the same burns as the anode (5000 to 7000)	Yes	No
Corrective Action / Comments		
Clean and vacuum the printer and change the ribbon if necessary	N/A	
Corrective Action / Comments		
Perform a detector alignment - take a screen capture of the results	Yes	No
Corrective Action / Comments		
Analyze Drift standards and take a screen capture of the calculated results	Yes	No
Corrective Action / Comments		
Analyze Check standards for the method that was just drifted - take screen captures of the results	Yes	No
Corrective Action / Comments		
Check and record the anode depth (should be 0.12 to 0.17mm)	0.13	
Corrective Action / Comments		
Review Checklist with Customer	Yes	No
Corrective Action / Comments		

4. Signatures

Customer Approval	
Date	2022-03-23
LECO Representative	
Date	2022-03-23

LECO Corporation - 3000 Lakeview Avenue - 49085 Saint Joseph, MI

National Bureau of Standards Certificate of Analysis Standard Reference Material 1269 Low Alloy Steel (AISI 1526, Mod.) "Line Pipe Steel"

In cooperation with American Society for Testing and Materials and Steel Founders' Society of America

This SRM is in the form of disks 32 mm (1 1/4 in) in diameter and 19 mm (3/4 in) thick, intended for use in optical emission and x-ray spectrometric methods of analysis.

Element	Certified Value, ¹ % by wt.	Estimated Uncertainty ²
Carbon	0.298	0.004
Manganese	1.35	.02
Phosphorus	0.012	.002
Sulfur	.0061	.0004
Silicon	.189	.008
Copper	.095	.005
Nickel	.108	.005
Chromium	.201	.009
Vanadium	.004	.001
Molybdenum	.036	.003
Lead	.005	.001
Aluminum	.016	.003

1. The certified value listed for a constituent is the *present best estimate* of the "true" value based on the results of the cooperative program for certification.

2. The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability. (No attempt was made to derive exact statistical measures of imprecision because several methods were involved in the determination of most constituents.)

METALLURGICAL CONDITION: The structure of the specimens is that resulting from hot working, followed by annealing.

The overall coordination of the technical measurements leading to certification was performed under the direction of J. I. Shultz, Research Associate, ASTM-NBS Research Associate Program.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

Washington, D.C. 20234 June 11, 1981

George A. Uriano, Chief Office of Standard Reference Materials

PLANNING, PREPARATION, TESTING, ANALYSIS:

The composition of this SRM was chosen for the "line-pipe" steel industry, especially with respect to low sulfur. In addition, this SRM is expected to serve as Supplement No. 2 to the "1200 Series" of irons and steels. The material for this SRM was melted and cast at Esco Corporation, Portland, Ore., (L. E. Finch), under an NBS contract with the Steel Founders' Society of America. A single ingot was fabricated at the Puget Sound Naval Shipyard, Bremerton, Washington, where it was forged and swaged to rods (oversize 32 mm in diameter). The rods were given a sub-critical anneal and then centerless ground to the final size of 32 mm in diameter. Homogeneity testing was performed at NBS by optical emission spectrometric analysis, J. A. Norris; by x-ray fluorescence analysis, P. A. Pella; and chemical analysis by B. I. Diamondstone and by R. K. Bell, Assistant Research Associate, ASTM/NBS Research Associate Program.

Composite samples for chemical analysis were prepared in the form of millings cut from representative specimens of the rods.

Cooperative analyses for certification were performed in the following laboratories:

Bethlehem Steel Corporation, Homer Research Laboratories, Bethlehem, Pa., D. A. Flinchbaugh and J. L. Fernandez.

Ledoux & Company, Teaneck, N.J., S. Kallmann, E. Komarkova, and C. L. Maul.

National Bureau of Standards, Inorganic Analytical Research Division, B. I. Diamondstone, E. R. Deardorff, E. J. Maienthal, S. Hanamura, T. C. Rains, and R. K. Bell, ASTM/NBS Assistant Research Associate.

Republic Steel Corporation, Chicago District, Chicago, Ill., P. P. Blaszak.

Sharon Steel Corporation, Sharon, Pa., N. J. Williams.

-

Elements other than those certified may be present in this material as indicated below. These are not certified, but are given as additional information on the composition.

Element	Concentration
	% by weight
Antimony	(0.0014)
Arsenic	(.006)
Barium	(.0003)
Bismuth	(.0002)
Boron	(<.0001)
Calcium	(.0004)
Cerium	(.004)
Cobalt	(.014)
Gold	(.0002)
Hafnium	(.002)
Magnesium	(.0001)
Niobium	(.0002)
Nitrogen	(.009)
Oxygen	(.006)
Selenium	(.0004)
Silver	(.0002)
Strontium	(<.0001)
Tantalum	(.008)
Tellurium	(.0003)
Thallium	(.0002)
Tin	(.039)
Titanium	(.009)
Fungsten	(.001)
Zinc	
Zirconium	(.003)

()Determined

---- Not added nor determined

DATE: 07 April 2014

Product Identifier

SRM Number:1269SRM Name:Low Alloy Steel (AISI 1526, Mod.) "Line Pipe Steel"

Under the U.S. Department of Labor, Occupational Safety and Health Administration (OSHA) 29 CFR 1910.1200, this Standard Reference Material (SRM) is NOT classified as a physical hazard or a health hazard, a simple asphyxiant, combustible dust, pyrophoric gas, or hazard not otherwise classified. There are no hazard pictograms, hazard statements or signal word associated with it. Safety Data Sheet information is not required. This document may be used in conjunction with your hazard communication program.

Exemption: 1910.1200 (c). This SRM is an Article, as the word is defined by OSHA, where *Article* means a manufactured item other than a fluid or particle: (i) which is formed to a specific shape or design during manufacture; (ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g., minute or trace amounts of a hazardous chemical (as determined under paragraph (d) of 1910.1200), and does not pose a physical hazard or health risk to employees.

Description: This SRM is intended for applications in optical and X-ray spectrometric methods of analysis. A unit of SRM 1269 is provided in the form of an annealed, solid disk, 3.2 cm in diameter and 1.9 cm thick.

Disposal: SRM 1269 should be disposed of in accordance with local, state, and federal regulations.

Transport Information: This material is not regulated by the U.S. Department of Transportation (DOT) and/or International Air Transportation Association (IATA).

Disclaimer: This document was prepared carefully, using current references. Users of this SRM should ensure that this document and the corresponding Certificate of Analysis in their possession are current. This can be accomplished by contacting the SRM Program: telephone (301) 975-2200; fax (301) 948-3730; e-mail srmmsds@nist.gov; or via the Internet at http://www.nist.gov/srm.

Safety Note

*These procedures involve use of mechanically powered machinery which may produce hazardous dusts or vapors. The user's responsibility is to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to application. These are minimum surface requirements. A better finish can always be used.

The following procedures have been employed in the preparation of samples for **LECO[®] GDS** analysis:

- Grooves on the surface created by the grinding operation should always go in the same direction. Avoid crisscross patterns.
- Avoid overheating the sample which may form a glazed surface.
- New abrasive materials will provide a sharp cutting surface.
- Softer materials require less pressure than harder materials. Excessive pressure on softer samples may cause smearing of the elements.
- When using the wet disks, flood the disk heavily with water.
- A **LECO[®] BG-31** belt grinder is used with ZrO2 belts.
- A LECO[®] VP-50 disk polisher is used with SiC disks.

*A suggested minimum final grinding of specimens is detailed below:

FINAL SAMPLE PREPARATION				
Material	120 Grit ZrO2 Dry/Wet 120 SiC Wet	180 Grit SiC Wet	320 Grit SiC Wet	600 Grit SiC Wet
Aluminum			Х	
Cemented WC			125jt diamond	
Brass			Х	
Bronze			Х	
Copper			Х	
Cobalt	Х			
Iron-As Cast				Х
Iron - Chilled	Х			
Lead			Х	
Magnesium			Х	
Nickel	Х			
Ni-Resist	Х			
Nitrogen in Stainless			Х	
Powder Metal			X (dry)	
Silver			Х	
Solder			Х	
Stainless	Х			
Steel	Х			
Titanium	X			
Zinc			X	

GDS500A Caveat for Acceptance Criteria of FAT

Spectrochemical analysis is a comparative technique. The reference material uncertainty is one part of the total uncertainty budget. The other parts of the measurement system shall include the instrument and operator error. The sum of the errors must be taken into account (error propagation law).

The certified values in solid CRM's and RM's have been established using primary methods and the Certified Value (CV) assigned is related to mass or mole. They have, for the most part (exceptions: unusual metallurgical history, specimens exhibiting inordinately large granularity, peculiar composition), been proven to be fit for purpose; i.e. suitable for spectrochemical analysis.

If the CV falls within a confidence interval, Equation 1, the FAT is considered statistically rigorous and should be used and accepted for general practice.

Test Result = Certified Value $\pm (s^*t)$ ------Equation 1 Where: s = standard deviation or uncertainty of CV t = Student t value 3.18 for (n = 3) n = number of analyses

Results shall be judged to be statistically sound for the average of 3 replications (n = 3), using a fully expanded uncertainty, by factoring the Student's t probability (95% confidence interval, two tails) to the uncertainty of the CV, for elements in solid solution > 0.1%.

As an option, and in due course, the laboratory may obtain an estimate of *s* from a control chart maintained as a part of their quality control program. When the control chart contains a large number of measurements, *t* may be set as low as 2 at the 95% confidence level. At its discretion, the laboratory may choose to set a smaller range for the acceptable test result.

APPENDIX B - "Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Weld Microstructure Factual Report", prepared by Federal Highway Administration (FHWA)

Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Weld Microstructure Factual Report

Prepared For: National Transportation Safety Board NTSB Accident ID: HWY22MH003

Prepared by:

Ryan Slein, Ph.D. Federal Highway Administration Turner-Fairbank Highway Research Center 6300 Georgetown Pike, McLean, VA 22101

Justin Ocel, Ph.D., P.E. Federal Highway Administration Resource Center Structures Team 31 Hopkins Plaza, Suite 840 Baltimore, MD 21201

Benjamin Graybeal, Ph.D., P.E. Federal Highway Administration Turner-Fairbank Highway Research Center 6300 Georgetown Pike, McLean, VA 22101

List of Figuresii
List of Tablesvi
List of Abbreviations
1. Introduction
1.1. Weld quality indicators
1.2. Report scope
2. Testing plan
2.1. Vickers hardness
2.2. Microstructure
3. Test results
3.1. Summary of Vickers hardness measurements
3.2. Microstructures of 1D7
3.2.1. Gradient line 1D7-114
3.2.2. Gradient line 1D7-2
3.2.3. Gradient line 1D7-3
3.3. Microstructures of 1E7
3.3.1. Gradient line 1E7-1
3.3.2. Gradient line 1E7-2
3.3.3. Gradient line 1E7-3
Acknowledgements
References
Appendix A: Hardness Verification and SRM Documentation

List of Figures

Figure 1. Macroetch of 1D7 with planar reference scales. (Figure G.3 of the FHWA Factual Report)......3 Figure 2. Macroetch of 1E7 with planar reference scales. (Figure G.8 of the FHWA Factual Report).4 Figure 5. Mounted sectioned area and measurement locations for gradient line 1D7-2......7 Figure 7. Macroetch of 1E7 with approximate sectioned area and gradient line path......9 Figure 8. Mounted sectioned area and measurement locations for gradient line 1E7-1......10 Figure 9. Mounted sectioned area and measurement locations for gradient line 1E7-2......11 Figure 11. 1D7-1 Sample ID B1 microstructure prior to indentation (left) and with the Vickers Figure 12. 1D7-1 Sample ID B2 microstructure prior to indentation (left) and with the Vickers Figure 13. 1D7-1 Sample ID B3 microstructure prior to indentation (left) and with the Vickers Figure 14. 1D7-1 Sample ID B4 microstructure prior to indentation (left) and with the Vickers Figure 15. 1D7-1 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 16 Figure 16. 1D7-1 Sample ID H2 microstructure prior to indentation (left) and with the Vickers Figure 17. 1D7-1 Sample ID H3 microstructure prior to indentation (left) and with the Vickers Figure 18. 1D7-1 Sample ID H4 microstructure prior to indentation (left) and with the Vickers Figure 19. 1D7-1 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 20. 1D7-1 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 21. 1D7-1 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 22. 1D7-1 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 23. 1D7-2 Sample ID B1 microstructure prior to indentation (left) and with the Vickers Figure 24. 1D7-2 Sample ID B2 microstructure prior to indentation (left) and with the Vickers Figure 25. 1D7-2 Sample ID B3 microstructure prior to indentation (left) and with the Vickers

Figure 26. 1D7-2 Sample ID B4 microstructure prior to indentation (left) and with the Vickers Figure 27. 1D7-2 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 22 Figure 28. 1D7-2 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite dominant with some Figure 29. 1D7-2 Sample ID H3 microstructure prior to indentation (left) and with the Vickers Figure 30. 1D7-2 Sample ID H4 microstructure prior to indentation (left) and with the Vickers Figure 31. 1D7-2 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Note that the upper left corner blotch is marker. Figure 32. 1D7-2 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Note that the blotch about the left edge is marker. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite......24 Figure 33. 1D7-2 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 34. 1D7-2 Sample ID W4 microstructure prior to indentation (left) and with the Vickers Figure 35. 1D7-3 Sample ID B1 microstructure prior to indentation (left) and with the Vickers Figure 36. 1D7-3 Sample ID B2 microstructure prior to indentation (left) and with the Vickers Figure 37. 1D7-3 Sample ID B3 microstructure prior to indentation (left) and with the Vickers Figure 38. 1D7-3 Sample ID B4 microstructure prior to indentation (left) and with the Vickers Figure 39. 1D7-3 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 28 Figure 40. 1D7-3 Sample ID H2 microstructure prior to indentation (left) and with the Vickers Figure 41. 1D7-3 Sample ID H3 microstructure prior to indentation (left) and with the Vickers Figure 42. 1D7-3 Sample ID H4 microstructure prior to indentation (left) and with the Vickers Figure 43. 1D7-3 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Figure 44. 1D7-3 Sample ID W2 microstructure prior to indentation (left) and with the Vickers Figure 45. 1D7-3 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite and martensite with some

Figure 46. 1D7-3 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite and martensite with some Figure 47. 1E7-1 Sample ID B1 microstructure prior to indentation (left) and with the Vickers Figure 48. 1E7-1 Sample ID B2 microstructure prior to indentation (left) and with the Vickers Figure 49. 1E7-1 Sample ID B3 microstructure prior to indentation (left) and with the Vickers Figure 50. 1E7-1 Sample ID B4 microstructure prior to indentation (left) and with the Vickers Figure 51. 1E7-1 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 34 Figure 52. 1E7-1 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 35 Figure 53. 1E7-1 Sample ID H3 microstructure prior to indentation (left) and with the Vickers Figure 54. 1E7-1 Sample ID H4 microstructure prior to indentation (left) and with the Vickers Figure 55. 1E7-1 Sample ID W1 microstructure prior to indentation (left) and with the Vickers Figure 56. 1E7-1 Sample ID W2 microstructure prior to indentation (left) and with the Vickers Figure 57. 1E7-1 Sample ID W3 microstructure prior to indentation (left) and with the Vickers Figure 58. 1E7-1 Sample ID W4 microstructure prior to indentation (left) and with the Vickers Figure 59. 1E7-2 Sample ID B1 microstructure prior to indentation (left) and with the Vickers Figure 60. 1E7-2 Sample ID B2 microstructure prior to indentation (left) and with the Vickers Figure 61. 1E7-2 Sample ID B3 microstructure prior to indentation (left) and with the Vickers Figure 62. 1E7-2 Sample ID B4 microstructure prior to indentation (left) and with the Vickers Figure 63. 1E7-2 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 40 Figure 64. 1E7-2 Sample ID H2 microstructure prior to indentation (left) and with the Vickers Figure 65. 1E7-2 Sample ID H3 microstructure prior to indentation (left) and with the Vickers Figure 66. 1E7-2 Sample ID H4 microstructure prior to indentation (left) and with the Vickers Figure 67. 1E7-2 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and

Figure 68. 1E7-2 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Figure 69. 1E7-2 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Figure 70. 1E7-2 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Figure 71. 1E7-3 Sample ID B1 microstructure prior to indentation (left) and with the Vickers Figure 72. 1E7-3 Sample ID B2 microstructure prior to indentation (left) and with the Vickers Figure 73. 1E7-3 Sample ID B3 microstructure prior to indentation (left) and with the Vickers Figure 74. 1E7-3 Sample ID B4 microstructure prior to indentation (left) and with the Vickers Figure 75. 1E7-3 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle. 46 Figure 76. 1E7-3 Sample ID H2 microstructure prior to indentation (left) and with the Vickers Figure 77. 1E7-3 Sample ID H3 microstructure prior to indentation (left) and with the Vickers Figure 78. 1E7-3 Sample ID H4 microstructure prior to indentation (left) and with the Vickers Figure 79. 1E7-3 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 80. 1E7-3 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite with some acicular ferrite Figure 81. 1E7-3 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some Figure 82. 1E7-3 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some

List of Tables

Table 1: Vickers microindentation hardness values for a 500 gf indent with a 13 second dwell	13
Table A-1: Indirect verification of Vickers microhardness using three SRM blocks	57

List of Abbreviations

ASM	American Society for Metals
ASTM	American Society for Testing and Materials
FHWA	Federal Highway Administration
NTSB	National Transportation Safety Board
TFHRC	Turner-Fairbank Highway Research Center
CE	carbon equivalency
HAZ	heat-affected zone
MP	mega-pixel
SRM	standard reference material
STP	structural (a component of the evidence identifier to signify mechanical/material
gf	testing) gram force

1. INTRODUCTION

The Fern Hollow Bridge carried Forbes Avenue over Fern Hollow and 9 Mile Run through Frick Park within the City of Pittsburgh, Pennsylvania. The bridge used a rigid, K-frame superstructure type built-up with ASTM A 588 uncoated weathering steel. On January 28th, 2022, the bridge collapsed. Investigators from the National Transportation Safety Board (NTSB) were dispatched to the scene. Engineers from the Federal Highway Administration (FHWA) were also dispatched to the scene to assist NTSB with the investigation. During the on-site investigation, evidence was collected which was to be later used to assist in determining the cause of the bridge failure. The extracted evidence was transported to the FHWA's Turner-Fairbank Highway Research Center (TFHRC) in McLean, Virginia for testing and assessment.

Testing methodologies and results are presented in FHWA's Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report (Slein et al. 2023), hereafter referred to as the FHWA Factual Report. The work conducted to develop the content of this report uncovered several indicators that raised concern with the quality of some welds. Primarily that proper preheating may have not been followed as; 1) steel chemical compositions having calculated carbon equivalencies (*CE*) greater than 0.50, and 2) damage to bandsaw blades during sectioning of the macroetches (i.e., indication of a harder than expected heat-affected zones (HAZ)). Additionally, there was observed poor base metal fusion and weld quality (e.g., porosity, unmelted flux) indicating lack of attention and poor workmanship during fabrication.

Due to the aforementioned concerns, an exploratory hardness and microstructural testing regiment was conducted to assess the leg flange-to-endplate welds. Testing consisted of taking discrete Vickers hardness measurements along a vector that spanned the base metal-to-HAZ-to-weld metal. Four measurements were taken in each respective zone to monitor the hardness gradient. A threshold of 350 HV 0.5 (i.e., Vickers hardness under a 500 gf microindentation) was determined to be a reasonable probabilistic indicator of a microstructural phase change. A corresponding image of the steel microstructure was captured at each hardness testing location with optical microscopy. The images of the microstructure reinforced hardness findings through direct observation of martensite, upper bainite, and/or lower bainite. Note that though it may be possible to differentiate between these three phases with the use of various etchants, no attempt is made to do so in this report. Further, no attempt to differentiate acicular versus bainitic ferrite is made.

1.1. Weld quality indicators

As described in Section 5.3 of the FHWA Factual Report, the calculated carbon equivalency provides a metric for the hardenability of the steel resulting from activities like welding. Low *CE* values (<0.28) indicate that the steel should be easily weldable, tolerant of little to no preheat, and is insensitive to low hydrogen practice. High *CE* values (>0.50) indicate steel which requires more care using a combination of low hydrogen practice, preheat, and perhaps post-heat treatment. Table 20 from the Factual Report shows that the majority of the measured specimens have *CE* values greater than 0.50 which, if proper welding procedures were not used, could have created embrittled heat-affected zones in the base metal from welding. This is primarily due to the thickness of the elements being joined effectively quenching the weld with high cooling rates leading to the development of brittle microphases.

The original set of design plans contained the only set of drawings discovered during the investigation, no shop drawings completed by the bridge fabricator were found. The design plans for the bridge specified the leg flange-to-endplate weld as a single-sided U-groove with a far side reinforcing fillet. There was no information in the weld symbol tail indicating that the weld was required to be a complete joint penetration weld. However, the construction plans listed in Steelwork General Notes that "All welding shall be

performed in accordance with AWS D2.0-69..." In review of AWS D2.0-69, welding symbols "...shall be those shown in the latest edition of Standard Welding Symbols AWS A2.0-68." Review of AWS A2.0-68 found a statement that "the size of groove welds with no specified root penetration shall...extend completely through the member or members being joined." Thus, the original design intent of these welds is that they should have been complete joint penetration. As demonstrated in Section 5.4 and Appendix G of the FHWA Factual Report, each macroetch shows the leg flange-to-endplate welds only achieved partial joint penetration using a double-bevel groove geometry.

Based on macroetches taken over the leg webs (Figures G.3, G.8, G.13, G.18, G.43, and G.48 of the FHWA Factual Report), it appears that the leg I-shape (leg flanges and leg web) was welded first, then the leg end was cut to the correct angle to mate against the endplate, then the endplate was welded. This sequence is evidenced through the leg flange welds which were not continuous through the leg web. Note that the bevel preparation for the flange to the inside of the I-shape appears to have been cut with a drop bandsaw. The bandsaw cut through the flange, but also into the leg web for some distance that varied with each leg. The sawcut in the leg web was welded over to seal the cut. The bevel preparation on the flange was not consistent between the four legs. Preparation was similar for the two Bent 1 legs, and also similar for the two Bent 2 legs, indicating each pair of bent legs was likely fabricated at different points in time.

None of the welds seemed to achieve significant fusion to either sidewall of the weld preparation. Sometimes there appeared to be no fusion. This indicated either poor access with the small bevel angles, particularly in the two Bent 1 legs, or inadequate welding procedure with either low heat input and/or poor angle of the electrode while welding. Further, porosity and unmelted flux was apparent in the macros at the leg flange-to-endplate-to-leg web weld junction, again indicating inadequate welding procedure and technique. This was further evidenced during the sectioning of the welds, where damage occurred to multiple bandsaw blades when cutting through the centerline of the web plate, particularly in leg B1R and B2R.

All these welding quality indicators, combined with the high *CE* values, led to the exploratory study covered in this report. From the FHWA Factual Report, all 2 1/2 in. flange plate at the top of each leg came from a single heat. As such, mechanical and chemical assessment was taken on leg B1R (i.e., plate 1H) which had a measured *CE* of 0.60. Therefore, in conjunction with the observations in the macroetch and damaging of blades during sectioning, the exploratory study focuses on the weld quality of the flange-endplate weld and the flange-web-endplate weld for leg B1R for both the acute and obtuse side. Corresponding to section 1D7 for the Span 1 (acute) end plate weld extracted from evidence NTSB-STR-004 and section 1E7 for the Span 2 (obtuse) end plate weld extracted from evidence NSTB-STR-003.

1.2. Report scope

This factual report documents Vickers microhardness measurements and microstructure analysis at multiple discrete points across the leg-to-endplate welds in leg B1R. These measurements are exploratory in nature, intended to assess whether there is clear evidence of elevated hardness values and/or martensitic/bainite phases present in the microstructure, as such measured values are not necessarily representative of all welds in the bridge.

This report frequently refers to the FHWA Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report for description of the evidence received by TFHRC and describes the assessments and testing completed on the evidence. Limited information is repeated in this report for brevity.

2. TESTING PLAN

Photographic documentation of all macroetches of the sectioned leg flange-to-endplate welds are provided in Appendix G of the FHWA Factual Report. Each image includes two planar scales to measure weld size and crack properties. The first planar scale is a graded ruler placed directly on top of the specimen. The second scale is a protractor, with various additional calibration references, elevated to be at a plane common with the macroetch. Figures 1 and 2 show the macroetches for 1D7 and 1E7, respectively.

For each macroetch, three prescribed vectors (see Sections 3 of this report) define lines perpendicular to the base metal-HAZ interface where twelve hardness measurements are taken over a 0.75 in. length. Measurements are nonuniformly spaced along a gradation of thirty 0.025 in. increments such that four points fall within base metal, HAZ, and weld metal, each. Vectors are spaced in higher concentration around the web-to-flange and web-to-endplate welds for 1D7 and 1E7 where it was expected that the largest hardness values existed due to observed poor weld quality. However, the intent was to collectively capture at least one vector along areas of high porosity and/or unmelted flux, along a nominal flange-to-end plate weld with some fusion into the base metal, and along the web-to-flange weld (even though the weld nugget is generally not visible). For each hardness location measurement, a corresponding image of the steel microstructure was captured with optical microscopy to look for potential changes in metallographic phase.

Figure 1. Macroetch of 1D7 with planar reference scales. (Figure G.3 of the FHWA Factual Report).

Figure 2. Macroetch of 1E7 with planar reference scales. (Figure G.8 of the FHWA Factual Report).

2.1. Vickers hardness

All hardness values in this report are 500 gf Vickers microhardness indentation measurements, performed at room temperature on a LECO LM-110AT following ASTM E92-17. Vickers microhardness employs a standard square-based pyramidal diamond indenter that imprints the test specimen at a prescribed force and dwell time. The corresponding projected base length of the pyramidal diagonal imprints are used to calculate a hardness.

All samples were mounted, ground, polished, and etched with a 5-percent solution of nitric acid in ethyl alcohol (Nital) prior to indentation to expose the crystal structure. In the event that an indentation crossed grain boundaries, the base of the impressed pyramid may not be perfectly square due differing stiffnesses of the crystalline phases. Per ASTM E92-17 Section 7.10.1, the lengths of the diagonals were checked to ensure a quality measurement and the indentation measurement was retaken if needed.

Measurement verification following ASTM E92-17 Sections A1.3 and A1.4 (direct and indirect verification) and SRM certificates are provided in Appendix A of this report.

2.2. Microstructure

The microstructure of the metal was observed at each hardness measurement location with optical microscopy. Images were captured directly on the LECO LM-110AT hardness indenter machine at a 40x zoom, both just prior to and subsequent to the indent.

Note that no differentiation is made within the HAZ to distinguish between grain-coarsened zones due to reheating in multipass welds, as there is insufficient measurement fidelity.

3. TEST RESULTS

This section of the report provides a hardness measurement and microstructural image at 72 discrete locations along the base metal, HAZ, and weld metal for 1D7 and 1E7. Figures 3 and 7 show three prescribed vectors that define lines approximately perpendicular to the base metal-HAZ interface where twelve hardness measurements are taken over a 0.75 in. length. Figures 4-6 and 8-10 show the mounted specimens that were further sectioned from 1D7 and 1E7. The figures also show the measurement discretization where the measurements are nonuniformly spaced along a gradation of thirty 0.025 in. increments such that four points fall within base metal, HAZ, and weld metal, respectively.

Figure 3. Macroetch of 1D7 with approximate sectioned area and gradient line path.

Figure 4. Mounted sectioned area and measurement locations for gradient line 1D7-1.

Figure 5. Mounted sectioned area and measurement locations for gradient line 1D7-2.

Figure 6. Mounted sectioned area and measurement locations for gradient line 1D7-3.

Figure 7. Macroetch of 1E7 with approximate sectioned area and gradient line path.

Figure 8. Mounted sectioned area and measurement locations for gradient line 1E7-1.

Figure 9. Mounted sectioned area and measurement locations for gradient line 1E7-2.

Figure 10. Mounted sectioned area and measurement locations for gradient line 1E7-3.

Images were captured in a light box using a 20.2 MP camera with a dynamic optical lens set to roughly 20 mm at a 16 in. standoff for the macroetches, and 120 mm at a 12 in. standoff for the mounted sections.

Section 3.1 summarizes the measured Vickers hardness values, following ASTM E92-17, at each defined measurement point. Sections 3.2 and 3.3 show the corresponding microstructures.

Observation and inference of microstructural phase was made through visual comparison to reference images in the American Society for Metals (ASM) *Handbook on Metallography and Microstructures* (ASM 2004). Further verification of specific microstructural phases could be accomplished through an incremental addition of various etchant solutions; however, the primary objective was to identify the presence of dark needlelike crystals typical in martensite.

3.1. Summary of Vickers hardness measurements

The measured Vickers microindentation hardness values for the 72 testing locations are summarized in Table 1. The reported Vickers hardness number is rounded to three significant digits in accordance with ASTM E29-22.

The hardness values aligned with expectations: values in the base metal were the lowest, followed by a rapid spike in hardness in the HAZ, then a return to hardness values slightly above that of the base metal within the weld metal. Within the HAZ, there were six measured hardness values that surpassed the prescribed 350 HV 0.5 probabilistic indicator threshold for a microstructural phase change. These are denoted in Table 1 with shaded cells.

Minor localized variation of hardness within the gradient line was likely due to the HAZ being from a multipass weldment and due to the discrete-nonuniform spacing of measurements.

	Vickers Hardness (HV 0.5)											
Location	Base Metal				HAZ				Weld Metal			
Sample ID	B1	B2	B3	B4	H1	H2	H3	H4	W1	W2	W3	W4
1D7-1	194	209	194	210	240	280	283	288	249	249	261	256
1D7-2	214	243	221	232	311	326	346	339	268	257	296	278
1D7-3	218	236	229	265	257	412	433	427 ^a	267	309	315	302
1E7-1	230	236	226	239	239	265	274	283	200	195	187	184
1E7-2	240	224	245	230	251	382	395	415	252	261	277	269
1E7-3	223	226	238	222	272	290	305	310	233	334	298	259

Table 1: Vickers microindentation hardness values for a 500 gf indent with a 13 second dwell.

Note: Shaded cells indicate that the measured Vickers hardness value is greater than 350 HV 0.5. ^aMeasurement 1D7-3 Sample ID H4 fell inside the weld material, just outside of the HAZ

3.2. Microstructures of 1D7

This section shows the microstructures along gradient lines 1D7-1, 1D7-2, and 1D7-3. The caption for each microstructure contains what the authors believe to be the dominant crystalline phases. The typical observed structures along the gradient are as follows,

- The base metal showed a relatively consistent, and expected, distribution and size of pearlite (dark coloration) to ferrite (light coloration) crystals.
- The HAZ had intermediate decomposition into smaller pearlite and ferrite crystals towards the base metal, followed by martensitic (dark coloration) needlelike crystals further into the HAZ towards the weld.
- The weld metal was generally acicular ferrite dominant with proeutectoid ferrite forming along prior austenite grain boundaries. The weld metal also often contained Widmanstätten ferrite, a needlelike structure coming off the grain boundaries, and occasionally contained martensite.

Table 1 shows that Specimen 1D7-3 had hardness values greater than 350 HV 0.5 at H2, H3, and H4. The corresponding microstructures appear to be martensitic.

3.2.1. Gradient line 1D7-1

Figure 11. 1D7-1 Sample ID B1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 12. 1D7-1 Sample ID B2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 13. 1D7-1 Sample ID B3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 14. 1D7-1 Sample ID B4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 15. 1D7-1 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 16. 1D7-1 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 17. 1D7-1 Sample ID H3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 18. 1D7-1 Sample ID H4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 19. 1D7-1 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite.

Figure 20. 1D7-1 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 21. 1D7-1 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 22. 1D7-1 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

3.2.2. Gradient line 1D7-2

Figure 23. 1D7-2 Sample ID B1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 24. 1D7-2 Sample ID B2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 25. 1D7-2 Sample ID B3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 26. 1D7-2 Sample ID B4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 27. 1D7-2 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 28. 1D7-2 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite dominant with some martensite.

Figure 29. 1D7-2 Sample ID H3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 30. 1D7-2 Sample ID H4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 31. 1D7-2 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Note that the upper left corner blotch is marker. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 32. 1D7-2 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Note that the blotch about the left edge is marker. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 33. 1D7-2 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 34. 1D7-2 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant.

3.2.3. Gradient line 1D7-3

Figure 35. 1D7-3 Sample ID B1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 36. 1D7-3 Sample ID B2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 37. 1D7-3 Sample ID B3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 38. 1D7-3 Sample ID B4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 39. 1D7-3 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 40. 1D7-3 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 41. 1D7-3 Sample ID H3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 42. 1D7-3 Sample ID H4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 43. 1D7-3 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Widmanstätten ferrite.

Figure 44. 1D7-3 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite.

Figure 45. 1D7-3 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite and martensite with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 46. 1D7-3 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite and martensite with some proeutectoid ferrite and Widmanstätten ferrite.

3.3. Microstructures of 1E7

This section shows the microstructures along gradient lines 1E7-1, 1E7-2, and 1E7-3. The caption for each microstructure contains what the authors believe to be the dominant crystalline phases. The microstructures for 1E7 largely followed similar trends to 1D7. The typical observed structures along the gradient are as follows,

- The base metal showed a relatively consistent distribution and size of pearlite (dark coloration) to ferrite (light coloration) crystals. The size of the ferrite grains and pearlite areas were slightly larger than expected but this may be a product of ingot casting.
- The HAZ had intermediate decomposition into smaller pearlite and ferrite crystals towards the base metal, followed by martensitic (dark coloration) needlelike crystals further into the HAZ towards the weld.
- The weld metal structure was more variable than what was observed in 1D7. Many of the microstructures were acicular ferrite dominant with proeutectoid and Widmanstätten ferrite forming along prior austenite grain boundaries, occasionally containing or being primarily martensite. Other microstructures were observed to be simply refined ferrite dominant.

Table 1 shows that Specimen 1E7-2 had hardness values greater than 350 HV 0.5 at H2, H3, and H4. The corresponding microstructures appear to be martensitic.

3.3.1. Gradient line 1E7-1

Figure 47. 1E7-1 Sample ID B1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 48. 1E7-1 Sample ID B2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 49. 1E7-1 Sample ID B3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 50. 1E7-1 Sample ID B4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 51. 1E7-1 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 52. 1E7-1 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 53. 1E7-1 Sample ID H3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite and martensite.

Figure 54. 1E7-1 Sample ID H4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite and martensite.

Figure 55. 1E7-1 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Proeutectoid and acicular ferrite.

Figure 56. 1E7-1 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite dominant.

Figure 57. 1E7-1 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite dominant.

- Figure 58. 1E7-1 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite dominant.
- 3.3.2. Gradient line 1E7-2

Figure 59. 1E7-2 Sample ID B1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 60. 1E7-2 Sample ID B2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 61. 1E7-2 Sample ID B3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 62. 1E7-2 Sample ID B4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 63. 1E7-2 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 64. 1E7-2 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 65. 1E7-2 Sample ID H3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 66. 1E7-2 Sample ID H4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite dominant.

Figure 67. 1E7-2 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Widmanstätten ferrite.

Figure 68. 1E7-2 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Widmanstätten ferrite.

Figure 69. 1E7-2 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Widmanstätten ferrite.

Figure 70. 1E7-2 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite with proeutectoid ferrite and Widmanstätten ferrite.

3.3.3. Gradient line 1E7-3

Figure 71. 1E7-3 Sample ID B1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 72. 1E7-3 Sample ID B2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 73. 1E7-3 Sample ID B3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 74. 1E7-3 Sample ID B4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite dominant.

Figure 75. 1E7-3 Sample ID H1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Refined ferrite/pearlite from the heat cycle.

Figure 76. 1E7-3 Sample ID H2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite and martensite.

Figure 77. 1E7-3 Sample ID H3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite and martensite.

Figure 78. 1E7-3 Sample ID H4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Ferrite/pearlite and martensite.

Figure 79. 1E7-3 Sample ID W1 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 80. 1E7-3 Sample ID W2 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Martensite with some acicular ferrite proeutectoid ferrite.

Figure 81. 1E7-3 Sample ID W3 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

Figure 82. 1E7-3 Sample ID W4 microstructure prior to indentation (left) and with the Vickers microindentation (right). 5% Nital etch. 40x magnification. Acicular ferrite dominant with some proeutectoid ferrite and Widmanstätten ferrite.

ACKNOWLEDGEMENTS

The authors would like to thank Federal and Contractor personnel from the TFHRC Structures Laboratory for their many contributions from assisting in specimen extraction and testing to providing technical guidance. The authors would also like to acknowledge and thank personnel across FHWA's Headquarters and Resource Center for providing technical guidance related to the investigation.

REFERENCES

ASM (2004). "Metallography and Microstructures." ASM Handbook, Vol. 9. ASM International. Materials Park, OH.

ASTM E29 (2022). "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

ASTM E92 (2017). "Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials." ASTM Annual Book of Standards. ASTM International. West Conshohocken, PA.

AWS A2.0. (1968). "Standard Welding Symbols." 3rd Edition, American Welding Society. Miami, FL.

AWS D2.0. (1969). "Specifications for Welded Highway and Railway Bridges." 8th Edition, American Welding Society. Miami, FL.

Slein, R., Ocel, J., and Graybeal, B (2023). *Forbes Avenue Over Fern Hollow Bridge Collapse Investigation: Steel Mechanical and Materials Testing Factual Report*. Federal Highway Administration Report Prepared on Behalf of the National Transportation Board Investigation HWY22MH003.

Appendix A: Hardness Verification and SRM Documentation

Certification Number:

117244v

Vickers Diamond Indenter CERTIFICATE OF CALIBRATION

This Vickers Diamond Indenter has been manufactured, standardized, and complies with ASTM E92-17, ISO/IEC 17025 and ANSI/NCSL Z540-1. This Indenters geometry is directly measured on a Calibrated High Accuracy Dimensional system traceable to NIST. This indenter meets all of the geometric requirements for the type and class reported. No deviations from these methods occurred.

	117244v	
	Vickers	
	Х	
_	7mm	

Requirements				
ominal	Measured	To		

	Nominal	Measured	Tolerance	Uncertainty
Edge Angle	148° 06' 36"	147° 57' 31"	± 45'	0.05*
Edge Angle equally inclined to the axis of indenter	74°	73° 59' 46"	± 30'	0.05%
Four faces equally inclined to the axis of indenter	90°	0° 07' 38"	± 30'	0,05°
	Load ≥ 1 gf ≤ 0.5 µm	.44 µm	$\leq 0.5 \ \mu m$	0.25 μm
Offset	Load > I kgf ≤ I µm		$\leq 1 \ \mu m$	0.25 μm.

The expanded uncertainty in the measurements were calculated in accordance with the guide to the Expression of Uncertainty in Measurement(GUM) Expanded uncertainties associated with the measurement of this indenter are based on a standard

uncertainty multiplied by a coverage factor K=2, providing a level of confidence of approximately 95%

Federal Highway Administration Factual Report – Weld Microstructure June 20, 2023 HWY22MH003

LECO CORPORATION

3000 Lakeview Ave. + St. Joseph, MI 49085-2396 + U.S.A. Phone: 800-292-6141 + 269-985-5496 + Fax: 269-982-8977 info@leco.com + www.leco.com LECO is a registered trademark of LECO Carporation.

Certificate of Direct Ventication for Knoop and Vickers Hardness Testers. Per ASTM E 92

Model: LM-110AT Serial Number: FMS1192

		1.0100.10				
Load (Grams Force)	1	3	5	10	25	50
Tolerance (Percent)	1.50%	1.50%	1.50%	1.50%	1.50%	1.50
Run #1	N/A	N/A	N/A	10.00	25.01	50.
Run #2	N/A	N/A	N/A	9.99	25.00	50.0
Run #3	N/A	N/A	N/A	9,99	25.00	50.0
Average		112.5		9.99	25.00	50.0
Load (Grams Force)	100	200	300	500	1000	200
Tolerance (Percent)	1.50%	1.00%	1.00%	1.00%	1.00%	1.00
Run #1	100.11	200.31	300.55	501.36	1003.43	N/J
Run #2	100.10	200.31	300.53	501.34	1003 44	N//
Run #3	100.10	200.31	300.53	501.32	1003.43	N/
Average	100.10	200.33	300.54	501.34	1003.43	
	Forces Calibrated with We Calibrated via C	s are measured with Serial Number. light set Serial number alibration Certificate: By	Precision Balanc 15429814 FT-002-MK-001 138-71812 Japan Quality As	e surance Organization		
	1	Measuring System 1	/erification 40X	Obj		
Distance Verified (um)	0	50	100	150	200	
Tolerance	v	The o	reater of 0.4 um r	n 0.6%	200	
Measured Value	0.0	50.0	00.0	140.0	200.0	
weasured value.	0.0	50.0	30.0	140.0	200.0	
	Measurin	g system is verified v	with 0-1 mm stage	Micrometer		
	Collingated via C	Serial Number	FT-002-ML-086			
	Galibrated via G	By:	Japan Quality As:	surance Organization		
		Test Cycle	/erification			
	Cont	act Speed Range =	15 to 70	um/second		
	Measur	ed Contact Speed =	57	µm/second		
Ti	me from Initial Co	ntact to Full Force =	< 10	seconds		
Measur	ed Initial Contact	to Full Force Time =	4.5	seconds		
	Full Test Force	Application Time =	10	seconds		
Me	easured Full Force	Application Time =	10	seconds		
	Test C	Cycle is verified with:	Quartz Stopwatc	h		
	Calibrated wie Ca	Senai Number.	135.03004			
	Calibrated via Ca	By:	Japan Quality As	ssurance Organizatio	o l	
	based on the ave	erage results of 10 te	esters. LM-100 &	LV-100 testers are	verified individually	
Values reported are		the state of the second st		the set of the set of the set of the set		
Values reported are						

Certified by:

Date of Certification:

14.03.2022

Federal Highway Administration Factual Report – Weld Microstructure End of Report

June 20, 2023 HWY22MH003

+ /o L				
	Test Block Information			
3000 Lokeview Avenue 3000 Lokeview Avenue 51. Joseph, Mi 49085	Serial No.	22900036		
Hardness Certificate of Calibration	Load (gf)	<u>500</u>		
Vickers Hardness and Knoop	Mean Hardness	<u>182 HV0.5</u>		
	Mean Diagonal (μm) (based on 5 indentations	<u>71.38</u>		
	Uncertainty *	.57 μm / 2.9 HV0.5		
	Lab Temp <u>21° C</u>	Lab Humidity 27 %		
	Magnification	<u>500x</u>		
	Date Calibrated	<u>01/18/23</u>		
Sun-Hec Corp. menufactures and certifies that the calibration results recorded on this certificate are true and correct and that this Hardnoss Standard has been manufactured and standardized in accordance with ASTM E92-17 and ISO 17025, utilizing NIST SRM where available.	Inspector	3		
This certificate may not be reproduced except in hull without the approval of StIN-TEC Corporation. 46590 Ryan Court, Novi, Mi 48377 Made in USA CALIBRATION CERT #1934.01	* This uncertainty is an estimate of the Uncertainty of the Mean Diagonal for the Scale and Hardness range indicated with respect to Knoop and Vickers Hardness Standards maintained at NIST or Sun-Tec Corporation. Th Uncertainty includes a coverage factor of 2, resulting in a confidence level of approximately 95%.			
4 of 4				

2 of 4

Calibration Readings

Indent 1	Indent 2	Indent 3	Indent 4	Indent 5
70.76 / 185 HV0.5	71.31 / 182 HV0.5	72.11 / 178 HV0.5	70.68 / 186 HV0.5	72.07 / 179 HV0.5

Ail measurements are in Micrometers (µm). Indent locations are marked on block surface.

How to Use a Standard

When using this standard for Verification of a Knoop and Vickers Hardness tester, make a series of five randomly spaced indentations on the calibrated surface. The average Diagonal of the five indentations must be within *2% or 0.5µm, whichever is greater of the Certified Diagonal. (*3% if HV/HK is <100).

The Hardness values and tolerances indicated are valid ONLY FOR THE LOAD SPECIFIED. Different loads will produce different hardness values. You should use a Hardness Standard calibrated for the load and approximate hardness that you use in production.

An average outside the range may indicate a problem with the tester. This should be investigated and corrected prior to using the tester for production purposes.

This standard should be used daily.

3 of 4
*10.3		T. (D)			
MMM. (eco.com 596-585-5382 Uzomierozza		Test Block Information			
51, Joseph, Mi 49085 3000 Lakeview Avenue	Serial No.	215	00221		
LECO Corporation	Load (gf)	500			
Vickers Hardness and Knoop	H Mean Har	iness <u>490</u>	HV0.5		
CODE	Mean Diag (based on	ional (µm) <u>43.</u> 5 indentations)	<u>48</u>		
	Uncertain	y* <u>.35</u>	um / 7.8 HV0.5		
	Lab Temp	21°C Lab	Humidity <u>40 %</u>		
	Magnificat	ion <u>500</u>	×		
	Date Calib	rated <u>11/0</u>	<u>)2/21</u>		
Sun-Tec Corp. manufactures and centifies that the calibration results recorded on this certificate are true and corroct and that this Hardness Standard has been manufactured and standarding in accordance with	Inspector	<u>3</u>			
ASTM E92-17 and ISO 17025, utilizing NIST SRM where available This certificate may not be reproduced except in full without the approval of SUN-TEC Corporation. 46580 Ryan Court, Novi, MI 46377 Made in USA	* This unce Mean Diago indicated w Standards i Uncertainty confidence	rtainty is an estimate of nal for the Scale and Ha ith respect to Knoop an naintained at NIST or S includes a coverage fac level of approximately 9	the Uncertainty of the rdness range d Vickers Hardness un-Tec Corporation. This ctor of 2, resulting in a 5%.		
CALIBRATION CERT 4 of 4	#1934.01	2 of 4			
	Calibration Reading	s			
Indent 1 Indent 2	Calibration Reading	S Indent 4	Indent 5		
<u>Indent 1</u> 43.46 / 491 HV0.5 43.69 / 486 HV	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5	s Indent 4 43.32 / 494 HV0.5	<u>Indent 5</u> 43.51 / 490 HV0.5		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5 locations are marked on block	S <u>Indent 4</u> 43.32 / 494 HV0.5 surface.	<u>Indent 5</u> 43.51 / 490 HV0.5		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent How to Use a Standard When using this standard for Verification of a Knoop indentations on the calibrated surface. The average is greater of the Certified Diagonal. (*3% if HV/HK is the standard.)	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5 locations are marked on block p and Vickers Hardness tester, e Diagonal of the five indentations is <100).	S Indent 4 43.32 / 494 HV0.5 surface. make a series of five ran-	Indent 5 43.51 / 490 HV0.5 domly spaced 0.5µm, whichever		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent How to Use a Standard When using this standard for Verification of a Knoop indentations on the calibrated surface. The average is greater of the Certified Diagonal. (*3% if HV/HK is The Hardness values and tolerances indicated are whardness values. You should use a Hardness Stand production.	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5 locations are marked on block p and Vickers Hardness tester, e Diagonal of the five indentations is <100). valid ONLY FOR THE LOAD Si dard calibrated for the load and	S Indent 4 43.32 / 494 HV0.5 surface. make a series of five ran- ons must be within *2% or PECIFIED. Different load approximate hardness th	Indent 5 43.51 / 490 HV0.5 domly spaced 0.5µm, whichever s will produce different nat you use in		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent How to Use a Standard When using this standard for Verification of a Knoop indentations on the calibrated surface. The average is greater of the Certified Diagonal. (*3% if HV/HK is The Hardness values and tolerances indicated are whardness values. You should use a Hardness Stand production. An average outside the range may indicate a proble the tester for production purposes.	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5 locations are marked on block p and Vickers Hardness tester, e Diagonal of the five indentations is <100). valid ONLY FOR THE LOAD Si dard calibrated for the load and em with the tester. This should	S Indent 4 43.32 / 494 HV0.5 surface. make a series of five ran- ons must be within *2% or PECIFIED. Different load d approximate hardness th be investigated and corre	Indent 5 43.51 / 490 HV0.5 domly spaced 0.5µm, whichever s will produce different nat you use in		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent How to Use a Standard When using this standard for Verification of a Knoop indentations on the calibrated surface. The average is greater of the Certified Diagonal. (*3% if HV/HK if The Hardness values and tolerances indicated are to hardness values. You should use a Hardness Stand production. An average outside the range may indicate a proble the tester for production purposes. This standard should be used daily.	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5 locations are marked on block p and Vickers Hardness tester, e Diagonal of the five indentation is <100). valid ONLY FOR THE LOAD S dard calibrated for the load and om with the tester. This should	S Indent 4 43.32 / 494 HV0.5 surface. make a series of five ran- ons must be within *2% or PECIFIED. Different load d approximate hardness th be investigated and corre	Indent 5 43.51 / 490 HV0.5 domly spaced 0.5µm, whichever s will produce different nat you use in		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent How to Use a Standard Mone using this standard for Verification of a Knoop indentations on the calibrated surface. The average is greater of the Certified Diagonal. (*3% if HV/HK if the Hardness values, You should use a Hardness Standard production. An average outside the range may indicate a problem the tester for production purposes. This standard should be used daily.	Calibration Reading Indent 3 /0.5 43.43 / 492 HV0.5 locations are marked on block p and Vickers Hardness tester, e Diagonal of the five indentation is <100). valid ONLY FOR THE LOAD S dard calibrated for the load and em with the tester. This should	S Indent 4 43.32 / 494 HV0.5 surface. make a series of five ram ons must be within *2% or PECIFIED. Different load d approximate hardness th be investigated and corre	Indent 5 43.51 / 490 HV0.5 domly spaced 0.5µm, whichever s will produce different nat you use in		
Indent 1 Indent 2 43.46 / 491 HV0.5 43.69 / 486 HV All measurements are in Micrometers (µm). Indent Market 1 Indent 2 Market 2 Market 2	Calibration Reading Indent 3 (0.5 43.43/492 HV0.5 locations are marked on block p and Vickers Hardness tester, e Diagonal of the five indentations is <100). valid ONLY FOR THE LOAD Si dard calibrated for the load and om with the tester. This should	S Indent 4 43.32 / 494 HV0.5 surface. make a series of five ramons must be within *2% or PECIFIED. Different load approximate hardness th be investigated and corre	Indent 5 43.51 / 490 HV0.5 domly spaced 0.5µm, whichever s will produce different hat you use in		

www.leco.com	Test Block Information			
عالي ملاحم به المالية المالية 12 مالية 12 مالية 12 مالية 12 م 12 مالية 12 م	Serial No.	<u>22540019</u>		
LECO Corporation	Load (gf)	<u>500</u> <u>637 HV0.5</u> <u>38.16</u>		
Vickers Hardness and Knoop Hardness Certificate of Calibration	Mean Hardness			
TECO	Mean Diagonal (µm) (based on 5 indentations			
	Uncertainty *	<u>.31 μm / 10 HV0.5</u>		
	Lab Temp <u>21° C</u>	Lab Humidity 27 %		
	Magnification	<u>500x</u>		
	Date Calibrated	<u>01/18/23</u>		
Sun-Teo Corp. manufactures and certifies that the calibration results recorded on this certificate are true and correct and that this Hardness Standard has been manufactured and standardized in accordance with ASTM 529-17 and ISO 17025, utilizing NIST SRM where available	Inspector	<u>3</u>		
This certificate may not be reproduced except in full without the approval of SUN-TEC Corporation. 46590 Ryan Caurt, Novi, MI 48377 Made in USA CALIBRATION CERT #1934.01	* This uncertainty is an estin Mean Diagonal for the Scale indicated with respect to Kn Standards maintained at NIS Uncertainty includes a cover confidence level of approxim	nate of the Uncertainty of the and Hardness range oop and Vickers Hardness ST or Sun-Tec Corporation. This age factor of 2, resulting in a nately 95%.		
4 of 4		2 of 4		
Calibrati	on Readings			

Indent 1	Indent 2	Indent 3	Indent 4	Indent 5	
38.17 / 636 HV0.5	38.28 / 633 HV0.5	38.33 / 631 HV0.5	38.16 / 637 HV0.5	37.85 / 647 HV0.5	

All measurements are in Micrometers (µm). Indent locations are marked on block surface.

How to Use a Standard

When using this standard for Verification of a Knoop and Vickers Hardness tester, make a series of five randomly spaced indentations on the calibrated surface. The average Diagonal of the five indentations must be within *2% or 0.5µm, whichever is greater of the Certified Diagonal. (*3% if HV/HK is <100).

The Hardness values and tolerances indicated are valid ONLY FOR THE LOAD SPECIFIED. Different loads will produce different hardness values. You should use a Hardness Standard calibrated for the load and approximate hardness that you use in production.

An average outside the range may indicate a problem with the tester. This should be investigated and corrected prior to using the tester for production purposes.

This standard should be used daily.

3 of 4

Verification Indent	HV 0.5	Mean Length (µm)	HV 0.5	Mean Length (µm)	HV 0.5	Mean Length (µm)
1	179	71.9	493	43.3	640	38.0
2	178	72.1	487	43.6	643	38.0
3	181	71.4	489	43.5	640	38.1
4	184	70.9	496	43.2	646	37.9
5	184	70.9	489	43.5	633	38.2
SRM	182	71.4	490	43.5	637	38.2
R (%)		1.68		0.92		0.79
E (%)		0.08		0.14		0.31

Table A-1: Indirect verification of Vickers microhardness using three SRM blocks.

Note: Repeatability and error measurements are within tolerance of ASTM E92-17 Table A1.3 for all three SRM blocks.