- Pilot seat occupant, after making sure the fuel is ON, mixture is RICH, magneto switch is OFF, throttle is CLOSED, and brakes are SET, says, "GAS ON, SWITCH OFF, THROTTLE CLOSED, BRAKES SET."
- Person out front, after pulling the propeller through to prime the engine says, "BRAKES AND CONTACT."
- Pilot seat occupant checks the brakes SET and turns the magnetos switch ON, then says, "BRAKES AND CONTACT."

The propeller is swung by forcing the blade downward rapidly, pushing with the palms of both hands. If the blade is gripped tightly with the fingers, the person's body may be drawn into the propeller blades should the engine misfire and rotate momentarily in the opposite direction. As the blade is pushed down, the person should step backward, away from the propeller. If the engine does not start, the propeller should not be repositioned for another attempt until it is verified that the magneto switch is turned OFF.

The words CONTACT (magnetos ON) and SWITCH OFF (magnetos OFF) are used because they are significantly different from each other. Under noisy conditions or high winds, the words CONTACT and SWITCH OFF are less likely to be misunderstood than SWITCH ON and SWITCH OFF.

When removing the wheel chocks or untying the tail after the engine starts, it is critical that everyone involved remember that the propeller is nearly invisible. Serious injuries and fatalities have occurred when people who have just started an engine walk or reach into the propeller arc to remove the chocks, reach the cabin, or in an attempt to reach the tail of the airplane. Before the wheel chocks are removed, the throttle should be set to idle and the chocks approached only from the rear of the propeller. One should never approach the wheel chocks from the front or the side.

The procedures for hand propping should always be in accordance with the AFM/POH and only accomplished if no alternatives are available, and then only by persons who are competent with hand propping procedures. The consequences of the hazards associated with hand propping are serious to fatal.

Taxiing

Taxiing is the controlled movement of the airplane under its own power while on the surface. Since an airplane is moved under its own power between a parking area and the runway, the pilot must thoroughly understand and be proficient in taxi procedures. An essential requirement in conducting safe taxi operations is where the pilot maintains situational awareness of the ramp, parking areas, taxiways, runway environment, and the persons, equipment and aircraft at all times. Without such awareness, safety may be compromised. Depending on the airport, parking, ramp, and taxiways may or may not be controlled. As such, it is important that the pilot completely understand the environment in which they are operating. At small, rural airports these areas may be desolate with few aircraft which limits the potential hazards; however, as the complexity of the airport increases so does the potential for hazards. Regardless of the complexity, some generally accepted procedures are appropriate.

- The pilot should make themselves familiar with the parking, ramp, and taxi environment. This can be done by having an airport diagram, if available, out and in view at all times. [*Figure 2-13*]
- The pilot must be vigilant of the entire area around the airplane to ensure that the airplane clears all obstructions. If, at any time, there is doubt about a safe clearance from an object, the pilot should stop the airplane and check the clearance. It may be necessary to have the airplane towed or physically moved by a ground crew.
- When taxiing, the pilot's eyes should be looking outside the airplane scanning from side to side while looking both near and far to assess routing and potential conflicts.
- A safe taxiing speed must be maintained. The primary requirements for safe taxiing are positive control, the ability to recognize any potential hazards in time to avoid them, and the ability to stop or turn where and when desired, without undue reliance on the brakes. Pilots should proceed at a cautious speed on congested or busy ramps. Normally, the speed should be at the rate where movement of the airplane is dependent on the throttle. That is, slow enough so when the throttle is closed, the airplane can be stopped promptly.
- The pilot should accurately place the aircraft centered on the taxiway at all times. Some taxiways have above ground taxi lights and signage that could impact the airplane or propellers if the pilot does not exercise accurate control. When yellow taxiway centerline stripes are marked, this is more easily accomplished by the pilot visually placing the centerline stripe so it is under the center of the airplane fuselage.
- When taxiing, the pilot must slow down before attempting a turn. Sharp high-speed turns place undesirable side loads on the landing gear and may

result in tire damage or an uncontrollable swerve or a ground loop. Swerves are most likely to occur when turning from a downwind heading toward an upwind heading. In moderate to high-wind conditions, the airplane may weathervane increasing the swerving tendency.

Steering is accomplished with rudder pedals and brakes. To turn the airplane on the ground, the pilot should apply the rudder in the desired direction of turn and use the appropriate power or brake to control the taxi speed. The rudder pedal should be held in the direction of the turn until just short of the point where the turn is to be stopped. Rudder pressure is then released or opposite pressure is applied as needed.

More engine power may be required to start the airplane moving forward, or to start a turn, than is required to keep it moving in any given direction. When using additional power, the throttle should immediately be retarded once the airplane begins moving to prevent excessive acceleration.

The brakes should be tested for proper operation as soon as the airplane is put in motion. Applying power to start the airplane moving forward slowly, then retarding the throttle and simultaneously applying just enough pressure to one side, then the other to confirm proper function and reaction of both brakes. This is best if the airplane has individual left/ right brakes to stop the airplane. If braking performance is unsatisfactory, the engine should be shut down immediately.

When taxiing at appropriate speeds in no-wind conditions, the aileron and elevator control surfaces have little or no effect on directional control of the airplane. These controls should not be considered steering devices and should be held in a neutral position. [Figure 2-14]

The presence of moderate to strong headwinds and/or a strong propeller slipstream makes the use of the elevator necessary to maintain control of the pitch attitude while taxiing. This becomes apparent when considering the lifting action that may be created on the horizontal tail surfaces by either of those two factors. The elevator control in nosewheel-type airplanes should be held in the neutral position, while in tailwheel-type airplanes, it should be held in the full aft position to hold the tail down.

Downwind taxiing usually requires less engine power after the initial ground roll is begun, since the wind is pushing the airplane forward. To avoid overheating the brakes and controlling the airplane's speed when taxiing downwind, the pilot must keep engine power to a minimum. Rather than continuously riding the brakes to control speed, it is appropriate to apply brakes only occasionally. Other than

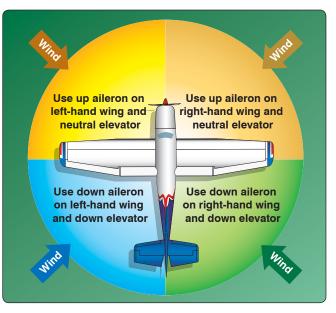


Figure 2-14. Control positions of the nosewheel airplane.

sharp turns at low speed, the throttle should always be at idle before the brakes are applied. It is a common error to taxi with a power setting that requires controlling taxi speed with the brakes.

When taxiing with a quartering headwind, the wing on the upwind side (the side that the wind is coming from) tends to be lifted by the wind unless the aileron control is held in that direction (upwind aileron UP). Moving the aileron into the UP position reduces the effect of the wind striking that wing, thus reducing the lifting action. This control movement also causes the downwind aileron to be placed in the DOWN position, thus a small amount of lift and drag on the downwind wing, further reducing the tendency of the upwind wing to rise.

When taxiing with a quartering tailwind, the elevator should be held in the DOWN position, and the upwind aileron, DOWN. Since the wind is striking the airplane from behind, these control positions reduce the tendency of the wind to get under the tail and the wing and to nose the airplane over. The application of these crosswind taxi corrections helps to minimize the weathervaning tendency and ultimately results in making the airplane easier to steer.

Normally, all turns should be started using the rudder pedal to steer the nosewheel. To tighten the turn after full pedal deflection is reached, the brake may be applied as needed. When stopping the airplane, it is advisable to always stop with the nosewheel straight ahead to relieve any side load on the nosewheel and to make it easier to start moving ahead.

During crosswind taxiing, even the nosewheel-type airplane has some tendency to weathervane. However,

the weathervaning tendency is less than in tailwheel-type airplanes because the main wheels are located behind the airplane's center of gravity, and the nosewheel's ground friction helps to resist the tendency. The nosewheel linkage from the rudder pedals provides adequate steering control for safe and efficient ground handling, and normally, only rudder pressure is necessary to correct for a crosswind.

Taxiing checklists are sometimes specified by the AFM/POH, and the pilot must accomplish any items that are required. If there are no specific checklist items, taxiing still provides an opportunity to verify the operation and cross-check of the flight instruments. In general, the flight instruments should indicate properly with the airspeed at or near zero (depending on taxi speed, wind speed and direction, and lower limit sensitivity); the attitude indictor should indicate pitch and roll level (depending on airplane attitude) with no flags; the altimeter should indicate the proper elevation within prescribed limits: the turn indictor should show the correct direction of turn with the ball movement toward the outside of the turn with no flags; the directional gyro should be set and crossed checked to the magnetic compass and verified accurate to the direction of taxi; and the vertical speed indictor (VSI) should read zero. These checks can be accomplished on conventional mechanical instrumented aircraft or glass cockpits.

Before-Takeoff Check

The before-takeoff check is the systematic AFM/POH procedure for checking the engine, controls, systems, instruments, and avionics prior to flight. Normally, the before-takeoff checklist is performed after taxiing to a run-up position near the takeoff end of the runway. Many engines require that the oil temperature reach a minimum value as stated in the AFM/POH before takeoff power is applied. Taxiing to the run-up position usually allows sufficient time for the engine to warm up to at least minimum operating temperatures; however, the pilot verifies that temperatures are in their proper range prior to the application of high power.

A suitable location for run-up should be firm (a smooth, paved or turf surface if possible) and free of debris. Otherwise, the propeller may pick up pebbles, dirt, mud, sand, or other loose objects and hurl them backwards. This damages the propeller and may damage the tail of the airplane. Small chips in the leading edge of the propeller form stress risers or high stress concentrations. These are highly undesirable and may lead to cracks and possible propeller blade failure. The airplane should also be positioned clear of other aircraft and the taxiway. There should not be anything behind the airplane that might be damaged by the propeller airflow blasting rearward.

Before beginning the before-takeoff check, after the airplane is properly positioned for the run-up, it should be allowed to roll forward slightly to ensure that the nosewheel or tailwheel is in alignment with the longitudinal axis of the airplane.

While performing the before-takeoff checklist in accordance with the airplane's AFM/POH, the pilot must divide their attention between the inside and outside of the airplane. If the parking brake slips, or if application of the toe brakes is inadequate for the amount of power applied, the airplane could rapidly move forward and go unnoticed if pilot attention is fixed only inside the airplane. A good operational practice is to split attention from one item inside to a look outside.

Air-cooled engines generally are tightly cowled and equipped with baffles that direct the flow of air to the engine in sufficient volumes for cooling while in flight; however, on the ground, much less air is forced through the cowling and around the baffling. Prolonged ground operations may cause cylinder overheating long before there is an indication of rising oil temperature. To minimize overheating during engine run-up, it is recommended that the airplane be headed as nearly as possible into the wind and, if equipped, engine instruments that indicate cylinder head temperatures should be monitored. Cowl flaps, if available, should be set according to the AFM/POH.

Each airplane has different features and equipment and the before-takeoff checklist provided in airplane's AFM/POH must be used to perform the run-up. Many critical systems are checked and set during the before-takeoff checklist. Most airplanes have at least the following systems checked and set:

- Fuel System—set per the AFM/POH and verified ON and the proper and correct fuel tanks selected.
- Trim—set for takeoff position which includes the elevator and may also include rudder and aileron trim.
- Flight Controls—checked throughout their entire operating range. This includes full aileron, elevator, and rudder deflection in all directions. Often, pilots do not exercise a full range of movement of the flight controls, which is not acceptable.
- Engine Operation—checked to ensure that temperatures and pressures are in their normal ranges; magneto or Full Authority Digital Engine Control (FADEC) operation on single or dual ignition are acceptable and within limits; and, if equipped, carburetor heat is functioning. If the airplane is equipped with a constant speed or feathering propeller, that its operation is acceptable; and at minimum idle, the engine rpm continues to run smoothly.
- Electrical System—verified to ensure voltages are within operating range and that the system shows the battery system charging.