

NATIONAL TRANSPORTATION SAFETY BOARD

Office of Aviation Safety Washington, D.C. 20594

January 30, 2015

Group Chairman's Factual Report

STRUCTURES

DCA13MA081

Attachment 2

Boeing 747-400BCF, Weight and Balance Control and Loading Manual, Boeing Sample Manual, Document Number D043U544-XXX1 Revision 2

These are only selected pages needed for the purposes of conducting the accident investigation. This is not a complete manual and not approved for commercial use.

747-400BCF

SAMPLE MANUAL

WEIGHT AND BALANCE CONTROL AND LOADING MANUAL MODEL 747-440

Boeing Commercial Airplane Group Weight Engineering Organization P.O. Box 3707 Seattle, Washington 98124

Boeing Document No. D043U544-XXX1

INTRODUCTION

The data presented in this manual are in compliance with Federal Aviation Regulations Part 25, Paragraphs 25.29; 25.471 (b); 25.1519 and 25.1583 (c); and are provided for the purpose of establishing the Model 747-400BCF weight and balance requirements and allowables.

This manual presents all the weight and balance information necessary to ensure safe airplane operation. In addition, information is provided to allow the operator to efficiently plan loading procedures in such a manner that maximum payload capability is safely distributed for any type of operation.

The Weight and Balance Manual is organized following the guidelines of the Air Transport Association (ATA) Specification No. 100, "Specification for Manufacturers' Technical Data". Accordingly, the weight and balance data is presented in two chapters.

CHAPTER 1 - CONTROL

Control contains all weight and balance data specifically related to the customer aircraft. The data presented in this chapter is modular, with groups of related information provided in discreet subject packages, each of which is uniquely identified by a three element Chapter-Section-Subject number (CHP-SEC-SUB). Major data groupings for the Chapter-Sections are as follows:

CHAPTER - SECTION	MAJOR DATA GROUPING
1- 00 through 1- 09	General
1- 20 through 1- 29	Fuel
1- 30 through 1- 39	Fluids
1- 40 through 1- 49	Personnel
1- 60 through 1- 69	Cargo
1- 80 through 1- 89	Ground Operations
1- 90 through 1- 99	Examples

The two digit section (SEC) element allows for ten distinct topics within each major group of data (e.g. 20 through 29 for Fuel). The subject (SUB) element is primarily used to uniquely identify topically identical data for varying aircraft configurations. However, in some cases the subject (SUB) element is used to further subdivide topical information.

The Chapter 1 document includes only those topics that apply to the airplanes called out in the "Airplane Configuration" section of the document. The CHP-SEC-SUB number, page numbering, revision date and document number appear on the lower outside corner of each page.

Changes within a revised CHP-SEC-SUB are identified with a solid bar in the outside margin, adjacent to the change. The date for the CHP-SEC-SUB will be revised and the changes will be noted in the revision highlights.

To determine if you have received a complete document, check each section listed in the "Table of Contents" and confirm that the section is included in this document. The total number of pages for each section is specified at the bottom of every page contained within it (e.g. "Page 1 of 4", where "4" represents the total number of pages in the section).

INTRODUCTION (Continued)

MANAGING AIRCRAFT CONFIGURATIONS

The "Airplane Configuration" section of this document lists all aircraft covered in this document, along with the allowable configurations associated with each aircraft. Restrictions and limitations for each association of a configuration with a specific aircraft serial number are defined in the same section under the heading "Configuration Qualifications".

The data presented within each CHP-SEC-SUB module apply to the aircraft configuration(s) listed in the "Applicable Configurations" box at the bottom of each page. The word "All" signifies that the data is applicable to all configurations listed in the "Airplane Configuration" section of this document, whereas data that is applicable to specific aircraft configurations will list only the appropriate configuration letter(s) in the "Applicable Configurations" box.

DOCUMENT NUMBERING

For all 747-400BCF Chapter 1 Manuals, document numbering will use the following convention:

D043U5[Y][Z]-[ccc][X]

- where **[Y]** = Minor Model Designator (e.g. "4" for a -400 Minor Model)
 - [Z] = Derivative Designator (0=Passenger, 1=Combi, 2=Freighter, 3=Convertible, 4=Special Freighter)
 - **[ccc]** = Airline 3-Letter Designator (As per Boeing Standard Designators CCID)
 - **[X]** = Document Serial Number (This will always be "1" unless an airline has multiple Weight & Balance Manuals for a given derivative model.)

CHAPTER 2 - AIRCRAFT REPORTS

The Aircraft Report (covered in a separate document) contains weight and balance data specifically related to each delivered aircraft of the customer's fleet. The data includes: make, model, serial number, registration identification, actual weighing data, and inventory list for the delivery configuration of each aircraft.

Highlights Revision No: 2

This revision makes miscellaneous changes to the manual. Detailed descriptions of the changes to each section are listed below.

TABLE OF CONTENTS

Updated for this revision.

AIRPLANE CONFIGURATION

□ Removed registry numbers.

INTERIOR EFFECTIVITY

Updated for this revision.

1-02-011

Adjusted shading to stay within the envelope on the kilogram graph.

1-09-001

□ Added text for clarification when operating at alternate MTOWs (lower weights than basic certified MTOW).

1-22-001

□ Revised "taxi" to "takeoff" in Fuel Loading Procedures list item.

1-24-001

□ Revised fuel tables to equal the usable fuel quantities listed on page 3 of CHP-SEC 1-20-00x.

1-24-011

□ Revised fuel tables to equal the usable fuel quantities listed on page 3 of CHP-SEC 1-20-00x.

1-24-021

□ Revised fuel tables to equal the usable fuel quantities listed on page 3 of CHP-SEC 1-20-00x.

1-60-001

Corrected kilogram value on page 6.

□ Section number reference changed from "1-60-04x" to "1-60-40x" and "1-60-06x to 1-60-60x".

1-60-201

□ Section number changed from "1-60-021" to "1-60-201" and the section number reference changed from "1-60-04x" to "1-60-40x" and "1-60-06x to 1-60-60x".

1-60-401

□ Section number changed from "1-60-041" to "1-60-401".

1-60-601

□ Section number changed from "1-60-061" to "1-60-601".

1-62-401

□ Section number changed from "1-62-041" to "1-62-401".

1-62-601

□ Section number changed from "1-62-061" to "1-62-601".

1-62-801

□ Section number changed from "1-62-081" to "1-62-801".

APPLICABLE CONFIGURATIONS

Revisions Page 1 of 3 Dec 05/2007 D043U544-XXX1

HIGHLIGHTS REVISION NO: 2 (Continued)

1-62-901

Section number changed from "1-62-101" to "1-62-901" and the section number reference changed from "1-68-10x" to "1-68-90x".

1-63-001

□ Added data referencing TSO-C90.

1-63-021

□ Added data referencing TSO-C90.

1-63-901

□ Section number changed from "1-63-121" to "1-63-901" and the section number reference changed from "1-64-12x" to "1-64-9xx".

1-64-201

□ Section number changed from "1-64-021" to "1-64-201".

1-64-601

□ Section number changed from "1-64-061" to "1-64-601".

1-64-801

□ Section number changed from "1-64-081" to "1-64-801".

1-64-901

□ Section number changed from "1-64-121" to "1-64-901".

1-66-201

□ Section number changed from "1-66-021" to "1-66-201".

1-66-601

□ Section number changed from "1-66-061" to "1-66-601".

1-66-801

□ Section number changed from "1-66-081" to "1-66-801".

1-66-901

□ Section number changed from "1-66-121" to "1-66-901".

1-68-001

- Changed page date no data changed.
- □ Section number reference changed from "1-60-02x" to "1-60-20x".
- Added list of requirements for tying down non-approved unit load devices.

1-68-901

- □ Corrected crew baggage tiedown fitting allowable loads for Up restraint direction.
- □ Section number changed from "1-68-101" to "1-68-901" and the section number reference changed from "1-68-
- 12x" to "1-68-95x" and "1-68-1xx to 1-68-90x".
- □ Updated General Information on page 1.

1-68-951

□ Section number changed from "1-68-121" to "1-68-951".

1-69-041

□ Section number reference changed from "1-60-04x" to "1-60-40x" and "1-60-06x to 1-60-60x".

APPLICABLE CONFIGURATIONS

DEDEING

HIGHLIGHTS REVISION NO: 2 (Continued)

1-84-001

D Added a note under towing and tipping considerations and added a bullet under tipping considerations.

1-90-001

Revised ordering information.

Revisions Page 3 of 3

Dec 05/2007 D043U544-XXX1

Highlights Revision No: 1

This revision makes miscellaneous changes to the manual, with details of the changes listed below. In addition, the Boeing assigned model derivative is being updated from 747-400SF to 747-400BCF (Boeing Converted Freighter) and the title is being changed from Generic Customer to Sample Manual (for consistency with other models).

GENERAL

□ Airline name changed from "Generic Customer" to "Sample Manual".

TABLE OF CONTENTS

Updated for this revision.

AIRPLANE CONFIGURATION

Updated for this revision.

INTERIOR EFFECTIVITY

□ Updated for this revision.

1-02-011

Corrected typographical errors in labels and added additional labels to graphs.

1-05-001

□ Corrected the graphic label from 19.2% to 19.1%.

1-09-001

□ Added text for clarification.

1-22-001

□ Added note concerning tankered fuel.

1-60-001

□ Revised line types on graph and in legend for correlation.

1-62-001

Revised bulk cargo compartment data.

1-62-081

Revised bulk cargo compartment data.

1-63-121

□ Added footnote for volume limitations based on position and orientation.

1-64-121

□ Added profile limitations for Position 1A (A1) and Position 1(A).

1-68-081

□ Revised bulk cargo compartment data.

1-69-121

Added reduced volume data for Position 1(A), and revised sample problem calculations to reflect slight change in % Full for Position A1.

WEIGHT AND BALANCE CONTROL AND LOADING MANUAL Generic Customer

Highlights Revision No: Original Release

Original Release.

Revisions Page 1 of 1 Jan 16/2006

D043U544-XXX1

APPLICABLE CONFIGURATIONS

TABLE OF CONTENTS

TITLE

CHP-SEC-SUB DATE/PAGE CONFIGURATION

PREFACE

INTRODUCTION	3/2/2005	All
Chapter 1 - Control	1	
Managing Aircraft Configurations	2	
Document Numbering	2	
Chapter 2 - Aircraft Reports	2	
HIGHLIGHTS REVISION NO: 2	12/5/2007	All
HIGHLIGHTS REVISION NO: 1	9/6/2006	All
HIGHLIGHTS REVISION NO: ORIGINAL RELEASE	1/16/2006	All
AIRPLANE CONFIGURATION	12/5/2007	All
Configuration Assignment	1	
Configuration Qualifications	1	
INTERIOR EFFECTIVITY	12/5/2007	All
Upper Cabin	1	

GENERAL

GENERAL INFORMATION Weight and Balance Definitions Abbreviations Conversion Factors	1-00-001	6/27/2005 1 6 6	All
AIRPLANE DIMENSIONS	1-00-021	6/27/2005	All
General Arrangement and Primary Dimensions		1	
BALANCE REFERENCE SYSTEM Balance Arms / Body Stations Mean Aerodynamic Chord Body Buttock Line Water Line	1-00-041	6/27/2005 1 1 1 1	All
FACTORS AFFECTING PERFORMANCE AND OPERATIONAL LIMITATIONS Interpolation of Certified Center of Gravity Limits Operational Weight and Center of Gravity Requirements Commonwealth of Independent States (CIS) Requirements	1-02-001	12/14/2005 1 1 2	All
CERTIFIED WEIGHT AND CENTER OF GRAVITY LIMITS Certified Weight Limits - MTW 873000 LB (395986 KG) Limitations C.G. Limits - MTW 873000 LB, MLW 652000 LB, MZFW 610000 LB C.G. Limits - MTW 395986 KG, MLW 295742 KG, MZFW 276691 KG	1-02-011	3/21/2007 1 1 2 3	All

Table of Contents Page 1 of 7 Dec 05/2007 D043U544-XXX1

TABLE OF CONTENTS (Continued)

TITLE	CHP-SEC-SUB	DATE/PAGE	
AIRPLANE LATERAL IMBALANCE LIMITS Lateral Imbalance Lateral Imbalance Limitations (Pounds) Lateral Imbalance Limitations (Kilograms)	1-04-001	6/27/2005 1 2 3	All
AIRPLANE GROSS WEIGHT VERSUS FUEL DENSITY LIMITATION Fuel Density Limitations Fuel Density Limitations (Pounds) Fuel Density Limitations (Kilograms)	1-05-001	4/20/2006 1 1 2	All
TAKEOFF HORIZONTAL STABILIZER TRIM SETTING English Units - Multiple Green Band Metric Units - Multiple Green Band English Units - Multiple Green Band Metric Units - Multiple Green Band	1-06-001	6/27/2005 1 2 3 4	All
LANDING GEAR AND FLAP MOVEMENT BALANCE EFFECT Landing Gear Retraction Moment Flaps Retraction Moment	1-08-001	6/27/2005 1 1	All
SPECIAL FEATURES - EXTERNAL ENGINE CARRY Certified weight limits - MTW 813000 LB (368770 KG) Limitations C.G. Limits - MTW 813000 LB C.G. Limits - MTW 368770 KG	1-09-001	7/20/2007 1 1 2 3	All
FUEL			
FUEL TANK ARRANGEMENT AND CAPACITIES Fuel Tank Locations Maximum Allowable Fuel Weight Usable Fuel Quantities and Locations Unusable Fuel Quantities and Locations	1-20-001	6/27/2005 1 2 3 4	All
FUEL MANAGEMENT Airplane Configuration	1-22-001	9/27/2006 1	All

Table of ContentsPage 2 of 7Dec 05/2007D043U544-XXX1

Fuel Loading Procedures

Lateral Fuel Imbalance

Fuel Usage Procedures

FUEL TANK QUANTITIES AND BALANCE ARMS

Combined Main Tanks 1 And 4 in U.S. Gallons

Combined Main Tanks 2 And 3 in U.S. Gallons

Combined Main Tanks 1 And 4 in Liters

Combined Main Tanks 2 And 3 in Liters

APU Fuel Usage

APPLICABLE CONFIGURATIONS

1

5

6

10

8/27/2007

1

3

5

9

All

1-24-001

747-400BCF

TABLE OF CONTENTS (Continued)

Τιτιε	CHP-SEC-SUB	DATE/PAGE	CONFIGURATION
FUEL TANK QUANTITIES AND BALANCE ARMS Combined Reserve Tanks 2 & 3 in U.S. Gallons Combined Reserve Tanks 2 & 3 in Liters	1-24-011	8/23/2007 1 2	All
FUEL QUANTITIES AND BALANCE ARMS - CENTER TANK Center Tanks in U.S. Gallons Center Tank in Liters	1-24-021	8/23/2007 1 4	All
FLUIDS			
SYSTEM FLUIDS Engine System Oil (Rolls Royce RB211 Engines) Integrated Drive Generator Oil Hydraulic System Fluid Landing Gear System Fluid Operating System Fluid	1-30-001	6/27/2005 1 1 2 2 2 2	All
POTABLE WATER SYSTEM Tank Quantities and Locations	1-32-001	6/27/2005 1	All
WASTE DISPOSAL SYSTEM Tank Quantities and Locations	1-34-001	6/27/2005 1	All
PERSONNEL			
CREW, OCCUPANT, AND BAGGAGE WEIGHT ALLOWANCES FAA Advisory Circular 120-27E Allowances	1-40-001	12/21/2005 1	All
INTERIOR ARRANGEMENT - UPPER DECK Flight Deck Upper Cabin - 8C Arrangement	1-42-003	1/16/2006 1 2	All
CARGO			
CARGO COMPARTMENT LOAD LIMITS Maximum Allowable Weights Maximum Combined Linear Load Limits Main Deck Unsymmetrical Payload - Linear Load Limits Main Deck Centerline Load Limits Allowable main deck running load versus center wing tank fuel	1-60-001	7/9/2007 1 3 4 5 6	All
CERTIFIED UNIT LOAD DEVICE WEIGHTS BY POSITION Unit Load Device Positions - Lower Deck Unit Load Device Positions - Main Deck	1-60-201	7/9/2007 1 2	All
FORWARD BODY CUMULATIVE LOADS Cumulative Load Check	1-60-401	7/9/2007 1	All

APPLICABLE CONFIGURATIONS

Table of Contents Page 3 of 7 Dec 05/2007

D043U544-XXX1

TABLE OF CONTENTS (Continued)

ΤΙΤLΕ	CHP-SEC-SUB	DATE/PAGE	
AFT BODY CUMULATIVE LOADS Cumulative Load Check	1-60-601	7/9/2007 1	All
CARGO COMPARTMENTS General Location and Arrangement	1-62-001	7/20/2006 1	All
FORWARD CARGO COMPARTMENTS Forward Cargo Compartment Volumes Forward Cargo Compartment Cross Sections Cargo Door Dimensions and Allowable Package Sizes	1-62-401	7/9/2007 1 1 2	All
AFT CARGO COMPARTMENTS Aft Cargo Compartment Volumes Aft Cargo Compartment Cross Sections Cargo Door Dimensions and Allowable Package Sizes	1-62-601	7/9/2007 1 1 2	All
BULK CARGO COMPARTMENT Bulk Cargo Compartment Volume Bulk Cargo Compartment Cross Sections Cargo Door Dimensions and Allowable Package Sizes	1-62-801	7/9/2007 1 2 4	All
MAIN DECK CARGO COMPARTMENT Main Deck Cargo Compartment Volume Main Deck Cargo Door Dimensions and Allowable Package Sizes	1-62-901	7/9/2007 1 2	All
UNIT LOAD DEVICES - LOWER DECK Size Codes K, L, & P Volumes and Center of Gravity Limits Dimensions and Lateral Positions	1-63-001	12/5/2007 1 2 3	All
UNIT LOAD DEVICES - LOWER DECK Size Codes A, M & N Volumes and Center of Gravity Limits Dimensions and Lateral Positions	1-63-021	12/5/2007 1 2 3	All
UNIT LOAD DEVICES - MAIN DECK Size Codes A, B, F, G, M & R Volumes and Center of Gravity Limits Dimensions and Lateral Positions	1-63-901	7/9/2007 1 1 3	All
FORWARD COMPARTMENT UNIT LOAD DEVICE LOCATIONS Size Codes K & L Size Code P	1-64-001	6/27/2005 1 2	All
FORWARD COMPARTMENT UNIT LOAD DEVICE LOCATIONS Size Code A Size Codes M & N	1-64-201	7/9/2007 1 2	All

APPLICABLE CONFIGURATIONS

747-400BCF

TABLE OF CONTENTS (Continued)

TITLE	CHP-SEC-SUB	DATE/PAGE	
AFT COMPARTMENT UNIT LOAD DEVICE LOCATIONS Size Codes K & L Size Code P	1-64-601	7/9/2007 1 2	All
AFT COMPARTMENT UNIT LOAD DEVICE LOCATIONS Size Code A Size Codes M & N	1-64-801	7/9/2007 1 2	All
MAIN DECK UNIT LOAD DEVICE LOCATIONS General Main Deck Unit Load Devices	1-64-901	7/9/2007 1 4	All
FORWARD COMPARTMENT UNIT LOAD DEVICE LOAD LIMITS Cargo Restraint System - Size Codes K, L, & P Load Limits - Size Codes K, L, & P	1-66-001	6/27/2005 1 2	All
FORWARD COMPARTMENT UNIT LOAD DEVICE LOAD LIMITS Cargo Restraint System - Size Codes A, M, & N Double Locks Load Limits - Size Codes A, M, & N Double Locks	1-66-201	7/9/2007 1 2	All
AFT COMPARTMENT UNIT LOAD DEVICE LOAD LIMITS Cargo Restraint System - Size Codes K, L, & P Load Limits - Size Codes K, L, & P	1-66-601	7/9/2007 1 2	All
AFT COMPARTMENT UNIT LOAD DEVICE LOAD LIMITS Cargo Restraint System - Size Codes A, M, & N Double Locks Load Limits - Size Codes A, M, & N Double Locks	1-66-801	7/9/2007 1 2	All
MAIN DECK UNIT LOAD DEVICE LOAD LIMITS Cargo Restraint System - Size Codes A, B & M	1-66-901	7/9/2007 1	All
CARGO TIEDOWNS - LOWER DECK General Information Tiedown Allowables Tiedown Calculation Tiedown Example	1-68-001	12/5/2007 1 2 12 13	All
TIEDOWN FITTING LOCATIONS - FORWARD COMPARTMENTS Fitting Locations	1-68-041	6/27/2005 1	All
TIEDOWN FITTING LOCATIONS - AFT COMPARTMENTS Fitting Locations	1-68-061	6/27/2005 1	All
TIEDOWN FITTING LOCATIONS - AFT COMPARTMENTS Fitting Locations	1-68-081	7/20/2006 1	All

APPLICABLE CONFIGURATIONS

Table of Contents Page 5 of 7 Dec 05/2007 D043U544-XXX1

All

TABLE OF CONTENTS (Continued)

Тітце	CHP-SEC-SUB	DATE/PAGE	
CARGO TIEDOWNS - MAIN DECK General Information Tiedown Allowables Tiedown Calculation	1-68-901	12/5/2007 1 2 11	All
TIEDOWN FITTING LOCATIONS - MAIN DECK Fitting Locations	1-68-951	7/9/2007 1	All
CARGO LATERAL IMBALANCE CONTROL Procedure for Calculation of Imbalance Lower Deck Main Deck Operator Convenience Sample Problem	1-69-001	6/27/2005 1 2 3 3 4	All
INCREASED UNIT LOAD DEVICE LOAD LIMITS - SIZE CODES A & M Unit Load Device Load Limits Unit Load Device Load Limits (Pounds) Unit Load Device Load Limits (Kilograms)	1-69-021	6/27/2005 1 2 2	All
NON-APPROVED UNIT LOAD DEVICES - LOWER HOLDS Size Codes A, K, L, M & P Maximum Allowable Load	1-69-041	7/9/2007 1 2	All
TALL RIGID CARGO Introduction Load Plan Calculation Sample Problem No. 1 Sample Problem No. 2	1-69-121	6/23/2006 1 2 8 12	All
GROUND OPERATIONS			
AIRPLANE JACKING Jack Point Locations Maximum Allowable Jacking Loads Limitations Envelopes	1-80-001	6/27/2005 1 2 3	All
AIRPLANE WEIGHING PROCEDURE General Information Weighing Facilities and Equipment Preparation for Airplane Weighing Weighing Operation Weighing Procedure Using Platform Scales Weighing Procedure Using Electronic Load Cells Non-Level Weighing	1-82-001	12/14/2005 1 1 2 3 3 5	All

 Table of Contents

 Page 6 of 7

 Dec 05/2007

 D043U544-XXX1

APPLICABLE CONFIGURATIONS

747-400BCF

TABLE OF CONTENTS (Continued)

Тіте	CHP-SEC-SUB	DATE/PAGE	
TOWING AND TIPPING LIMITATIONS Towing and Tipping Considerations Towing Considerations Tipping Considerations Towing and Tipping Limits (English) Towing and Tipping Limits (Metric)	1-84-001	8/23/2007 1 1 1 3 4	All
COMPONENT WEIGHTS AND BALANCE ARMS Wing Components	1-86-001	6/27/2005 1	All
COMPONENT WEIGHTS AND BALANCE ARMS Horizontal Stabilizer Components	1-86-011	6/27/2005 1	All
COMPONENT WEIGHTS AND BALANCE ARMS Vertical Fin Components	1-86-021	6/27/2005 1	All
COMPONENT WEIGHTS AND BALANCE ARMS Body Components	1-86-031	6/27/2005 1	All
COMPONENT WEIGHTS AND BALANCE ARMS Main Gear Components - Body Gear Main Gear Components - Wing Gear	1-86-041	6/27/2005 1 2	All
COMPONENT WEIGHTS AND BALANCE ARMS Nose Gear Components	1-86-051	6/27/2005 1	All
COMPONENT WEIGHTS AND BALANCE ARMS Nacelle And Power plant Components	1-86-061	6/27/2005 1	All
EXAMPLES			
LOADING SCHEDULE DEVELOPMENT Introduction Ordering Instructions	1-90-001	4/12/2007 1 2	All

APPLICABLE CONFIGURATIONS

Table of Contents Page 7 of 7 Dec 05/2007 D043U544-XXX1

AIRPLANE CONFIGURATION

The engineering data and FAA certification provided by this document are applicable and valid only for the airplane as defined in the Type Design at delivery, and as modified by the incorporation of any Boeing Supplemental Type Certificate (STC) or Service Bulletin. With respect to any third party STC configuration, either pre-delivery or post-delivery, it shall be the responsibility of the buyer to obtain the data and appropriate regulatory agency approval.

CONFIGURATION ASSIGNMENT

The table shown below correlates each airplane serial number to the currently allowed configuration(s) for that airplane. Each configuration is designated by a different letter. Configuration qualifications are listed following the table and indicate the change authorization involved for airplanes with mulitple allowable configurations. Because there may be multiple configuration letters applicable to any serial number, and also multiple configuration qualifications listed for any configuration letter, care should be exercised when determining the configuration letter which correctly reflects the applicable configuration of the airplane.

LINE NUMBER	SERIAL NUMBER	VARIABLE NUMBER		CON	FIGURA	TION	
-444	94744	XX444	А				

CONFIGURATION QUALIFICATIONS

APPLICABLE CONFIGURATIONS

INTERIOR EFFECTIVITY

The tabular data shown below correlates each airplane serial number to the passenger arrangement(s) certified for that airplane. Each passenger arrangement is designated by drawing number and revision letter. To locate a particular passenger arrangement(s), refer to the interior section listed below. Drawing numbers are listed beside each interior drawing in the interior section.

UPPER CABIN

Weight and balance data for each drawing identified in the following table are provided in Section 1-42-003 of this manual.

CEDIAL	PAS	SEN	GER ARRANGEN	IENT	EFFECTIVITY - U	PPE	R CABIN	
NUMBER	DRAWING #	REV	DRAWING #	REV	DRAWING #	REV	DRAWING #	REV
94744	LOPA-747SF-2700	-						

GENERAL INFORMATION

WEIGHT AND BALANCE DEFINITIONS

The following definitions are provided to assist operators in having a better understanding of the terms used throughout the Weight and Balance Manual.

General Terms and Acronyms

Balance Arm (B.A.)	A true measure of distance from foward to aft, in inches, from a fixed datum. The fixed datum is selected by the airplane manufacturer. Balance Arms are used in weight and balance calculations. To see the relationship between B.A. and B.S., refer to CHP-SEC-SUB 1-00-04x of this manual.
Body Station (B.S.)	A manufacturing location on the airplane. For first of an airplane model, B.S. are continuous from the front to the aft of the airplane. For later versions that are either stretched (i.e. fuselage inserts added) or shrunk (i.e. fuselage sections removed), B.S. becomes discontinuous, for manufacturing reasons. To see the relationship between B.A. and B.S., refer to CHP-SEC-SUB 1-00-04x of this manual.
Layout of Passenger Arrangement (LOPA)	A Boeing internal drawing the depicts the interior layout.
Layout of Passenger Systems (LOPS)	A Boeing internal drawing that depicts the interior layout.
Weight Terms	
Basic Empty Weight (BEW)	Standard Basic Empty Weight plus or minus weight of standard item variations.
Basic Empty Weight (BEW) Delivery Empty Weight (DEW)	Standard Basic Empty Weight plus or minus weight of standard item variations. Manufacturer's Empty Weight, less any shortages, plus those standard items and operational items in aircraft at time of delivery.
Basic Empty Weight (BEW) Delivery Empty Weight (DEW) Fleet Empty Weight (FEW)	 Standard Basic Empty Weight plus or minus weight of standard item variations. Manufacturer's Empty Weight, less any shortages, plus those standard items and operational items in aircraft at time of delivery. Average Basic Empty Weight used for a fleet or group of aircraft of the same model and configuration. (The weight of any fleet member shall not vary more than the tolerance established by government regulations.)
Basic Empty Weight (BEW) Delivery Empty Weight (DEW) Fleet Empty Weight (FEW) Guaranteed Weight	 Standard Basic Empty Weight plus or minus weight of standard item variations. Manufacturer's Empty Weight, less any shortages, plus those standard items and operational items in aircraft at time of delivery. Average Basic Empty Weight used for a fleet or group of aircraft of the same model and configuration. (The weight of any fleet member shall not vary more than the tolerance established by government regulations.) Weight the manufacturer clearly defines and guarantees, subject to contractual tolerances and adjustments.
Basic Empty Weight (BEW) Delivery Empty Weight (DEW) Fleet Empty Weight (FEW) Guaranteed Weight Manufacturer's Empty Weight (MEW)	 Standard Basic Empty Weight plus or minus weight of standard item variations. Manufacturer's Empty Weight, less any shortages, plus those standard items and operational items in aircraft at time of delivery. Average Basic Empty Weight used for a fleet or group of aircraft of the same model and configuration. (The weight of any fleet member shall not vary more than the tolerance established by government regulations.) Weight the manufacturer clearly defines and guarantees, subject to contractual tolerances and adjustments. Weight of structure, powerplant, furnishings, systems and other items of equipment that are an integral part of a particular aircraft configuration. (It is essentially a "dry" weight, including only those fluids contained in closed systems.)
Basic Empty Weight (BEW) Delivery Empty Weight (DEW) Fleet Empty Weight (FEW) Guaranteed Weight Manufacturer's Empty Weight (MEW) Maximum Payload	 Standard Basic Empty Weight plus or minus weight of standard item variations. Manufacturer's Empty Weight, less any shortages, plus those standard items and operational items in aircraft at time of delivery. Average Basic Empty Weight used for a fleet or group of aircraft of the same model and configuration. (The weight of any fleet member shall not vary more than the tolerance established by government regulations.) Weight the manufacturer clearly defines and guarantees, subject to contractual tolerances and adjustments. Weight of structure, powerplant, furnishings, systems and other items of equipment that are an integral part of a particular aircraft configuration. (It is essentially a "dry" weight, including only those fluids contained in closed systems.) Maximum Zero Fuel Weight minus Operational Empty Weight.

GENERAL INFORMATION (Continued)

Operational Items	Personnel, equipment and supplies necessary for a particular oper- ation but not included in Basic Empty Weight. These items may vary for a particular aircraft and may include, but are not limited to, the following:				
	Manuals and navigational equipment				
	Removable service equipment for cabin and galley				
	□ Food and beverage				
	Usable fluids other than those in useful load				
	Life rafts, life vests and emergency transmitters				
	Aircraft unit load devices				
Operational Landing Weight (OLW)	Maximum authorized weight for landing. (It is subject to airport, operational and related restrictions. It must not exceed maximum certified landing weight.)				
Operational Takeoff Weight (OTOW)	Maximum authorized weight for takeoff. (It is subject to airport, oper- ational and related restrictions. This is the weight at start of takeoff run and must not exceed maximum certified takeoff weight.)				
Payload	Weight of the cargo.				
Standard Basic Empty Weight (SBEW)	Manufacturer's Empty Weight plus standard items.				
Standard Items	Equipment and fluids not considered an integral part of a particular aircraft and not a variation for the same type of aircraft. These items may include, but are not limited to, the following:				
	Unusable fuel and other unusable fluids				
	Engine oil				
	Toilet fluid and chemical				
	 Fire extinguishers, pyrotechnics and emergency oxygen equipment 				
	Structure in galley				
	Supplementary electronic equipment				
Useful Load	Difference between takeoff weight and Operational Empty Weight. (It includes payload, usable fuel and other usable fluids not included as operational items.)				
Zero Fuel Weight	Operational Empty Weight plus payload. (This weight must not exceed Maximum Zero Fuel Weight.)				

GENERAL INFORMATION (Continued)

Weight Limitation Terms

Maximum Fuel Transfer Weight (MFTW)	The weight above which Reserve Tanks 2 and 3 must be full.
Maximum Landing Weight (MLW)	Maximum weight for landing as limited by aircraft strength and air- worthiness requirements.
Maximum Takeoff Weight (MTOW)	Maximum weight at brake release as limited by aircraft strength and airworthiness requirements.
Maximum Taxi Weight (MTW)	Maximum weight for ground maneuver as limited by aircraft strength and airworthiness requirements. (It includes weight of taxi and runup fuel.)
Maximum Zero Fuel Weight (MZFW)	Maximum weight allowed before usable fuel must be loaded in the aircraft as limited by strength and airworthiness requirements.
Minimum Flight Weight (MFW)	Minimum weight for flight as limited by aircraft strength and airwor- thiness requirements.
Fuel Terms	
Fuel Terms Unusable Fuel	Fuel remaining after a fuel runout test has been completed in accor- dance with government regulations. (It includes drainable unusable fuel plus unusable portion of trapped fuel.)
Fuel Terms Unusable Fuel Drainable Unusable Fuel	Fuel remaining after a fuel runout test has been completed in accor- dance with government regulations. (It includes drainable unusable fuel plus unusable portion of trapped fuel.) Unusable fuel minus unusable portion of trapped fuel.
Fuel Terms Unusable Fuel Drainable Unusable Fuel Trapped Unusable Fuel	Fuel remaining after a fuel runout test has been completed in accor- dance with government regulations. (It includes drainable unusable fuel plus unusable portion of trapped fuel.) Unusable fuel minus unusable portion of trapped fuel. Unusable fuel remaining when aircraft is defueled by normal means using the procedures and attitudes specified for draining the tanks.
Fuel Terms Unusable Fuel Drainable Unusable Fuel Trapped Unusable Fuel Usable Fuel	 Fuel remaining after a fuel runout test has been completed in accordance with government regulations. (It includes drainable unusable fuel plus unusable portion of trapped fuel.) Unusable fuel minus unusable portion of trapped fuel. Unusable fuel remaining when aircraft is defueled by normal means using the procedures and attitudes specified for draining the tanks. Fuel available for aircraft propulsion.
Fuel Terms Unusable Fuel Drainable Unusable Fuel Trapped Unusable Fuel Usable Fuel Drainable Usable Fuel	 Fuel remaining after a fuel runout test has been completed in accordance with government regulations. (It includes drainable unusable fuel plus unusable portion of trapped fuel.) Unusable fuel minus unusable portion of trapped fuel. Unusable fuel remaining when aircraft is defueled by normal means using the procedures and attitudes specified for draining the tanks. Fuel available for aircraft propulsion. Usable fuel that can be drained from the aircraft by normal means using the procedures and attitudes specified for draining the tanks.

Curtailments

Cargo Location Variation	Operational margin placed within the certified center of gravity limits to compensate for the effect of reasonable variations in cargo loca- tion when partially unrestricted cargo placement is permitted.
Fuel Density Variation	Operational margin placed within the certified center of gravity limits to compensate for the effect of fuel density variation.
Fuel Usage	Operational margin placed within the certified center of gravity limits to compensate for the effect of fuel management during the critical portions of flight.

GENERAL INFORMATION (Continued)

In-flight Movement	Operational margin placed within the certified center of gravity limit to compensate for the effect of reasonable crew movement during flight.				
Loading Schedule	A hardcopy or computerized form used to record the aircraft's weight, load distribution and other appropriate information; to calculate and check the weight and balance conditions of the aircraft against operational limitations; and to establish the stabilizer trim setting for takeoff.				
Operational Empty Weight Variation	Operational margin placed within the certified center of gravity limits to compensate for the known variations in the standard and opera- tional items.				
Seating Variation	Operational margin placed within the certified center of gravity limits to compensate for the effect of reasonable variations in crew center of gravity when unrestricted seating is permitted.				
Balance Terms					
Fleet Center-of-Gravity	Average Basic Empty Weight center of gravity used for a fleet or group of aircraft of the same model and configuration. (The center of gravity of any fleet member shall not vary more than the maximum tolerance established by government regulations.)				
Lateral Imbalance	The offset of the airplane center of gravity from the airplane center- line. It is usually expressed as a moment (LB-IN. or KG-IN.) about the airplane centerline.				
Cargo Terms and Definitions					
Approved ULD	A unit load device that has been manufactured in accordance to and received approval by the appropriate governmental airworthiness authority indicating the airplane ULD meets their safety require- ments.				
Container	A rigid structure that performs the function of a ULD without the use of a restraining net.				
Frangible Cargo	Cargo consisting of items which will progressively conform to the air- plane contour when subjected to loads up to limit load.				
g	The expression used to show the magnitude of a force in terms of the standard earth gravitational unit.				
Igloo	A bottomless rigid shell made of fiberglass, metal or other suitable material. Its shape conforms to the contours of cargo aircraft enve- lopes. It covers the maximum usable area of an aircraft pallet to which it is secured during flight.				

GENERAL INFORMATION (Continued)

Limit Loads	Limit loads are the maximum loads to be expected in service. Limit loads must be supported without detrimental permanent deforma- tion or interference with safe operation.
NAS 3610	A document which defines test conditions for approval of ULDs per TSO-C90c.
Non-Approved ULD	A unit load device that has not received approval by the appropriate governmental airworthiness authority indicating the airplane ULD meets their safety requirements.
Pallet	An item of equipment consisting of a flat platform with a flat under- surface of standard dimensions on which goods are assembled and secured before being loaded as a unit onto the airplane.
Rigid Cargo	Cargo consisting of an item or items which will not progressively conform to the airplane contour when subjected to loads up to limit load. Examples include machine tools, pipes, large motors or gener- ators, etc.
Tiedown Fitting	An attachment device designed to transfer forces between a load bearing device (typically a net, strap, rope or bar) and a cargo track.
TSO-C90c	Technical Standard Order for the approval of ULDs. NAS 3610 is the minimum performance standard.
ULD	Unit Load Device. An assembly of components comprising either of the following:
	aircraft pallet and pallet net, straps, igloo aircraft container
	The purpose of the unit load device is to enable individual pieces of cargo to be assembled into a standardized sized unit to facilitate rapid loading/unloading onto aircraft having compatible handling and restraint systems which interface directly with the unit.
ULD Position	A volume in the cargo compartment which is designated and equipped to be occupied, during flight, by a ULD of specified type.
Ultimate Load	Ultimate loads are limit loads multiplied by prescribed factors of safety.

GENERAL INFORMATION (Continued)

ABBREVIATIONS

UNIT	ABBREVIATION	UNIT	ABBREVIATION
Pounds	LB	Inches	IN.
Kilograms	KG	Feet	FT
U. S. Gallons	U.S. GAL.	Square Feet	SQ FT
Liters	L	Cubic Feet	CU FT
Number	NO.	Inboard	INBD
Forward	FWD	Outboard	OUTBD
Balance Arm	B.A.	Mean Aerodynamic Chord	MAC
Body Buttock Line	B.B.L.	Leading Edge of the MAC	LEMAC
Water Line	W.L.	Center of Gravity	C.G.

The following terms, when necessary, will be abbreviated as shown below.

CONVERSION FACTORS

The data in this manual is provided in both English and Metric units. Unless otherwise stated, the conversions listed below are used throughout this manual.

MULTIPLY	BY	TO OBTAIN
Pounds	0.45359237	Kilograms
U. S. Gallons	3.78541180	Liters

When totals or summations are required the English values are summed separately from the metric values. Differences may occur when comparing the English totals with the metric totals due to round off.

All metric values are converted from English values. When using the conversion factors in this manual, all resultants will be rounded except when the value is a weight limitation. For minimum or maximum weight limitations the resultant metric values will be rounded up or truncated, whichever is more conservative.

AIRPLANE DIMENSIONS

GENERAL ARRANGEMENT AND PRIMARY DIMENSIONS

The following figure shows the 747-400SF general arrangement and primary dimensions.

BALANCE REFERENCE SYSTEM

BALANCE ARMS / BODY STATIONS

Longitudinal location of all airplane component centers of gravity identified throughout this manual will be referred to as Balance Arms. The Balance Arm is a true measure in inches from the reference datum 90.0 IN. forward of the airplane nose. Balance Arms are equivalent to Body Stations (B.S.).

BALANCE ARM (IN.)

MEAN AERODYNAMIC CHORD

The Mean Aerodynamic Chord, as used in this manual, is a wing reference distance with a length of 327.8 IN. The Leading Edge of the Mean Aerodynamic Chord is at Balance Arm 1258.0 IN. Conversion of the airplane center of gravity from Balance Arm, in inches, to a percentage of Mean Aerodynamic Chord is derived using the following formula:

$$\% MAC = \frac{(B.A. - 1258.0) \times 100.0}{327.8}$$

The reverse conversion of the airplane center of gravity from a percentage of Mean Aerodynamic Chord to Balance Arm, in inches, is derived using the following formula:

B.A. =
$$\frac{(327.8 \times \%MAC)}{100.0}$$
 + 1258.0

BODY BUTTOCK LINE

The Body Buttock Line is a vertical line or a vertical plane parallel to the centerline of the airplane used to locate points or planes to the left or right of the airplane centerline.

WATER LINE

The Water Line is a horizontal reference line or a horizontal plane parallel to the main deck floor used to locate points or planes vertically. The Water Line is measured from the reference datum 199.8 IN. below the top of the main deck floor.

APPLICABLE CONFIGURATIONS

1-00-041 Page 1 of 1 Jun 27/2005 D043U544-XXX1

CARGO COMPARTMENT LOAD LIMITS

MAXIMUM ALLOWABLE WEIGHTS

This section provides upper deck, main deck, and lower deck cargo compartment loading. These values are the maximum allowable weights that can be sustained by the basic monocoque structure.

The following illustration shows the configuration of the cargo compartments.

BALANCE ARM - IN.

Five basic structural limitations that must be observed when loading payload are compartment, linear loading, floor loading, net loading and cumulative load limitations. Cumulative load limitations are discussed in CHP-SEC 1-60-40x (forward body) and CHP-SEC 1-60-60x (aft body).

I

CARGO COMPARTMENT LOAD LIMITS (Continued)

Maximum allowable compartment weights, and maximum allowable linear and floor loading are provided in the following table:

MAXIMUM ALLOWABLE WEIGHT						
	TOTAL WEIGHT		FLOOR LOADING			
COMPARTMENT	LB	KG	LB/IN.	KG/IN.	LB/SQ FT	KG/SQ FT
Upper Cabin			31.8 ^[a]	14.4 ^[a]	100.0	45.3
B.A. 400.0 to B.A. 780.0						
Main Deck Cargo ^[D]						
B.A. 200.0 to B.A. 525.0	19500	8845	60.0	27.2	100.0	45.3
B.A. 525.0 to B.A. 1000.0	71250	32318	150.0	68.0	200.0	90.7
B.A. 1000.0 to B.A. 1480.0	139200	63140	290.0	131.5	400.0	181.4
B.A. 1480.0 to B.A. 2218.0	125460	56907	170.0	77.1	400.0	181.4
B.A. 2218.0 to B.A. 2365.0	4500	2041	36.0	16.3	100.0	45.3
Forward Cargo Hold ^[c]	59400	26490	116.0	52.6	200.0	00.7
B.A. 464.0 to B.A. 970.0	56400	20409	110.0	52.0	200.0	90.7
Aft Cargo Hold ^[c]	50570	22038	116.0	52.6	200.0	90.7
B.A. 1484.0 to B.A. 1920.0	30370	22900	110.0	52.0	200.0	30.7
Bulk Hold	14880 ^[d]	6749 ^[d]				
B.A. 1920.0 to B.A. 2160.0	14000-	0743-				
Maximum Load Distribution						
Between Net Locations	5160	2340	Vari	es ^[e]	150.0	68.0
B.A. 1920.0 to 1980.0						
B.A. 1980.0 to 2060.0	5390	2444				
B.A. 2060.0 to 2160.0	4330	1964				

[a] The upper cabin allowable load includes the weight of supernumeraries, supernumeraries seats, and supernumeraries carry-on baggage stowed under the seats.

[b] The main deck limitations include the weight of cargo and the unit load devices (ULDs).

[c] The lower hold limitations include the weight of cargo and the unit load devices (ULDs).

[d] The bulk cargo net at B.A. 1920.0 must be installed or the maximum allowable weight is 0 LB (0 KG).

[e] 94.0 LB/IN. (42.6 KG/IN.) at B.A. 1920.0 decreasing linearly to 30.0 LB/IN. (13.6 KG/IN.) at B.A. 2160.0

CAUTION THESE LOADS MAY BE FURTHER LIMITED BY CUMULATIVE LOAD LIMITATIONS.

CARGO COMPARTMENT LOAD LIMITS (Continued)

MAXIMUM COMBINED LINEAR LOAD LIMITS

Total loading for the main deck and lower deck cargo must not exceed the combined linear loading limits shown in the following diagram:

CARGO COMPARTMENT LOAD LIMITS (Continued)

MAIN DECK UNSYMMETRICAL PAYLOAD - LINEAR LOAD LIMITS

Unit load devices located side by side on the main deck must not exceed the unsymmetrical linear load limits shown below.

CARGO COMPARTMENT LOAD LIMITS (Continued)

MAIN DECK CENTERLINE LOAD LIMITS

Cargo loaded on unit load devices located along the main deck centerline of the airplane between B.A. 525.0 to B.A. 1000.0 (Note that the floor loading rate in this region is 150 LB/IN (68KG/IN)) and B.A. 1480.0 to B.A. 2218.0 (Note that the floor loading rate in this region is 170 LB/IN (77.1KG/IN)) must meet the minimum cargo width requirements shown in the figure below. Between B.A. 1000.0 to B.A. 1480.0 the limitation is 290 LB/IN. (131.5 KG/IN.), provided the area load limit of 400 LB/SQ. FT. (181.4 KG/SQ. FT.) is not exceeded.

APPLICABLE CONFIGURATIONS

CARGO COMPARTMENT LOAD LIMITS (Continued)

ALLOWABLE MAIN DECK RUNNING LOAD VERSUS CENTER WING TANK FUEL

When the center wing tank contains more than 16700 LB (7574 KG), then the following reduction in allowable main deck running load from B.A. 1000 to 1265 is required.

1-60-001 Page 6 of 6 Jul 9/2007 D043U544-XXX1

MAIN DECK UNIT LOAD DEVICE LOCATIONS

GENERAL

The following considerations should be observed when loading cargo on the main deck:

- □ Only Size Code A and M pallets can be loaded laterally forward of B.A. 525.
- □ Only Size Code A, B, and M pallets can be loaded longitudinally forward of B.A. 525.
- □ Only Size Code A, B, F, and M pallets can be loaded aft of B.A. 2218.
- Containers forward of B.A. 902 are limited to 96 inches in height to ensure at least a 2 inch clearance between the top of the ULD and the ceiling. This clearance is required to allow air flow around ULDs for decompression and smoke detection.
- Pallets forward of B.A. 902 are limited to 86 inches in height. A minimum of 10 inches of clearance must be maintained for netted pallets due to the upward deflection of the cargo in a negative "1G" load maneuver condition. The deflected pallet must not contact overhead structure to prevent damage to control cables and brackets.
- □ Aft of B.A. 902, ULDs are limited to 118 inches tall.
- The most forward position for tall rigid cargo that is 118 inches tall is B.A. 1220. The most forward position for tall rigid cargo that is 110 inches tall is B.A. 902. All cargo in excess of 110 inches tall between B.A. 902 and B.A. 1220 must be frangible cargo. See CHP-SEC 1-69-12X for limitations and sample problems for the loading of tall rigid cargo on the airplane. Tall rigid cargo is defined as cargo that is in excess of 96 inches tall and will not break apart during an emergency landing event (a 777 engine is an example of tall rigid cargo).
- □ ULDs longer than 240 inches (no larger than a Size Code G) cannot be loaded through the side cargo door because they cannot be rotated through the side cargo door.
- When positioned in the side cargo door area, ULDs are limited to 113 inches in height to allow for actuator movement.
- □ Size Codes G and R ULDs greater than 96 inches in height have profile restrictions to allow rotation through the side cargo door (see below).

MAIN DECK UNIT LOAD DEVICE LOCATIONS (Continued)

□ Position 1A (A1) require profiling as illustrated below.

MAIN DECK UNIT LOAD DEVICE LOCATIONS (Continued)

Desition 1 (A) require profiling as illustrated below.

or

1-64-901 Page 3 of 4 Jul 9/2007 D043U544-XXX1

APPLICABLE CONFIGURATIONS

MAIN DECK UNIT LOAD DEVICE LOCATIONS (Continued)

MAIN DECK UNIT LOAD DEVICES

The illustration below shows the allowable region in the main deck compartment for main deck unit load devices. Location data for these or other ULD types is the responsibility of the STC holder of the cargo restraint system.

The following equation can be used to determine the center of gravity for each individual position.

Position Center of Gravity = $\frac{\text{Forward Balance Arm} + \text{Aft Balance Arm}}{2}$

MAIN DECK UNIT LOAD DEVICE LOAD LIMITS

CARGO RESTRAINT SYSTEM - SIZE CODES A, B & M

Data for the cargo restraint system (including load limit data) for these or other ULD types is the responsibility of the STC holder of the cargo restraint system.

1-66-901 Page 1 of 1 Jul 9/2007 D043U544-XXX1

CARGO TIEDOWNS - MAIN DECK

GENERAL INFORMATION

An approved unit load device will not require tiedowns unless one of the following conditions exist:

- The unit load device contains cargo of such shape and/or densities as to pose a hazard to the airplane structure or systems. If so, the entire weight of the ULD and its cargo must be tied down.
- □ The unit load device is limited either by restraint configurations or by missing / inoperative restraints. If so, the weight in excess of the ULD load limit data in CHP-SEC 1-66-xxx, must be tied down.
- □ The unit load device does not satisfy the center of gravity limitations in CHP-SEC 1-63xxx. If so, the entire weight of the ULD and its cargo must be tied down.

A non-approved unit load device will always require tiedown.

Bulk cargo will always require tiedown.

Good judgment must be used in selecting the location and number of tiedowns to give sufficient safety margin for uneven strap and net stretch, strap and cargo slippage, and for varying allowables of rings used in combination. To prevent overloading of hardware, ring loops should be correctly oriented as closely as possible to the strap direction.

- **CAUTIONS** DO NOT MIX DIFFERENT STIFFNESSES OF TIEDOWN STRAPS (FOR EXAM-PLE, KEVLAR AND NYLON WEBS) WHEN RESTRAINING CARGO. MIXING STRAP STIFFNESSES MAY CAUSE PREMATURE FAILURE OF THE STIFFER STRAP. THE USE OF CHAINS FOR TIEDOWNS IS NOT RECOMMENDED.
 - TIEDOWN ON THE MAIN DECK IS LIMITED TO THE TIEDOWN LOCATIONS IDENTIFIED IN CHP-SEC 1-68-95X. TIEDOWN TO ANY OTHER POINT IS NOT ALLOWED.

APPLICABLE CONFIGURATIONS

CARGO TIEDOWNS - MAIN DECK (Continued)

TIEDOWN ALLOWABLES

The following sections describe the basic tiedown requirements and provide the tiedown fitting allowables.

Tiedown Load Components

The allowables given in the tables on the following pages take into account the ring, hardware, local structure load carrying capability, floor and centerline strap angles and the load factors that can be experienced in the airplane.

The following diagram defines the floor and centerline angles used in the equations and tables.

Tiedown Strap and Fitting Requirements

Each strap must have a minimum rating of 5000 LB (2268 KG).

Each single stud fitting must be a Brownline fitting P/N 10730 or P/N 11251 or equivalent or stronger.

Each double stud fitting must be a Brownline fitting P/N 21035-54 or equivalent or stronger. Fitting limited to single strap hook-up only.

Load Factors

The following table provides the load factors used in the creation of the tables of tiedown capability in this section.

		LOAD FACTOR					
LOCATION	DALANCE ARMS	FWD	AFT	SIDE	UP		
	BA 228 to BA 464	1.50	0.75	1.25	1.50		
	BA 464 to BA 1480	1.50	0.75	0.75	1.50		
	BA 1480 to BA 1520	480 to BA 1520 1.50 0.75 0.77	0.77	1.50			
Main Deck	BA 1520 to BA 1920	1.50	0.75	1.16	1.86		
	BA 1920 to BA 1980	1.50	0.75	1.22	1.91		
	BA 1980 to BA 2160	1.50	0.75	1.39	2.08		
	BA 2160 to BA 2218	1.50	0.75	1.45	2.13		
	BA 2218 to BA 2365	1.50	0.75	1.77	2.27		

Tiedown Fitting Allowables

The following tables describe the basic tiedown requirements and provide the tiedown fitting allowables for Boeing fittings installed at delivery. Data for other fittings is the responsibility of the STC holder.

DESCRIPTION	LOCATION ^[a]	MINIMUM SPACING BETWEEN TIEDOWNS IN.	TABLE PAGE NUMBER
Crew Baggage	Seat Tracks (LBL 34) B.A. 472 - 520 Seat Track (LBL 62.6) B.A. 445	N/A	4
Seat Tracks - Single Stud Fitting	B.A. 240 - 520 B.A. 520 - 1480 B.A. 1480 - 2300	20	5 7 9
Seat Tracks - Double Stud Fitting	B.A. 240 - 520 B.A. 520 - 1480 B.A. 1480 - 2300	20	6 8 10

[a] See CHP-SEC 1-68-95x for exact locations.

CARGO TIEDOWNS - MAIN DECK (Continued)

Crew Baggage - Seat Tracks at LBL 34 between B.A. 472 and 520, and the end of the Seat Track at LBL 62.6 and B.A. 445

The following table summarizes tiedown fitting allowable loads for crew baggage, including seat tracks at LBL 34 between B.A. 472 and 520, and the end of the seat track at LBL 62.6 and B.A. 445^[1]. Data for other fittings is the responsibility of the STC holder.

		CENTERLINE ANGLE (DEGREES)								
RESTRAINT	FLOOR	0	0 °		30 °)°	90 °		
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	60	27	60	27	60	27	0	0	
Forward	30°	60	27	60	27	50	22	0	0	
Forward	60°	60	27	60	27	50	22	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Sido	30°	70	31	70	31	60	27	0	0	
Side	60°	210	95	200	90	180	81	0	0	
	90° (Vertical)	1330	603	1150	521	660	299	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	37	17	43	20	68	31	357	163	
Οp	60°	108	49	120	55	187	85	517	235	
	90° (Vertical)	667	303	667	303	667	303	667	303	
	0° (Horizontal)	130	58	120	54	120	54	0	0	
Aft	30°	130	58	120	54	110	49	0	0	
	60°	120	54	120	54	100	45	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

[1] See CHP-SEC 1-68-90x for exact locations.

1-68-901 Page 4 of 11

Seat Tracks - B.A. 240-520 - Single Stud Fitting

The following table summarizes tiedown fitting allowable loads for seat tracks with single stud fittings between B.A. 240 and B.A. 520. Minimum spacing between tiedowns is 20 IN. Only seat tracks located in CHP-SEC 1-68-90x are available for tiedown using the data on this page.

		CENTERLINE ANGLE (DEGREES)								
RESTRAINT		FLOOR 0°		30° 60°)°	90 °		
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	1300	589	1000	453	500	226	0	0	
Forward	30°	1100	498	700	317	400	181	0	0	
Forward	60°	600	272	400	181	200	90	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	1100	498	1900	861	2400	1088	
Sido	30°	0	0	900	408	1500	680	1800	816	
Side	60°	0	0	500	226	900	408	1200	544	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	400	181	300	136	300	136	300	136	
Οp	60°	800	362	600	272	600	272	700	317	
	90° (Vertical)	1300	589	1300	589	1300	589	1300	589	
	0° (Horizontal)	2600	1179	2000	907	1100	498	0	0	
A.C.	30°	2300	1043	1500	680	800	362	0	0	
AIL	60°	1300	589	900	408	500	226	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

CARGO TIEDOWNS - MAIN DECK (Continued)

Seat Tracks - B.A. 240-520 - Double Stud Fitting

The following table summarizes tiedown fitting allowable loads for seat tracks with double stud fittings between B.A. 240 and B.A. 520. Minimum spacing between tiedowns is 20 IN. Only seat tracks located in CHP-SEC 1-68-95x are available for tiedown using the data on this page.

			CENTERLINE ANGLE (DEGREES)							
RESTRAINT				30 °			60 °		90 °	
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	1300	589	1000	453	500	226	0	0	
Forward	30°	1100	498	700	317	400	181	0	0	
Forward	60°	700	317	500	226	300	136	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	1100	498	1900	861	2400	1088	
Sido	30°	0	0	900	408	1500	680	1800	816	
Side	60°	0	0	600	272	1000	453	1300	589	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	400	181	300	136	300	136	300	136	
Οp	60°	900	408	700	317	700	317	800	362	
	90° (Vertical)	1700	771	1700	771	1700	771	1700	771	
	0° (Horizontal)	2600	1179	2000	907	1100	498	0	0	
A.44	30°	2300	1043	1500	680	800	362	0	0	
AIL	60°	1400	635	1000	453	600	272	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

Seat Tracks - B.A. 520-1480 - Single Stud Fitting

The following table summarizes tiedown fitting allowable loads for seat tracks with single stud fitthings between B.A. 520 and B.A. 1480. Minimum spacing between tiedowns is 20 IN. Only seat tracks located in CHP-SEC 1-68-95x are available for tiedown using the data on this page.

		CENTERLINE ANGLE (DEGREES)								
RESTRAINT		FLOOR 0°		30 ° 60 °)°	90 °		
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	1300	589	1000	453	500	226	0	0	
Forward	30°	1300	589	800	362	400	181	0	0	
Forward	60°	1100	498	500	226	300	136	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	1200	544	1900	861	2600	1179	
Sida	30°	0	0	1000	453	1600	725	2300	1043	
Side	60°	0	0	500	226	800	362	1100	498	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	400	181	400	181	300	136	400	181	
Οp	60°	900	408	600	272	600	272	700	317	
	90° (Vertical)	1100	498	700	317	700	317	800	362	
	0° (Horizontal)	2600	1179	2100	952	1100	498	0	0	
A.61	30°	2300	1043	1800	816	900	408	0	0	
	60°	1500	680	900	408	500	226	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

Seat Tracks - B.A. 520-1480 - Double Stud Fitting

The following table summarizes tiedown fitting allowable loads for seat tracks with double stud fittings between B.A. 520 and B.A. 1480. Minimum spacing between tiedowns is 20 IN. Only seat tracks located in CHP-SEC 1-68-95x are available for tiedown using the data on this page.

		CENTERLINE ANGLE (DEGREES)								
RESTRAINT				30 °		60 °		90 °		
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	1300	589	1000	453	500	226	0	0	
Forward	30°	1300	589	800	362	400	181	0	0	
Forward	60°	1300	589	500	226	300	136	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	1200	544	1900	861	2600	1179	
Cido	30°	0	0	1000	453	1600	725	2300	1043	
Side	60°	0	0	500	226	800	362	1100	498	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	400	181	400	181	300	136	400	181	
Οp	60°	900	408	600	272	600	272	700	317	
	90° (Vertical)	1100	498	700	317	700	317	800	362	
	0° (Horizontal)	2600	1179	2100	952	1100	498	0	0	
A.4	30°	2300	1043	1800	816	900	408	0	0	
AIL	60°	1500	680	900	408	500	226	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

Seat Tracks - B.A. 1480-2300 - Single Stud Fitting

The following table summarizes tiedown fitting allowable loads for seat tracks with single stud fittings between B.A. 1480 and B.A. 2300. Minimum spacing between tiedowns is 20 IN. Only seat tracks located in CHP-SEC 1-68-95x are available for tiedown using the data on this page.

				CENTER	LINE AN	GLE (DE	GREES)			
RESTRAINT		0 °		30 °		60 °		90 °		
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	1200	544	700	317	400	181	0	0	
Forward	30°	1300	589	600	272	300	136	0	0	
Forward	60°	600	272	400	181	200	90	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	400	181	700	317	1000	453	
Sido	30°	0	0	300	136	600	272	800	362	
Side	60°	0	0	200	90	400	181	500	226	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	500	226	200	90	200	90	300	136	
Οp	60°	800	362	500	226	500	226	600	272	
	90° (Vertical)	800	362	800	362	800	362	800	362	
	0° (Horizontal)	2400	1088	1400	635	800	362	0	0	
A. 51	30°	2600	1179	1200	544	700	317	0	0	
	60°	1300	589	800	362	400	181	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

Seat Tracks - B.A. 1480-2300 - Double Stud Fitting

The following table summarizes tiedown fitting allowable loads for seat tracks with double stud fittings between B.A. 1480 and B.A. 2300. Minimum spacing between tiedowns is 20 IN. Only seat tracks located in CHP-SEC 1-68-95x are available for tiedown using the data on this page.

		CENTERLINE ANGLE (DEGREES)								
RESTRAINT		FLOOR 0°		30 °			60 °		90 °	
DIRECTION	(DEGREES)	ALLOWABLE LOAD								
		LB	KG	LB	KG	LB	KG	LB	KG	
	0° (Horizontal)	1200	544	700	317	400	181	0	0	
Forward	30°	1300	589	600	272	300	136	0	0	
Forward	60°	900	408	400	181	200	90	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	400	181	700	317	1000	453	
Sido	30°	0	0	300	136	600	272	800	362	
Side	60°	0	0	200	90	400	181	500	226	
	90° (Vertical)	0	0	0	0	0	0	0	0	
	0° (Horizontal)	0	0	0	0	0	0	0	0	
Un	30°	500	226	200	90	200	90	300	136	
Οp	60°	1100	498	500	226	500	226	600	272	
	90° (Vertical)	1300	589	1300	589	1300	589	1300	589	
	0° (Horizontal)	2400	1088	1400	635	800	362	0	0	
Aft	30°	2600	1179	1200	544	700	317	0	0	
	60°	1800	816	800	362	400	181	0	0	
	90° (Vertical)	0	0	0	0	0	0	0	0	

TIEDOWN CALCULATION

The following sections provide the methodology for determining the number of tiedown straps required for each of the basic restraint directions.

Calculation Procedure

The number of tiedowns required must be determined for each of the five basic restraint directions (forward, aft, side-left, side-right, and up). The operator is responsible to ensure that the strap tension rating and the strap attachment rating are each equal to or greater than the load limits of the airplane tiedown fittings used with the strap. Minimum allowable strap tension and strap attachment ratings of 5000 LB (2268 KG) are required.

The following steps outline the procedure for determining the number of tiedown straps required for a single restraint direction:

1.Determine the weight of the cargo to be restrained.

2. Create a table similar to the following worksheet:

DIRECTION	TIEDOWN LOCATION	FLOOR ANGLE (DEGREES)	CENTERLINE ANGLE (DEGREES)	NUMBER OF TIEDOWN FITTINGS	TIEDOWN ALLOWABLE LB
Forward					
Aft					
Side-Left					
Side-Right					
Up					

- 3. Select the tiedown location to be used from the available tiedown locations on Page 3. The B.A., B.B.L., and W.L. of these tiedown locations are listed in CHP-SEC 1-68-90x. Only straps that contact the face of the cargo to be restrained are considered to restrain cargo in that direction (for example: a strap must contact the forward face to be considered effective in restraining the cargo in the forward direction. A strap over the top of the cargo does restrain in the up direction but yields no restraint in the forward, aft, or side directions).
- 4. Establish the floor and centerline angles (to the nearest 30 degree increment for each tiedown selected).
- 5. Use the tables on Pages 4 through 10 to determine the tiedown allowable.
- 6. Multiply the tiedown allowable by the number of tiedown fittings to get the total tiedown allowable.
- 7. If the total tiedown allowable is equal to or exceeds the weight of cargo to be restrained, then the tiedown scheme is acceptable in that direction. If the total tiedown down allowable is less than the weight of cargo to be restrained, then additional straps are required in that direction.

TIEDOWN FITTING LOCATIONS - MAIN DECK

FITTING LOCATIONS

The following illustration shows the layout of tiedown fittings on the main deck between B.A. 240.0 and B.A. 780.0. At delivery, no tiedown hardware was installed. Data for these locations is the responsibility of the STC holder.

The following tables provide the locations for each tiedown fitting on the main deck deck between B.A. 240.0 and B.A. 780.0.

	NO.	NODE ^[a]	B.A. IN.	B.B.L. IN.
	1	First	240.0	+27.3
	2	Last	445.0	+62.6
	3	First	472.0	+34.0
	4	Last	520.0	+34.0
ks	5	First	320.0	+11.3
rac	6	Last	780.0	+11.3
ιtΤ	7	First	320.0	-11.3
Sea	8	Last	780.0	-11.3
	9	First	472.0	-34.0
	10	Last	520.0	-34.0
	11	First	240.0	-27.3
	12	Last	445.0	-62.6

[a] Nodes are 1 IN. apart

NOTE Crew Baggage tiedown locations are defined as follows:

- Seat tracks at BBL -34 between B.A. 472 and 520
- Seat track at BBL -62.6 and B.A. 445

TIEDOWN FITTING LOCATIONS - MAIN DECK (Continued)

The following illustration shows the layout of pivoting shackles and tiedown fittings on the main deck between B.A. 780.0 and B.A. 1254.0.

The following tables provide the locations for each tiedown fitting on the main deck deck between B.A. 780.0 and B.A. 1254.0.

	NO.	NODE ^[a]	B.A. IN.	B.B.L. IN.	W.L. IN.
	1	First	1000.0	+75.9	200.0
	2	Last	1254.0	+75.9	200.0
sks	3	First	780.0	+11.3	200.0
rac	4	Last	1254.0	+11.3	200.0
at T	5	First	780.0	-11.3	200.0
Sei	6	Last	1254.0	-11.3	200.0
	7	First	1000.0	-75.9	200.0
	8	Last	1254.0	-75.9	200.0

[a] Nodes are 1 IN. apart

TIEDOWN FITTING LOCATIONS - MAIN DECK (Continued)

The following illustration shows the layout of pivoting shackles and tiedown fittings on the main deck between B.A. 1254.0 and B.A. 1780.0.

The following tables provide the locations for each tiedown fitting on the main deck deck between B.A. 1254.0 and B.A. 1780.0.

	NO.	NODE ^[a]	B.A. IN.	B.B.L. IN.	W.L. IN.
	1	First	1254.0	+75.9	200.0
	2	Last	1480.0	+75.9	200.0
sks	3	First	1254.0	+11.3	200.0
rac	4	Last	1780.0	+11.3	200.0
at T	5	First	1254.0	-11.3	200.0
Sea	6	Last	1780.0	-11.3	200.0
	7	First	1254.0	-75.9	200.0
	8	Last	1480.0	-75.9	200.0

[a] Nodes are 1 IN. apart

TIEDOWN FITTING LOCATIONS - MAIN DECK (Continued)

The following illustration shows the layout of pivoting shackles and tiedown fittings on the main deck between B.A. 1780.0 and B.A. 2360.0.

The following tables provide the locations for each tiedown fitting on the main deck deck between B.A. 1780.0 and B.A. 2360.0.

	NO.	NODE ^[a]	B.A. IN.	B.B.L. IN.	W.L. IN.
	1	First	2040.0	+89.7	200.0
	2	Last	2220.0	+89.7	200.0
sks	3	First	1780.0	+11.3	200.0
rac	4	Last	2300.0	+11.3	200.0
at T	5	First	1780.0	-11.3	200.0
Sea	6	Last	2300.0	-11.3	200.0
	7	First	2040.0	-89.7	200.0
	8	Last	2220.0	-89.7	200.0

[a] Nodes are 1 IN. apart

All

TIEDOWN FITTING LOCATIONS - MAIN DECK (Continued)

The following illustration shows a typical section of seat track located on the main deck.

- **NOTES** Some locations may be unavailable due to cargo handling hardware, breather gaps between seat tracks, and ommited nodes.
 - Do not use vertical restraint lips immediately adjacent to the breather gaps.

APPLICABLE CONFIGURATIONS

TALL RIGID CARGO

INTRODUCTION

Tall rigid cargo is defined as cargo that is in excess of 96 inches tall and will not break apart during an emergency landing event (a 777 engine is an example of tall rigid cargo).

In an emergency landing event, tall rigid cargo must be stopped before it impacts the upper deck divider at B.A. 800. This will protect all of the upper deck occupants on the airplane.

To ensure this, a sufficient volume of cargo must be loaded forward of the tall rigid cargo. In an emergency landing event, this cargo will redistribute and fill up the main deck cargo volume between the B.A. 158.5 barrier and the tall rigid cargo. This volume of cargo will stop the tall rigid cargo impacting the upper deck divider at B.A. 800.

The most forward position for tall rigid cargo that is 118 inches tall is B.A. 1220. The most forward position for tall rigid cargo that is 110 inches tall is B.A. 902. All cargo in excess of 110 inches tall between B.A. 902 and B.A. 1220 must be frangible cargo. These height restrictions will ensure at least a 16 inch clearance between tha tall rigio cargo and the airplane structure overhead.

Note that all other cargo loading restrictions (compartment load limits, linear load limits, area load limits, combined load limits, and cumulative load limits) must be checked and the airplane must be within the airplane longitudinal C.G. limits (refer to CHP-SEC 1-02-xxx) and airplane lateral C.G. limits (refer to CHP-SEC 1-04-xxx).

TALL RIGID CARGO (Continued)

LOAD PLAN CALCULATION

To establish an acceptable load plan, the following steps must be taken:

Step 1 - Define the Cargo Distribution

- A. Determine the forward most balance arm (B.A.) location of the tall rigid cargo. Any cargo forward of this location will fill up the forward main deck in the event of an emergency landing event. Any cargo aft of this location will compress the cargo in the forward body.
- B. ULDs are limited to 96 inches tall forward of B.A. 902. Aft of B.A. 902 they are limited to 118 inches tall. The most forward position for tall rigid cargo that is 118 inches tall is B.A. 1220. The most forward position for tall rigid cargo that is 110 inches tall is B.A. 902. All cargo in excess of 110 inches tall between B.A. 902 and B.A. 1220 must be frangible cargo.
- C. When tall rigid cargo is loaded on the airplane centerline, all positions forward of the tall rigid cargo must be loaded with ULDs that are 96 inches wide (88 inches wide cargo is not allowed).
- D. Frangible cargo must be loaded in the nose positions (Positions A & B or Positions A1 & A2 & B1) and in Positions CL/CR as shown below. Frangible cargo is cargo that will easily break apart on impact (a stack of boxes is an example of frangible cargo).

TALL RIGID CARGO (Continued)

Step 2 - Calculate the Volume of Cargo Forward of the Tall Rigid Cargo

A. Determine the gross volume of the ULDs forward of the tall rigid cargo (forward of the B.A. determined in Step 1A). Only that portion of the volume below 96 inches tall can be included in this determination (the portion of the volume above 96 inches tall will impact the crown barrier net and should not be considered). Use the volumes from the following table:

SIZE CODE	BASE DIMENSION IN.	VOLUME CU. FT.
Δ	00 V 105	572
A	00 / 125	495 in Position A1 or Position A
В	88 X 108	482
F	96 X 117.8	572
G	96 X 238.5	1190
Н	96 X 359.3	1801
J	96 X 480	2414
Ν.4	96 X 125	613
IVI		540 in Position A1 or Position A
R	96 X 196	974

- **NOTE** Only that portion of the volume below 96 inches tall can be included in this determiniation (the portion above 96 inches tall will impact the crown barrier net and should not be considered).
- B. Determine the average percent full of the ULDs forward of the tall rigid cargo (forward of the B.A. determined in Step 1A). This percent full is based upon volume, not weight.

TALL RIGID CARGO (Continued)

C. Establish the configuration factor as 1.0 or 0.9 as follows:

D. Determine the effective volume of the ULDs forward of the tall rigid cargo (forward of the B.A. determined in Step 1A) by the following equation:

Effective Volume = $[(Gross Volume) \times (Percent Full / 100)] \times (Configuration Factor)$

All

APPLICABLE CONFIGURATIONS

TALL RIGID CARGO (Continued)

Step 3 - Determine the Maximum Allowable Weight of Cargo that can be Stopped by the Effective Volume of Cargo Determined in Step 2

- A. Use the graph below and on the following page to determine the maximum allowable weight of cargo that can be stopped by the volume of cargo determined in Step 1.
- B. Locate the point on the curve intersecting the effective volume from Step 2D.
- C. Determine the maximum allowable weight of cargo that can be stopped by the volume of cargo determined in Step 2.

MAXIMUM ALLOWABLE WEIGHT - LB

TALL RIGID CARGO (Continued)

MAXIMUM ALLOWABLE WEIGHT - KG

Allowable Weight =
$$\frac{(\text{Effective Volume} - 6876.0) \times 0.45359237}{[(5.98786 \times 10^{-7}) \times \text{Effective Volume} + (6.57375 \times 10^{-4})]}$$

All

TALL RIGID CARGO (Continued)

Step 4 - Adjust the Main Deck Cargo Loading as Required

- A. Determine total weight of loaded cargo aft of the forward most location of the tall rigid cargo (from Step 1A). This includes the weight of the tall rigid cargo.
- B. Compare this weight to the maximum allowable weight determined in Step 3C.
- C. If the loaded cargo (Step 4A) is **less** than the maximum allowable weight (Step 4B), then an acceptable loading scheme for the tall rigid cargo has been established.
- D. If the loaded cargo (Step 4A) is **greater** than the maximum allowable weight (Step 4B), then an acceptable loading scheme for the tall rigid cargo has **not** been established. Adjust the main deck cargo loading as required. Possible changes to the main deck loading are:
 - Move the tall rigid cargo
 - Load the tall rigid cargo adjacent to other cargo and do not centerline load the tall rigid cargo.
 - □ Ensure the cargo forward of the tall rigid cargo is volumetrically full.
 - Load less cargo aft of the tall rigid cargo.

TALL RIGID CARGO (Continued)

SAMPLE PROBLEM NO. 1

Is the following load plan acceptable for loading 118 inch tall rigid cargo loaded in Position JR?

All positions are loaded with Size Code M pallets (96 inches X 125 inches).

Positions A1, A2, B1, CL, and CR are loaded with frangible cargo. The proposed loading is as follows:

100
300
500
700
900
1100
1500
1700
1900
2100
2300
2500

1111
1110
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1

The following table lists necessary data for determining an acceptable plan for carrying tall rigid cargo.

	DETAILS FOR CARGO LOADED ON LEFT SIDE				DETAILS FOR CARGO LOADED ON RIGHT SIDE			
IATA POSITIO NS	WEIGHT (LB)	WEIGHT (KG)	LOADED VOLUME (% FULL)	HEIGHT OF CARGO	WEIGHT (LB)	WEIGHT (KG)	LOADED VOLUME (% FULL)	HEIGHT OF CARGO
A1	3000	1361	80	96	-	-		
A2	3200	1451	80	96	-	-		
B1	-	-			2800	1270	80	96
CL/CR	6400	2903	80	96	8000	3629	80	96
DL/DR	7400	3357	80	96	6400	2903	80	96
EL/ER	8000	3629	80	96	8200	3719	80	96
FL/FR	7000	3175	80	96	7800	3538	80	96
GL/GR	6800	3084	80	96	8000	3629	80	96
HL/HR	9600	4354	80	96	9400	4264	80	96
JL/JR	8400	3810	NA	NA	10000	4536	100	118
KL/KR	6400	2903	NA	NA	6000	2722	NA	NA
LL/LR	7000	3175	NA	NA	6800	3084	NA	NA
ML/MR	6200	2812	NA	NA	5600	2540	NA	NA
PL/PR	4000	1814	NA	NA	4400	1996	NA	NA
RL/RR	2500	1134	NA	NA	2700	1225	NA	NA
SL/SR	2900	1315	NA	NA	2800	1270	NA	NA
Т	-	-			2000	907	NA	NA

Position JR is loaded with Tall Rigid Cargo

Step 1 - Define the Cargo Distribution

- A. For this sample problem, B.A. 1280 is the leading edge of the 118 inch tall rigid cargo loaded in Position JR.
- B. For this sample problem, only Position JR is loaded with rigid cargo that exceeds 96 inches per the table on Page 8. The forward edge of Position JR is aft of B.A. 1280. B.A. 1220 is the forward most B.A. for tall rigid cargo that is 118 inches tall. This is an acceptable loading.
- C. For this sample problem, the tall rigid cargo is not loaded on the airplane centerline and cargo is loaded on the left and right hand sides of the airplane. Therefore a factor of 1.0 is used.
- D. For this sample problem, the required frangible cargo is loaded in Positions A1, A2, B1 and CL/ CR.

Step 2 - Calculate the Volume of Cargo Forward of the Tall Rigid Cargo

- A. For this sample problem, the total volume is per the table below (volume forward of B.A. 1280). Positions forward of B.A. 1280 are Positions A1, A2, B1, CL/CR, DL/DR, EL/ER, FL/FR, GL/GR, and HL/HR.
- B. For this sample problem, all ULDs forward of B.A. 1280 are 80 percent full per the table on Page 8.
- C. For this sample problem, a factor of 1.0 for tall rigid cargo will be used per Step 1C.
- D. Determine the effective volume of the ULDs forward of the tall rigid cargo (forward of the B.A. determined in Step 1A) by the following table:

VOLUME OF CARGO FORWARD OF TALL RIGID CARGO							
	DETAILS F	FOR CARGO	D LOADED	DETAILS FOR CARGO LOADED			
ιατα	0	N LEFT SID	E	ON RIGHT SIDE			
POSITIONS	MAXIMUM	PERCENT	LOADED	MAXIMUM	PERCENT	LOADED	
FOSITIONS	VOLUME	FULL	VOLUME	VOLUME	FULL	VOLUME	
	CU FT	%	CU FT	CU FT	%	CU FT	
A1	540	80	432.0				
A2	613	80	490.4				
B1				613	80	490.4	
CL/CR	613	80	490.4	613	80	490.4	
DL/DR	613	80	490.4	613	80	490.4	
EL/ER	613	80	490.4	613	80	490.4	
FL/FR	613	80	490.4	613	80	490.4	
GL/GR	613	80	490.4	613	80	490.4	
HL/HR	613	80	490.4	613	80	490.4	
JL/JR and Aft ^[a]	0	NA	0.0	0	NA	0.0	
Total Loaded					•		
Volume per side	3864.8			3432.8			

[a] Volume aft of B.A. 1280 (Positions JL/JR and aft) should not be included in this calculation.

Total Volume on Left Side
Total Volume on Right Side
Total Volume
Tall Rigid Cargo Factor
Effective Volume

3864.8 CU FT + <u>3432.8 CU FT</u> 7297.6 CU FT x <u>1.0</u> 7297.6 CU FT

Step 3 - Determine the Effective Maximum Allowable Weight of Cargo that can be Stopped by the Volume of Cargo Determined in Step 2

- A. Use the graphs on Pages 5 and 6 to determine the maximum allowable weight of cargo that can be stopped by the volume of cargo determined in Step 1.
- B. For this sample problem, use 7297 CU FT as calculated in Step 2D.
- C. For this sample problem, a maximum allowable weight of cargo that can be stopped by a volume of 7297 CU FT is 83752 LB (37989 KG) as shown in the graph below and on the following page:

MAXIMUM ALLOWABLE WEIGHT - LB

* Calculated using the equation on Page 5. Graphically shown here.

TALL RIGID CARGO (Continued)

MAXIMUM ALLOWABLE WEIGHT - KG

* Calculated using the equation on Page 6. Graphically shown here.

Step 4 - Adjust the Main Deck Cargo Loading as Required

- A. For this sample problem, the proposed loading has 77700 LB (35244 KG) as the weight aft of B.A. 1280. Positions aft of B.A.1280 are Positions JL/JR, KL/KR, LL/LR, ML/MR, PL/PR, RL/RR, SL/ SR, and T.
- B. For this sample problem, a maximum allowable weight of cargo that can be stopped by a volume of 7297 CU FT is 83752 LB (37989 KG).
- C. For this sample problem, the loaded cargo 77700 LB (35244 KG) is **less** than the maximum allowable weight 83752 LB (37989 KG). This is an acceptable load plan.

The sample problem is OK for the carriage of tall rigid cargo.

APPLICABLE CONFIGURATIONS

1-69-121 Page 11 of 17 Jun 23/2006 D043U544-XXX1

TALL RIGID CARGO (Continued)

SAMPLE PROBLEM NO. 2

Is the following load plan acceptable for loading 118 inch tall rigid cargo loaded in Positions J/K (loaded on the centerline on a Size Code R Pallet)?

All other positions are loaded with Size Code M pallets (96 inches X 125 inches).

Positions A1, A2, B1, CL, and CR are loaded with frangible cargo. The proposed loading is as follows:

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

The following table lists necessary data for determining an acceptable plan for carrying tall rigid cargo.

	DET	AILS FOR C ON LEF	CARGO LOA	ADED	DETAILS FOR CARGO LOADED ON RIGHT SIDE			
IATA POSITIO NS	WEIGHT (LB)	WEIGHT (KG)	LOADED VOLUME (% FULL)	HEIGHT OF CARGO	WEIGHT (LB)	WEIGHT (KG)	LOADED VOLUME (% FULL)	HEIGHT OF CARGO
A1	3000	1361	79	96	-	-		
A2	3200	1451	75	96	-	-		
B1	-	-			2800	1270	95	96
CL/CR	6400	2903	85	96	8000	3629	90	96
DL/DR	7400	3357	85	96	6400	2903	55	96
EL/ER	8000	3629	95	96	8200	3719	75	96
FL/FR	7000	3175	90	118	7800	3538	100	118
GL/GR	6800	3084	95	96	8000	3629	75	96
HL/HR	6400	2903	85	96	6000	2722	90	96
J/K					16000	7257	100	118
LL/LR	7000	3175	NA	NA	6800	3084	NA	NA
ML/MR	6200	2812	NA	NA	5600	2540	NA	NA
PL/PR	4000	1814	NA	NA	4400	1996	NA	NA
RL/RR	2500	1134	NA	NA	2700	1225	NA	NA
SL/SR	2900	1315	NA	NA	2800	1270	NA	NA
Т	-	-			2000	907	NA	NA

Positions J/K are loaded with Tall Rigid Cargo

APPLICABLE CONFIGURATIONS

Step 1 - Define the Cargo Distribution

- A. For this sample problem, B.A. 1280 is the leading edge of the 118 inch tall rigid cargo loaded in Positions J/K
- B. For this sample problem, Positions J/K are loaded with tall rigid cargo that exceeds 96 inches per the table on Page 12. This is aft of B.A. 1280. B.A. 1220 is the forward most B.A. for tall rigid cargo that is 118 inches tall. Position FL/FR is also loaded with cargo that exceeds 96 inches in height and is loaded forward of B.A. 1280, but is loaded with frangible cargo.
- C. For this sample problem, the tall rigid cargo is loaded on the airplane centerline. Therefore, a factor of 0.9 is used.
- D. For this sample problem, the required frangible cargo is loaded in Positions A1, A2, B1 and CL/ CR.

Step 2 - Calculate the Volume of Cargo Forward of the Tall Rigid Cargo

- A. For this sample problem, the total volume is per the table below (volume forward of B.A. 1280). Positions forward of B.A. 1280 are Positions A1, A2, B1, CL/CR, DL/DR, EL/DR, FL/FR, GL/GR and HL/HR.
- B. For this sample problem, all ULDs forward of B.A. 1280 are between 55 and 100 percent full per the table on Page 12.
- C. For this sample problem, a factor of 0.9 for tall rigid cargo will be used per Step 1C, because the tall rigid cargo is loaded on the airplane centerline.
- D. Determine the effective volume of the ULDs forward of the tall rigid cargo (forward of the B.A. determined in Step 1A) by the following table:

VOLUME OF CARGO FORWARD OF TALL RIGID CARGO						
	DETAILS F		D LOADED	DETAILS FOR CARGO LOADED		
ΙΑΤΑ		N LEFT SID				
POSITIONS	MAXIMUM	PERCENT	LOADED	MAXIMUM	PERCENT	LOADED
	VOLUME	FULL	VOLUME	VOLUME	FULL	VOLUME
	CU FT	%	CU FT	CU FT	%	CU FT
A1	540	79	426.6			
A2	613	75	459.8			
B1				613	95	582.4
CL/CR	613	85	521.1	613	90	551.7
DL/DR	613	85	521.1	613	55	337.2
EL/ER	613	95	582.4	613	75	459.8
FL/FR	613	90	551.7	613	100 ^[a]	613.0
GL/GR	613	95	582.4	613	75	459.8
HL/HR	613	85	521.1	613	90	551.7
J/K and Aft ^[b]	0	NA	0.0	0	NA	0.0
Total Loaded						
Volume per side			4165.9			3555.4

[a] Position FR is loaded with frangible cargo that is 118 inches tall. Per Step 2A, only that portion of the volume below 96 inches tall can be included in this volume calculation. Therefore, Position FR has a volume of 613 CU FT because it is 100% full up to a height of 96 inches.

[b] Volume aft of B.A. 1280 (Positions J/K and aft) should not be included in this calculation.

APPLICABLE CONFIGURATIONS

1-69-121 Page 13 of 17 Jun 23/2006 D043U544-XXX1

TALL RIGID CARGO (Continued)

Total Volume on Left Side		4165.9 CU FT
Total Volume on Right Side	+	3555.4 CU FT
Total Volume		7721.3 CU FT
Tall Rigid Cargo Factor	х	<u>0.9</u>
Effective Volume		6949.1 CU FT

Step 3 - Determine the Effective Maximum Allowable Weight of Cargo that can be Stopped by the Volume of Cargo Determined in Step 2

- A. Use the graphs on Pages 5 and 6 to determine the maximum allowable weight of cargo that can be stopped by the volume of cargo determined in Step 1.
- B. For this sample problem, use 6950 CU FT as calculated in Step 2D.
- C. For this sample problem, a maximum allowable weight of cargo that can be stopped by a volume of 6950 CU FT is 15150 LB (6872 KG) as shown in the graph below and on the following page:

MAXIMUM ALLOWABLE WEIGHT - LB

* Calculated using the equation on Page 5. Graphically shown here.

TALL RIGID CARGO (Continued)

MAXIMUM ALLOWABLE WEIGHT - KG

* Calculated using the equation on Page 6. Graphically shown here.

Step 4 - Adjust the Main Deck Cargo Loading as Required

- A. For this sample problem, the proposed loading has 62900 LB (28530 KG) as the weight aft of B.A. 1280. Positions aft of B.A. 1280 are Positions J/K, LL/LR, ML/MR, PL/PR, RL/RR, SL/SR and T.
- B. For this sample problem, a maximum allowable weight of cargo that can be stopped by a volume of 6950 CU FT is 15150 LB (6872 KG).
- C. For this sample problem, the loaded cargo 62900 LB (28530) KG is greater than the maximum allowable weight 15150 LB (6872 KG). This is not even close to an acceptable load plan.

The sample problem is not OK for the carriage of tall rigid cargo.

Possible solutions are:

- Device the tall rigid cargo. (In this sample problem moving the tall rigid cargo to Positions J/ K will increase the volume forward of the tall rigid cargo and reduce the weight aft of the tall rigid cargo. Both of these results are good.)
- Do not centerline load the tall rigid cargo. This will change the configuration factor from .90 to 1.0. (In this sample problem it is likely that cargo would hit the overhead airplane structure, so center loading is likely the only option).
- Ensure the cargo forward of the tall rigid cargo is volumetrically full. (In this sample problem the ULDs forward of B.A. 1280 are mostly full, but some positions like DR are only 55% full).
- Load less cargo aft of the tall rigid cargo. (For this sample problem removing cargo aft of the tall rigid cargo is a good solution, but this means some cargo may not make this flight. Also, removing cargo from the aft body may result in the airplane zero fuel weight moving forward, possibly outside of the C.G. limits (See CHP-SEC 1-02-xxx)).