Docket No. SA-522 Exhibit No. 7-CC

NATIONAL TRANSPORTATION SAFETY BOARD

Washington, D. C.

Structural Analysis and Evaluation for the Airbus A300-600R/MSN420 VTP and rudder for the accident flight AA587 Part 1 : Calculation of the Load Levels experienced by the VTP & rudder during the accident

(18 Pages)

AI	RBUS			Тес	hnic	cal Note			
Project / accour Order-No.: Preparation	nting / project o n:	rder no.:				Copy to (* = only	this coversh	eet)	
	Report Nr.: Author: Department.: Title Date: Summary:		TN – 1	ral A R vei the ilcula	naly rtica acci ation	vsis and eval al stabilizer a ident during n of the load izer and rude	luation f ind rudo flight A levels e der duri	for the Ai ler subje A587 experiencing the ac	irbus cted to ced by cident
Key Words (R	etrieval Terms):	lssue	Date	No. of	page	Re	vised pages		Valid from/for
		1	16.10.02	2	8				
Name: Date: Signum:	prepare 16.10.0	d)2	checked			approved	sig	ned	released

Für dieses firmeninterne Dokument behalten wir uns alle Rechte vor. Ohne vorherige schriftliche Zustimmung der Firma bzw. der DA-Leitung darf es Firmenfremden nicht zugänglich gemacht werden. Sicherheitsbestimmungen haben grundsätzlich Vorrang.

TN 13/2002						2
Contents						
1. Introduction						
2. Finite element m analysis	nodel for ve	ertical st	abilizer and	rudder struct	tural	
3. Analysed load c	ases					
4. Analysis results						
4.1 Vertical stabilize	r reaction lo	oads on t	he fuselage at	tachment		
4.2 Rudder hinge lin	e forces					
4.3 Strains in the ver	rtical stabili	zer skin p	oanels			
4.1.1 Load case K23	8					
5. Evaluation of res	sults					
5.1 Load level on the	e vertical sta	abilizer at	ttachment lug	S		
5.2 Load level at the	rudder hinç	ge line				
5.3 Strain level in sk	in panels					
6. Summary						
	1	1				
	Date 1 Prepared Approved	16.10.02				

1. Introduction

This report describes the basic part of structural analysis for the Airbus A300-600R vertical stabilizer and rudder subjected to the accident during flight AA 587.

The finite element method is applied to calculate the structural behaviour for the 3 load peaks prior to the accident and 2 sizing load cases for the attachment lugs and the rudder with its supporting structure. Analysis results are supplied for the vertical stabilizer fuse-lage attachment lugs, rudder hinge line forces and rudder hinge fitting attach bolt loads to provide answers for major concerns which are the vertical stabilizer attachment rupture and the damages to the rudder and the rudder hinge line. The experienced load levels at the lugs and the rudder hinges in terms of L.L. – requirements given for the sizing load cases are summarized.

3. Analysed load cases

The loads are calculated using the flight data recordings up to the accident.

The loads are provided as forces acting on both surfaces of the vertical stabilizer and rudder at the grid points of the analysis model.

The three most significant load cases with the reference

CRSHNBT1P2 238 D01ICCF0T YM-8026 (designation in this report K238) CRSHNBT1P2 316 D01ICCF0T YM-8026 (designation in this report K316) CRSHNBT1P2 376 D01ICCF0T YM-8026 (designation in this report Y376)

from the bending moment history prior to the accident were selected (see figure 4).

Figure 4

The correlated loads lateral shear Q_y , the bending moment M_{xQ} and the torsional moment M_{zQ} at the root of the vertical stabilizer are listed in figure 5 with the rudder deflection angle and hinge moment belonging to it.

		-		
I	1			
Date Prepared Approved	16.10.02 			

	K238	K316	Y376
Q _y [N]	-107 990	291 470	-378 590
M _{xQ} [Nm]	564 140	-1 313 960	1 689 880
M _{zQ} [Nm]	-87 060	-41 720	71 050
Rudder hinge moment [Nm]	13 041	-17 116	21 610
Rudder deflection angle [°]	-10.56	9.95	-11.47

Figure 5

The loads are given in the fin coordinate system (see figure 6).

To compare the load level experienced during the accident with the loads demonstrated for certification according to FAR25 requirements, the sizing load case (see figure 7) for the vertical stabilizer attachment lugs has been anew analyzed.

	Lateral gust, discrete A36RBI17 SD06 (limit load)
Q _y [N]	-215 770
M _{xQ} [Nm]	861 650
M _{zQ} [Nm]	150 410

Figure 7

For the analytical investigation of the rudder the load case with the maximum hinge moment (figure 8) has been used to calculate hinge line forces and hinge fitting attach forces. The load level experienced by the rudder and its supports during the accident is calculated by comparing the hinge moment limit load requirement for the A300-600R and the hinge moment demonstrated by test during the certification (see figure 8).

	Lateral maneuver A36RLA38 limit load	Certification tests, static limit load	Y376
Hinge moment [Nm]	-17 250	33 910	21 610
Rudder deflection [°]	25.43		-11.47

I	1		
Date Prepared Approved	16.10.02 		

4. Analysis results

4.1 Vertical stabilizer reaction loads

The results are given as reaction forces in the aircraft coordinate system (see figure 6) at the main lugs and the lateral yokes, which are attached to the transverse load fittings (see figure 9 - 12). A negative sign for F_z indicates tension at the main lugs.

4.1.1 Load case K238

Load component	Front [N]		Cent	er [N]	Rear [N]	
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	71 284	-80 322	86 157	-88 191	146 507	-141 788
Fy	872	1 180	9 127	9 338	15 975	15 715
Fz	63 025	-74 193	178 279	-179 470	257 154	-241 351
F _{res}	95 154	109 351	198 216	200 186	296 391	280 359
M _x [Nm]	-527	-591	-2 001	-2 036	-3 161	-2 983
M _z [Nm]	17	-4	372	340	1 394	1 290
angle [°]	41	43	64	64	60	60

Reaction forces at main lugs

Reaction forces at lateral load yokes

Load Component	Fror	nt [N]	Cent	er [N]	Rea	r [N]
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	366	-409	209	-246	-4 204	4 401
Fy	-4 929	-5 505	-2 856	-3 369	34 541	36 162
Fz	417	-466	318	-375	-6 415	6 716
F _{res}	4 960	5 540	2 881	3 399	35 383	37 043

I	1		
Date Prepared Approved	16.10.02 		

TN ----- 13/2002

4.1.2 Load case K316

Reaction forces at main lugs

Load component	Front [N]		Cent	er [N]	Rear [N]	
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	-197 567	186 374	-181 140	180 842	-298 776	303 039
Fy	-8 334	-7 862	-25 857	-25 946	-33 907	-34 551
Fz	-235 674	223 400	-497 135	494 247	-618 701	637 490
F _{res}	307 643	291 040	529 739	526 932	687 901	706 697
M _x [Nm]	2 169	2 124	5 623	5 673	7 724	7 942
M _z [Nm]	-14	-57	-805	-753	-3 098	-3 059
angle [°]	50	50	70	70	64	65

Reaction forces at lateral load yokes

Load component	Fro	nt [N]	Cent	er [N]	Rea	r [N]
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	696	-744	371	-336	7 533	-7 248
Fy	-9 369	-10 021	-5 068	-4 592	-61 893	-59 552
Fz	792	-847	565	-512	11 494	-11 060
F _{res}	9 428	10 084	5 113	4 632	63 400	61 002

	1		
Date Prepared Approved	16.10.02 		

TN ----- - 13/2002

4.1.3 Load case Y376

Reaction forces at main lugs

Load component	Front [N]		Center [N]		Rear [N]	
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	241 154	-254 033	228 468	-233 066	387 676	-379 764
Fy	10 521	11 139	33 342	33 825	43 950	43 696
Fz	290 117	-307 792	640 708	-641 682	820 805	-796 830
F _{res}	377 404	399 240	681 040	683 535	908 815	883 780
M _x [Nm]	-2 755	-2 844	-7 268	-7 367	-10 209	-9 958
M _z [Nm]	59	33	1 041	952	4 061	3 832
angle [°]	50	50	70	70	65	65

Reaction forces at lateral load yokes

Load component	Front [N]		Center [N]		Rear [N]	
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	-1 053	985	-590	488	-9 192	9 470
Fy	14 171	13 261	8 068	6 669	75 525	77 809
Fz	-1 199	1 121	- 899	743	-14 026	14 450
F _{res}	14 261	13 345	8 140	6 728	77 364	79 704

TN ----- - 13/2002

4.1.4 Load case Lateral Gust A36RBI17

Load Front [N] Center [N] Rear [N] component LHS RHS LHS RHS LHS RHS F_{x} 134 392 -133 432 105 747 -107 032 178 043 -177 638 8 392 8 429 21 014 21 317 F_y 19 324 19 451 F_z 186 089 -186 552 365 710 -364 532 433 075 -433 669 229 697 229 514 381 181 380 418 469 125 Fres 468 716 M_x [Nm] -1 806 -1 804 -4 193 -4 221 -5 485 -5 438 510 458 M_z [Nm] 21 27 2 0 0 9 1 948 angle [°] 54 54 74 74 68 68

Reaction forces at main lugs

Reaction forces at lateral load yokes

Load component	Front [N]		Center [N]		Rear [N]	
	LHS	RHS	LHS	RHS	LHS	RHS
F _x	-1 262	1 261	-792	754	-3 613	3 573
Fy	16 987	16 970	10 828	10 310	29 685	29 356
Fz	-1 437	1 435	-1 207	1 149	-5 513	5 452
F _{res}	17 094	17 077	10 923	10 401	30 408	30 071

	1		
Date Prepared Approved	16.10.02 		

4.2 Rudder hinge line forces

The rudder hinge line forces are listed only for the maximum load case Y376. The corresponding values for the load cases K238 and K316 are lower due to lower hinge moment and displacement of the supporting vertical stabilizer. For designation of the hinges see figure 13.

TN ----- 13/2002

The forces at the hinge line of the rudder for fittings BR1 to BR7 are given in the hinge line coordinate system (see figure 14) and are listed in figure 15 and 16.

Figure 14

	Load case Y376				
	F _x [N]	F _y [N]	F _{res} [N]		
BR1	-11 743	1 857	11 889		
BR2	-41 373	10 125	42 594		
AC1	41 406	3 333	41 539		
BR3	-40 079	7 937	40 857		
AC2	43 542	3 583	43 689		
BR4+Z-Force	-46 005	7 883	46 675		
AC3	53 074	4 617	53 275		
BR5	-2 345	5 270	5 768		
BR6	-3 786	5 427	6 617		
BR7	-3 640	3 922	5 351		

	1		
Date Prepared Approved	16.10.02 		

	Load case Lateral Maneuver A36RLA38 limit load				
	F _x [N]	F _y [N]	F _{res} [N]		
BR1	-9 491	-4 783	10 628		
BR2	33 658	-5 176	37 021		
AC1	-40 682	-3 771	40 856		
BR3	37 934	-5 006	38 263		
AC2	-38 919	-3 695	39 094		
BR4 + Z-Force	44 855	-6 972	45 394		
AC3	-42 844	-4 302	43 060		
BR5	-2 092	-5 786	6 153		
BR6	-4 152	-5 476	6 872		
BR7	-4 189	-3 243	5 298		

	1		
Date Prepared Approved	16.10.02 		

5. Evaluation of results

5.1 Loads level on the vertical stabilizer attachment lugs

The load levels which have been experienced during the 3 last bending moment peaks before the accident are calculated by comparison of the resultant forces at the RHS main lugs of the vertical stabilizer for the load cases K238, K316 and Y376 (see fig. 9 to 11) with the resultant forces at limit load for the sizing load case "lateral gust, discrete A36RBI17" (see figure 12).

The equivalent load levels based on L.L. of the lateral gust load case are listed in figure 25.

Case	Experienced load level (x L.L.)				
	FS	CS	RS		
K238	0.48	0.53	0.60		
K316 ¹⁾	1.27	1.39	1.51		
Y376	1.74	1.80	1.88		

¹⁾ For load case K316 RHS lugs are acting in compression

	1		
Date Prepared Approved	16.10.02 		

5.2 Load level at the rudder hinge line

The rudder hinge line forces from load case Y376 (see figure 15) are compared with the sizing load case "lateral maneuver" (see figure 16) for each hinge separately in figure 26.

Hinge	Experienced load level (x L.L.)
BR1	1.12
BR2	1.15
BR3	1.07
BR4	1.03
BR5	0.94
BR6	0.96
BR7	1.01

	1		
Date Prepared Approved	16.10.02 		

5.3 Strain levels in the vertical stabilizer skin panels

The strain distributions for both load cases are similar especially for the component ε_x . The strain level which has been experienced during the accident is calculated from the minimum principal strain values of load case Y376 and load case A36RBI17 from the LHS compression panels (see figure 27).

	Lateral gust limit load A36RBI17	Y376	Experienced strain level (x L.L.)	
Min. principal	-1 503	-3 238	2.15	

	1		
Date Prepared Approved	16.10.02		

6. Summary

The evaluation of analysis results demonstrates, that concerning the vertical stabilizer attachment lugs

- case K238 is significantly below L.L. requirement,
- case K316 is at 1.51 x L.L. level
- and case Y376 is at 1.88 x L.L. level and exceeds U.L. requirement significantly by 26 %.

The load level at the rudder hinge line is 1.15 x L.L. at maximum relative to the rudder maneuver load case required by FAR25 for A300-600R.

In relation to the static load case demonstrated for certification the experienced hinge moment is equivalent to 42.5%.

The damages at the rudder hinge line and the sandwich structure itself is not caused by the loads acting on the rudder or due to interface loads between vertical stabilizer and rudder from deformation prior to the accident.

The maximum strain values in the skin panels of the vertical stabilizer are equivalent 2.15 x L.L. from the lateral gust case.

Date	16.10.02
Prepared	
Approved	