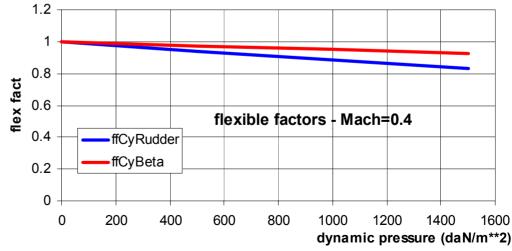

• LE5 - Flexibility

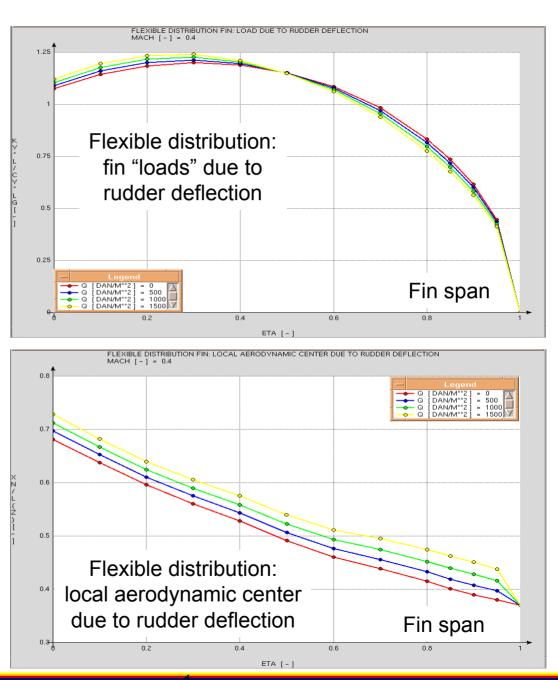
1

- LE5 Flexibility
 - Large transport airplanes are not rigid, their structure is flexible.
 - Under aerodynamic forces, the airplane structure deforms.
 - These deformations develop themselves new aerodynamic forces which added to the primary aerodynamic forces.
 - This leads to a modification of:
 - the aerodynamic distribution along the airplane components,
 - the airplane aerodynamic derivatives.


Flexible factor= Fy flex / Fy rigid

LE5 - Flexibility

- Elastic deformations:
 - Calculation of the elastic deformations of the vertical tail is performed by taking into account the fuselage stiffness, the vertical tail stiffness and the vertical tail-fuselage local attachment flexibility.
- Aerodynamic derivatives
 - Aeroelastic effects are provided through corrective factors, called "flexible factors", to be applied to the "rigid" aerodynamic derivatives to obtain the flexible aerodynamic derivatives.
 - Those factors are dependent of flight conditions: the mach number and the dynamic pressure.



GAIRBUS

• LE5 - Flexibility

- Flexible aerodynamic data distribution on vertical tail
 - The flexible aerodynamic data distribution are mach and dynamic pressure dependant
 - Example:
 - . flexibility effect linked with rudder deflection at mach=0.4
 - spanwise "loads" distribution
 - spanwise local aerodynamic center
 - distribution

SAIRBUS

• LE5 - Flexibility

- Influence of relative effect of vertical tail fuselage deformations:
 - The flexible factors can be divided into two multiplicative parts:
 - . one containing the influence of the deformations of the vertical tail: ffvt
 - . one containing the influence of the fuselage deformations: fffus
 - . full flexible factor: **ff** = fffus*ffvt
 - Analysis of the above factors at Mach = 0.4 and a dynamic pressure = 1000 dan/m**2:

Input	ff∕t	fffus	ff
Sideslip	0.971	0.97	0.942
Rudder deflection	0.919	0.97	0.891

