

Continental Motors, Inc.

ENGINE OPERATIONAL TEST

REPORT

DATE	October 5, 2011
REGISTRATION #	N444YM
ENGINE MODEL	IO470VO
ENGINE SERIAL	455788
INSPECTOR	Phillip Grice
SEARCH CODE	15-12-68

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-05-2011	10470VO	455788	N444YM	4 of 11

ENGINE HISTORY

Annual inspection completed 8-16-2011 Number 2 cylinder replaced with overhauled part. Normal maintenance and service reported in the engine log book from time of installation.

EXTERNAL EXAMINATION

The engine exhibited impact damage concentrated at the bottom of the engine. The oil sump, exhaust runner on the 2, 4, 6 side, induction tube cylinder 6, and the balance tube was replaced before the test run. All engine mount legs were replace to facilitate mounting to run stand.

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-05-2011	10470VO	455788	N444YM	5 of 11

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-05-2011	10470VO	455788	N444YM	8 of 11

to: 21 ° BTDC Right Magneto: 20 ° BTD(0
t	o: 21 ° BTDC Right Magneto: 20 ° BTD(

The engine was not disassembled prior to the engine run.

The crankshaft end-play measured .009" and the crankshaft flange run-out was .002"

The engine was then prepared for operation by installing the appropriate thermocouples, pressure lines and test pads for monitoring purposes.

The engine was then moved to TCM test cell number 43 and mounted for operation.

The engine was fitted with a test club propeller for the IO470VO engine model.

DESCRIPTION OF OPERATIONAL TEST

The engine experienced a normal start on the first attempt without hesitation or stumbling in observed RPM. The engine RPM was advanced in steps for warm-up in preparation for full power operation. The engine throttle was advanced to 1200 RPM and held for five (5) minutes to stabilize. The engine throttle was advanced to 1600 RPM and held for five (5) minutes to stabilize. The engine throttle was advanced to 2450 RPM and held for five (5) minutes to stabilize. The engine throttle was advanced to full open position and held for five (5) minutes to stabilize. The engine throttle was rapidly advanced from idle to full throttle six times where it performed normally without any hesitation, stumbling or interruption in power.

Throughout the test phase, the engine accelerated normally without any hesitation, stumbling or interruption in power and demonstrated the ability to produce rated horsepower.

Ti	ne		MD "Ha	0	11		Fu	el				Cylind	er Head	Tempera	iture ° F	Reading (
Reading	Minutes	RPM	WF 119	PSI	٥F	Lbs/Hr	Nozzle PSI	Pump PSI	Fuel °F	Cell °F	#1	#2	#3	#4	#5	#6
1	5	1200	14.7	24	85	24.8	4.9	12.0	69	64	249	229	257	219	210	178
2	5	1600	18.4	34	122	40.4	6.0	15.1	69	65	268	267	296	239	255	199
3	5	2100	24.8	54	153	81.21	9.7	21.3	69	65	339	300	344	271	232	231
4	5	2450	26.5	48	174	108	14.7	27.5	73	65	349	401	372	322	366	273
5	5	F/T	29.2	46	185	134.8	19.3	30.1	74	67	358	409	380	328	371	246
6	5	Idle	16.8	10	147	10.2	4.2	8.0	74	68	271	342	269	273	239	204
Am Temp	oient Air erature °l		Ambient Air Pressure	Tra	nsfer ollar ∖ P		Maxim	num Ra	ated F	Power	Engin	e Oper	ationa	Para	meters	
				In	Out	RP	M	" Hg M	P	Fuel Fl	ow Lbs/H	r i	Metered	PSI	Unmeter	red PSI
	70.5		30.14	47	46	263	32	N/A		1	34.8		19.3		30	.1
Notes:	Operator	– Johnn	y Little, 30524	. Transfe	er collar	pressure	delta me	asured a	t full th	rottle po	wer settir	ıg.				
	llef	E T Magnet	Engine Perfo	ormance	e Test	neto I	Right Mag	ineto								

Engine Operational Test Log

Engine Performance Test							
Test	Left Magneto	Left Magneto	Right Magneto	Right Magneto			
RPM	RPM	RPM Drop	RPM	RPM Drop			
2100	2016	84	1988	112			

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-05-2011	IO470VO	455788	N444YM	9 of 11

A post engine test cylinder leakage test was performed in accordance with the latest revision of TCM Service Bulletin SB03-3 on each cylinder with the engine hot. The results are as follows: Master orifice reading – 39 PSI

Cylinder #1 - 64/80 PSI (rings) Cylinder #3 - 70/80 PSI (rings) Cylinder #5 - 70/80 PSI (rings) (*) – Leakage Source Cylinder #2 - 71/80 PSI (rings) Cylinder #4 - 54/80 PSI (rings) Cylinder #6 - 56/80 PSI (rings)

ENGINE OPERATIONAL TEST CONCLUSION

The operation of this engine was normal and did not reveal any abnormalities that would have prevented normal operation and production of rated horsepower.

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-05-2011	10470VO	455788	N444YM	11 of 11

During the on site investigation the fuel line attached to the manifold valve was found loose. After completion of the engine test run the fuel line was set at finger tight torque. A wire was attached to loosen the hose during the engine run. A stop was in place to limit the rotation. Engine was set at full throttle and the fitting loosen to slightly over 1/4 turn. When the hose was loosened the engine lost power and shut down.

ENGINE DISPOSITION

The engine was shipped to the following address per the NTSB IIC upon the completion of the operational test:

Gulf Coast aircraft Recovery

Baton Rouge, La. 70815

Continental Motors, Inc.

ENGINE OPERATIONAL TEST

REPORT

DATE	October 6, 2011	
REGISTRATION #	N444YM	
ENGINE MODEL	10470VO	
ENGINE SERIAL	455789	
INSPECTOR	Phillip Grice	
SEARCH CODE	15-12-68	

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-06-2011	10470VO	455789	N444YM	4 of 11

ENGINE HISTORY

Annual inspection completed 8-16-2011. Normal maintenance and service reported in the engine log book from time of installation.

EXTERNAL EXAMINATION

The engine exhibited impact damage concentrated at the bottom of the engine. The external surfaces of the engine were. The oil sump, exhaust runner on the both sides, induction tube cylinder 5, and the balance tube were replaced before the test run. All engine mount legs were replace to facilitate mounting to run stand.

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-06-2011	10470VO	455789	N444YM	7 of 11

Magneto to Engine Timing TCM Spec -20° BTDC	Left Magneto: 20° BTDC	Right Magneto: 20° BTDC
	Left magnete: 20 Bibb	

The engine was not disassembled prior to the engine run.

The crankshaft end-play measured .011" and the crankshaft flange run-out was .032".

The engine was then prepared for operation by installing the appropriate thermocouples, pressure lines and test pads for monitoring purposes.

The engine was then moved to TCM test cell number 43 and mounted for operation.

The engine was fitted with a test club propeller for the IO470VO engine model.

DESCRIPTION OF OPERATIONAL TEST

The engine experienced a normal start on the first attempt without hesitation or stumbling in observed RPM. The engine RPM was advanced in steps for warm-up in preparation for full power operation. The engine throttle was advanced to 1200 RPM and held for five (5) minutes to stabilize. The engine throttle was advanced to 1600 RPM and held for five (5) minutes to stabilize. The engine throttle was advanced to 2450 RPM and held for five (5) minutes to stabilize. The engine throttle was advanced to full open position and held for five (5) minutes to stabilize. The engine throttle was rapidly advanced from idle to full throttle six times where it performed normally without any hesitation, stumbling or interruption in power.

Throughout the test phase, the engine accelerated normally without any hesitation, stumbling or interruption in power and demonstrated the ability to produce rated horsepower.

The engine operational test was limited due to the frontal impact that the engine had experienced and the uncertainty as to the extent of the internal damage resulting from the accident impact.

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-06-2011	10470VO	455789	N444YM	8 of 11

Engine Operational Test Log

Time		MP "Ha	0	Oil		Fuel					Cylinder Head Temperature °F					
Reading	Minutes	RPM		PSI	°F	Lbs/Hr	Nozzle PSI	Pump PSI	Fuel °E	°F	#1	. # 2	#3	#4	# 5	# 6
1	5	1200	15	54	94	29.6	5.1	10.9	73	69	218	220	220	200	227	185
2	5	1600	18.5	57	134	45.6	6.2	14.6	73	70	263	258	268	236	264	215
3	5	2100	24.0	50	159	81.6	9.4	20.0	73	70	324	245	342	267	317	236
4	5	2450	26.5	46	175	110.6	13.7	26.3	80	71	347	379	355	332	355	255
5	5	F/T	28.8	42	187	130.0	17.5	28.0	82	71	366	390	366	351	355	260
6	5	Idie	16.2	20	163	17.4	4.5	8.1	77	72	215	248	207	210	188	168
Am Temp	bient Air berature °	Eline Land Salari	Ambient Air Pressure	Tra C	insfer ollar \ P		Maxin	num Ra	ated F	Power	Engin	e Opei	rationa	l Parai	meters	
				ln,	Out	RP	M	" Hg M	P	Fuel Flo	ow Lbs/⊢	ir 👘	Metered I	PSI	Unmete	red PSI
	73.1		30.19	41	40	262	25	N/A			130		17.5		28	.0
Notes:	Operator	– Johnny	/ Little, 30524.	Transfe	er collar	pressure	delta me	asured a	t full thr	ottle po	wer settir	ng.				

Teet	Left Magneto	Left Magneto	Right Magneto	Right Magneto			
RPM	RPM	RPM Drop	RPM	RPM Drop			
2100	2004	96	1964	136			

A post engine test cylinder leakage test was performed in accordance with the latest revision of TCM Service Bulletin SB03-3 on each cylinder with the engine hot. The results are as follows: Master orifice reading - 39 PSI

Cylinder #1 - 61/80 PSI (rings) Cylinder #3 - 68/80 PSI (rings) Cylinder #5 - 69/80 PSI (rings) (*) - Leakage Source

Cylinder #2 - 65/80 PSI (rings) Cylinder #4 - 70/80 PSI (rings) Cylinder #6 - 70/80 PSI (rings)

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-06-2011	IO470VO	455789	N444YM	9 of 11

ENGINE OPERATIONAL TEST CONCLUSION

The operation of this engine was normal and did not reveal any abnormalities that would have prevented normal operation and production of rated horsepower.

Date	Engine Model	Engine Serial No.	Aircraft Registration	Page
10-06-2011	10470VO	455789	N444YM	11 of 11

At the request of the NTSB this right engine was tested in a similar manner as the left engine from this aircraft. After completion of the engine test run the fuel line was set at finger tight torque. A wire was attached to loosen the hose during the engine run. Engine was set at full throttle and the fitting loosen to slightly over ¼ turn. When the hose was loosened the engine lost power and shut down.

ENGINE DISPOSITION

The engine was shipped to the following address per the NTSB IIC upon the completion of the operational test:

Gulf Coast aircraft Recovery

Baton Rouge, La. 70815