

. 1

Aircraft Encounters With Thunderstorms in the Terminal Area

Dale Rhoda and Margo Pawlak Weather Sensing Group MIT Lincoln Laboratory

MIT Lincoln Laboratory

LIT-1 DAR 1/21/00

Outline

- Introduction
- NASA-funded DFW TRACON arrivals study
 - Methodology
 - Sensitivity to flight-specific variables
 - Weather variables correlated with penetration / deviation
- Factors on Final Approach
- Summary

- Pilots
 - Check ATIS & TWIP
 - Use airborne radar
 - Observe visual cues
 - Monitor radio frequency for wind shear alerts and PIREPs
 - May solicit PIREPs
- Airline Dispatchers
 - Weather data from vendors
 - Rarely contact the pilot in the TRACON
 - Sometimes give advice about the necessity of diversion

- Tower Controllers
 - Read centerfield winds
 - Read wind shear alerts
 - Have limited access to six-level precipitation
 - May relay PIREPs
- TRACON Controllers
 - Observe six-level precipitation on monochrome display
 - No access to wind shear information
 - May relay PIREPs

"There is no attraction to penetrate any echo of level 3 and above. The hazards are plentiful. Strong and violent convection is indicated by level 3 (and above) cores. The churning and turbulence will exist in the entire storm and not simply in the area of maximum reflectivity. <u>Airline pilots avoid convective level 3</u> <u>with vigor.</u>" (emphasis added)

> Dave Gwinn "Approach Radar for Weather Avoidance" *IFR: The Magazine for the Accomplished Pilot June 1993*

NWS LEVEL	INTENSITY	RAINFALL (IN/HR)	6-LEVEL DEPICTION	AIRBORNE DEPICTION
6	Extreme	> 7.1	Red	Red
5	Intense	4.5 – 7.1	Red/Orange	Red
4	Very Strong	2.2 – 4.5	Orange	Red
3	Strong	1.2 – 2.2	Yellow	Red
2	Moderate	0.2 – 1.2	Dark Green	Yellow
1	Weak	< 0.2	Light Green	Green

- Motivation:
 - Successful development of ATC decision support tools for use during convective weather requires:

Predicting the location of the weather Predicting where the pilots will request deviations

- Study Goals:
 - Determine which variables are correlated with behavior
 - Examine feasibility of probability-of-deviation classifier
- Also applicable to:
 - Terminal area safety
 - Weather representation for controllers

- Collect 60+ hours of weather and flight track data
- Identify penetrations and deviations
- Extract weather and flight variables for every encounter
- Perform statistical analysis

Note: None of the aircraft encounters with weather in this study resulted in accidents or, to the best of our knowledge, injuries.

Integrated Terminal Weather System (ITWS)

Weather and Flight Variables

- ASR-9
 - Six-level precipitation
 - Weather coverage
- TDWR & NEXRAD
 - Reflectivity
 - Vert. integrated liquid H₂O
 - Max reflectivity
 - Altitude of max reflectivity
 - Center of mass
 - Echo top, bottom, thickness
 - Hail
 - Microburst
 - Gust front

- National Lightning Detection Network
 - Cloud-to-ground flashrate
- Flight Data
 - Flight id
 - Aircraft type
 - Arrival fix
 - Arrival runway
 - Range from airport
 - Pathlength inside TRACON
 - Leader / Follower
 - Altitude
 - Arrival time
 - Delay

Storm Cell Penetrations

Storm Cell Deviations

.

DATE	TIME (UT)	HOURS	# DEV	# PEN
4/24/97	1530 - 1900	3.5	53	104
5/9/97	0130 - 0800	6.5	12	72
5/19/97	2030 - 0830	12	219	437
5/30/97	1845 - 0200	7.3	91	94
6/10/97	0030 - 0730	7	17	46
6/16/97	2130 - 0830	11	25	143
6/22/97	1845 - 2245	4	65	58
6/23/97	1600 - 2200	6	100	103
7/5/97	1300 - 1830	5.5	60	253
тс	TAL	62.8	642	1310

.

Test	Cat	Significance	
Longer-Than-Normal Flight Time	Normal Time	Delayed 15+ minutes*	0.01
Following a Leader	Leader	Follower*	0.01
Day vs. Night	Day	Night*	0.01
Airline by Airline	AAL, EGF,	No Differences	

* More Likely to Penetrate Level 3+ Weather

- Far from the airport (> 25 km) three types of variables were correlated with penetration / deviation behavior:
 - Storm intensity
 - Weather coverage
 - Range from the airport
- Our statistical classifiers predicted pilot behavior correctly between 70 and 85 percent of the time.
- Near the airport, however, the pilots almost never deviated.

- Nearly all encounters near airport were penetrations
- Aircraft penetrated NWS levels 3, 4, and 5 near the airport.
- Behavior near the airport was not correlated with storm intensity variables

1

- Less lateral leeway
- High cockpit workload
- Pilots may rely on storm appearance as well as verbal reports from pilots and controllers rather than radar information

- Far from the airport, penetration & deviation behavior seems to be predictable given knowledge of storm intensity and weather coverage.
- Near the airport, pilots in this study consistently penetrated intense precipitation -- sometimes leading to missed approaches and aborted approaches.
- Pilots were more likely to penetrate intense precipitation when:
 - following another aircraft
 - delayed in the current leg of flight
 - flying after dark
- There were no statistically discernable differences in the behavior of pilots from different airlines in this study.
- Full report available at:

http://WWW.LL.MIT.EDU/AviationWeather/reports.html