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I. INTRODUCTION

It is very difficult to reliably detect microburst wind shears with a network of anemometers
whose spacing is comparable to that of the existing six-station LLWAS networks. By using a
combination of the network mean (NMN) algorithm and divergence detection methods (TED)
whose thresholds are variably set to reflect the ‘edmetric properties of each triangulation ele-
ment (triangle or edge). we have been able to obtain fairly high microburst detection probability
without incurring an unacceptable false alarm ratio. Our tests indicate that a detection proba-
bility of 80% with a false alarm ratio of 10% to 20% will be achieved by this system. Moreover,
most false alarms occur during the time at the end of a microburst event when the strength
has dropped just below the detection threshold level.

Tracking a gust front across a sparse network is also confusing. One problem is that with
the NMN algorithm there is a tendency for inverse logic to cause alarms to occur on the far
side of the network, long before the event arrives. A second problem is that there may be
substantial gaps in the times of arrival of the shear region at the stations, which can cause
alarms to flicker on and off across the network, rather than appearing as connected sequence
of alarms associated with the passage of a single event. To deal with these problems, we have
introduced the concept of adjusting the detection thresholds at each of the stations according
to the level of the temporal shear (TS) at that station. Our test results indicate that this
process has successfully dealt with both of these problems.

The NMN algorithm is the basis for the wind shear detection. We have enhanced it with the
TED divergence estimations to improve microburst detection and by TS threshold adjustment
to improve gust front tracking. One must wonder if these conditions might be detrimental to
the opposite tasks. Our approach to answering this question is simulation testing. First, we
studied the case where the simulated wind field contained only microbursts. This investigation
allowed us to set the detection thresholds to be optimal for microburst detection (Table 1).
We see that the TS does not adversely affect the microburst detection. Then we used these
thresholds to try to detect gust fronts. The results of this study are in Table 2, where we observe
that the addition of the divergence method is not detrimental to the gust front tracking. In this
case, we see that the TS adjustment provides a significant increase in the ability to track a gust
front. Then, using the same threshold level, we tested a simulated wind field that contained
both microbursts and gust fronts, sometimes as simultaneous events. The results, in Table
3, show that the detection methods are not adversely affected by these new complications.
Finally, we apply the methods to a file of recorded real data in which microburst events have
been classified by meteorologists as to location and duration. In Table 4, we observe that for
the real data the detection algorithms perform as we would expect, with a slightly diminished
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Table 1. Microburst' Test Results (Simulated Data)

METHOD THR POD FAR EPOD EFAR PSS TSS PTD
NMN 11.50 84 .05 .84 08 89 .93 37
NMN-TED 11.50 88 .10 .87 15 86 .85 40
NMN-TS (F=1.5) 8.00 85 .05 .84 10 90 .83 45

NMN-TS-TED (1.5) 8.50 88 .09 .86 16 87 .85 46
(Regular MB)

NMN-TS-TED (1.5)° 8.50 88 .01 .86 06 93 .87
(Sharp MB)
TED** 60% 86 .09 .84 14 86 .83

4

* The difference between the sharp MB and the regular MB is that the intensity of the reguler
MB decays gradually after the peak part of the event while the sharp MB decays very rapidly.
The fact that the FAR drops so much for the sharp MB indicates tkt for tl’o reguisr MB,
most of- the false alarms occur during the decay phase of the MB.

** TED alone has an FAR of .09. Therefore. the combined methods have an FAR > .09.
Therefore, we see that for both NMN and NMN-TS ‘combined systems issue false slorms at
the same times, i.e., during the decay phase of the MB.

Table 2. Gust Front Test Results (simulated data)

METHOD THR* POD FAR EPOD EFAR™ PSS TSS
NMN 1150 .78 02 .50 0 92 .7
NMN-TED 1150 .78 02 .50 70 9 .1
NMN-TS (1.5) 800 90 09 .56 79 88 .87
NMN-TS-TED(15) 850 90 .09 .56 9 88 .8

® Use the thresholds from the MB simulation test.

** In order to obtain a smooth transition of alarms during the passage of a gust front across
the network we have extended the alarm duration. This causes the alarms to persist beyond

the time that the shear is near the station (because of sparse network). Consequently, the
EFAR is inflated.



I1l. RECURSIVE FILTER FOR DATA SMOOTHING

The purpose of data smoothing is to reduce short term random variations in the measured
data. We achieve this by using a single pole recursive filter. One interpretation of this filter is
that it reduces the noise level of the data by a multiplicative factor.

A. SPECIFY METHOD

The single pole filter used in our analyses is of the form
Y(t)=(1 -a)X(t)+aY(t-1)
where 1 > 1and 0 < a < 1. The series Y (t) is initialized by ‘

Y(2) = X(1).

B. ALGORITHM SPECIFICATION. . . .-
1) Paramelers

o - recursive filter constant, 0 < a <1

2) Input

A time series of data X (1)

3) Initialize
Y(1) = X(1)

4) Compute Fort > 1
Y(t) = (1 - a)X(t)+ al¥(t - 1)

5) Output

The time series of smoothed data Y (?).
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4) Compute for t .- 1
lMODEL-SINGLE-STﬁT] [WF_TIME SERIES)

Ua(r.d) = (1 = Bu(t, i) + BUs(t - 1,i)

Va(t,i) = (1 - B8)r(t,i) + BVa(t - 1,3)
Ua(t.i) = (1 - a)u(t,i) + alUa(t - 1,1)
Vo(t,t) = (1 = a)e(t, i) + aVu(t - 1,i)

[RESIDUAL]
RTS.&('si) = Uﬁ('vi) - Uu('ai)

Rrs.o(t,i) = Va(t,i) - Va(tyi) ;
[VARIANCE.UPDATE)

”;'S;n("i) =(1- 7)35'5.-("'.) + 7’%3.-1(‘ - t')

v' "‘}S.n("i) = (1 = 7)"%'3.-('»'.) + 7’;‘3.01(' -1,i)

5) Output

Rrs.u(1,i), Rrs.(t,i) the temporal shears at each station.
"%‘s.n("l’)' 0%-5.,,(t,i) the TS variances.

V. NETWORK MEAN (WS DETECTION).

it has been shown that comparison of current LLWAS data with the mean wind field for
the entire network is an effective method for the detection of dangerous wind shears, provided
that ‘
1. the network mean can be stably estimated,
2. data noise is correctly compensated,
3. detection thresholds are appropriately set.

The method that we shall describe uses a Chi-squared based, recursive trimming strategy
to attain a stable estimate of the network mean wind field and its variance, data and model
parameter filtering in conjunction with a Chi-squared based alarm test to compensate for
data noise during testing for spatial wind shear, and detection thresholds that are varied in
accordance with the level of TS to provide enhanced spatial wind shear detection.



B. ALARM THRESHOLD STRATEGY:

-If there is modest TS, then use the given threshold.
-If there is weak TS, then use a higher threshold.
-If there is strong TS. then use a lower threshold.

C. ALGORITHAM SPECIFICATION

1) Paramcters

a - recursive filter constant; 2 min. average (a=.8)

B - recursive filter constant; network mean ((3=.8)

v- recursive filter constant; network variance (7=.995)
Trim_threshold = 10.0

? min = 4.0

Set_alarm_threshold = 13.0

F - threshold adjustment factor (F=1.5)
lowlim = 7.0

high_lim = 12.0

[ 4

2) Input

u(t.i). v(t.i) the time series of wind field components at each of the m currently active
stations i = 1,...m

3) Initialization (for t = 1,...,10)
[START_UP_NMN]

i) Time-series averaging of the wind field data at each station with pole a, i.¢., find U,(t,1)

and V,(1,¢) as follows:

[WF_TIME_SERIES)
fort=1
Ua(1,1) = u(1,1)
Va(l,i) = v(1,1)
fort > 1
Ua(t,i) = ala(t - 1.4) + (1 - a)u(t,i)
Va(t, 1) = aVo(t - 1,i) + (1 - a)e(t, 1),
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{) Computations for t > 10

[MODEL.NMN]}
i) Time-series averaging of the wind field data at each station [WF TIME SERIES)

Uo(t,i) = alla(t = 1,i) + (1 = a)u(t,i), Va(l,i) = aVa(t = 1,1) + (1 = a)u(t,i)

ii) Estimate of the network mean and variance

a) Estimate residuals of current data averages from model values for the previous time

[RESIDUAL]

Ri('d') = Iuo("i) - [-Lr‘,(t - l)lzt Ri("i) = 'va(tvi) - c”I'ﬁ(‘ - I)P

b) Chi-squared test values for data trimming

[TRIM] ‘

u.denom = max{ol (t - 1),0%,.}, v.denom = max{o?. (t - 1),02,.}

RUti) | Ri(t,5)

u.denom + v.denom

¢) Recall that m is number of currently active stations. Trim the data from up to | 3
stations whose test values which exceed the trim threshold or the [ 3] which have
the most extreme differences in case more than | T | exceed the trim threshold; data
from n stations remains (n > m - |3 ])

d) Compute the network mean using data from the untrimmed stations, aka the trimmed
data set ;. [REMODEL_NMN)

T.test(:) =

Or(1) = (1/n)Y_Ualt.§),  Vr(t) = (1/n) Y Va(t.j)
J J

e) Time-series average of the network mean
{TS_-UPDATE]

Ora(t) = (1 - B)0x(t) + B0xa(t - 1), Vru(t) = (1 - B)Vr(1) + BV7a(t - 1)

f) Residuals for the trimmed data set ;.
[RESIDUAL]

R%‘u("j) = llla(’vj) - ﬁ‘l‘d(')l:s R%-,(l,j) = l"'a('vj) - ‘-;Tﬂ(t)'z

g) Sample variance for the trimmed data

12
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5. Output

The list of wind shear alarms at the stations for each polling time t

VI. DIVERGENCE BASED MICROBURST DETECTION

The physical characteristic of a microburst that makes it an aviation hazard is the presence
of the low level divergent wind shear. When the event is inside of the LLWAS network and it is
large enough to have a significant impact on more than one station, then it frequently is possible
to measure significant wind field divergence by numerical differentiation of the wind field data.
In this case, we can confirm that there is a microburst present, and issue a microburst warning.

A. THE METHOD

Two methods of divergence are used. Along a line between two stations, linear divergence
is estimated. This quantity is a measure of the rate at which an aircraft would lose hudwiné
if it flew along that path; its estimate of the strength of the hazard is most accurate when the
center of the microburst lies near that path, and not too near to either of the endpoints. When
the microburst center lies well mtenor to a tmnglc of stations, thon best estimate of the
strength of the haurdn obtamed b[y utlmmn‘ t!p 2-dimensional field divergence. This
quantity is nummcally twice the mumtude of the theotmcal lmcu divergence for symmetric
microbursts. .

The accuracy of the divergence estimates isl“;lependent on the size of the edge or triangle
in which the estimate is made, the praximity of the microburst center to the center of the
geometric element, and the shape of the element, when it is a triangle. Therefore, the detection
threshold must be set differently for each element of a triangulation of the LLWAS network.
A table of these elements is computed upautcly. and is entered as part of the TED program.
Roughly speaking, these thresholds are set so that a microburst will be detected when its
center is located in the central portion of the element, for about alarm 60% of the area of that
element. This rather low percentage is necessary to avoid false alarms, and will be lug’m for
the advanced, denser LLWAS networks.

We note that for these sparse networks, the microburst identification probability is signifi-
cantly lower than the wind shear'detection capability. This is due to the fact that with the large
distances between stations, it will rather frequently happen that a microburst will impact one
station, but not two. In this case, we can expect to obtain a wind shear alarm at that station,
but not a confirming microburst identification. On the other hand, even with the rather high
thresholds, there are microbursts that are detected by wind field divergence before there are
any station alarms.

B. ALGORITHM SPECIFICATION
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d) For each triangle. compute the 2-dimensional divergence

ri(m) = 2(j) - 2(i)y  72(m) = 2(k) - 2(i)

n(m) = yi) - Wil wa(m) = (k) - yli)
wi(m) = Ua(t,5) = Ua(tii), ua(m) = Ua(t, k) - Ua(t,)
ea(m) = Va(t,J) - Valti),  va(m) = Va(t, k) - Va(t,i)

w(m)ua(m) - ya(m)u,(m)
2 area(m)

ufm) =

{m)z3(m) - vy(m)z,(m)
2area(m)

vy(m) =

tri.div(m) = u.(m) + v,(m)
AMicroburst alarms &

at edge m if edge_div(m) > t.d‘.(m)
{ at triangle m  if tri.div(m) > t,..(m)

Output

List of microburst alarms at the triangles and edges for each polling time
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Enhan LLWAS Algorithm.

The enhanced LLWAS algorithm generates two different kinds of alarms: the network mean (NMN) and the
microburst alarms. These alarms are combined into "sector” alarms. Sectors are areas of importance that
contain one or more remote wind units.

The network mean (NMN) algorithm.

The NMN part of the enhanced LLWAS algorithm is a refinement of the original LLWAS algorithm. Again there is
a reference wind vector and the wind speed at each position is compared against that reference.

Six remote wind units are used. All the wind units, including the centerfield, sample the wind speed once per
second and calculate the 30 second running averages of the u and v wind components. The data of all stations
are further smoothed by a numeric recursive filter. For the i'" station, the smoothed data wil' be u;, and v..

The reference is the network mean (NMN) which is defined the average of the smoothed wind data of ali stations
with the exception of those whose data differ more than a certain threshold. A chi-squared type of test is used
to determine which data will be rejected:

[u(t) - U(t=-1)]° [v.(t) - v(t-1)}’ .
------------------ 4 ~ecwcccccccacse==e > trim threshold

where U(t-1) and V(t-1) are the U and V components of the previous NMN. @ (t-1) and o (t-1) are the previous
standard deviations for the network.

Up to three stations will be refected from the NMN using the above criterion. I? more than three stations fulfill the
rejectioft test the three that differ the most will be excluded. Using the trimmed data, the new network mean U
and V components and the corresponding standard deviations will be computed.

Using the network mean as a reference, the smoothed data from all stations (including the centerfield) are
compared in order to generate the alarms. A chi-squared type of test is employed:

[u (t) - U(t))’ (v (t)-V(t) )’
------- meeeerccs § csceccscecce----== > glarm threshold
o', (t) o', (t)

The 30 second running averages are used to calculate a measure of the temporal shear at each location. The
temporal shear adjusts the alarm threshold for the location, making the alarm generation more sensitive at high
temporal shear values.

Microbyrst Det 0.

The six remote wind units are used in the microburst detection algorithm. The 30 second running averages of
the wind data are further smoothed by a numeric recursive filter.

To detect a microburst, the divergence of the wind field is calculated. Two methods of divergence calculation is
employed: a one dimensional calculation along the line that connects two stations (edge), and a two dimensional
calculation over a triangle defined by three stations.

The condition for an edge alarm between station | and station] Is:

(v, = v;) » r/1 > edge threshold
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where v, and v, are the wind vectors measured at locations | and j; r is the unit vector along the direction (1j) and
| is the length of the edge ij.

The condition for an alarm in a triangle formed by the |, | and k stations is:

Y'u, = Y:°u, + VX, - V,°X,

e um—ceemecsaesnn—-—— ~====ee- > triangle threshold
2-.-area

where:

X, = X - X, X, = X - X

Y =Y = Y, Y. = Y« = Y

u' =u‘ - u|' u2=uk -U|

vV, =V, = V,, V, = Vy = V,

L 8
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