NATIONAL TRANSPORTATION SAFETY BOARD

Office of Research and Engineering Materials Laboratory Division Washington, D.C. 20594

March 18, 2011

OLAN SAFETY BOARD

MATERIALS LABORATORY FACTUAL REPORT

A. ACCIDENT

Place	: San Bruno, California
Date	: September 9, 2010
Vehicle	: Natural Gas Transmission Pipeline
NTSB No.	: DCA10MP008
Investigator	: Ravi Chhatre, RPH-20

B. DOCUMENT ATTACHED

Presentation by the Federal Bureau of Investigation regarding the laser scanning process used to document the condition of the pipe pieces at the National Transportation Safety Board's Training Center. The presentation was delivered at the 2011 SPAR International Conference in Houston, Texas, on March 23, 2011.

Carl R. Schultheisz Materials Research Engineer

Carl Adrian

Visual Information Specialist FBI Laboratory Operational Projects Unit

Dr. Carl Schultheisz

Engineer National Transportation Safety Board Office of Research and Engineering Materials Laboratory Division

Laser Scanning & Modeling the San Bruno Gas Pipe

Disclaimer

 All information and opinions disclosed is that of the speakers and does not represent the official views of the FBI or NTSB; nor does the Federal Government endorse any company or provider of hardware or software.

Need to Know: Location: Size: Weight: Color: LS selection:

Pre-deployment:

- Initial phone call disclosed object location, size and weight
- Power accessibility
- Location access Security
- Custom build frame for scanner and create targets.
- "Site contained necessary items to move pipes."

Approach to task:

Surphaser 25H

Scanned a total of 41 positions; (2 test scans) used 39 in approximately 8.5 hours.

(This included hoisting and moving 3 pipe sections to scan bottoms.)

Targets Placed for Registration utilizing the Intensity Scans During Alignment in Polyworks

. Top - from frame scan upside down

- Sides from tripod mount
- Bottom move pipes to scan from floor

Basic Scanning Positions

William Atkins

Tripod Scanning

SPASIDARI

a)

NTSB

•

• Time for initial alignment and modeling: 40 hours

- 32 bit machine and 64bit machine utilized
- Time needed for making watertight models with minimal knowledge: 3 weeks
- Difficulties found with working with broken pipe edges and thickness.

Working with the Point Cloud Data

Side scan

(Intensity Image)

Side Scan

(Point Cloud with Intensity image turned on)

 To see the targets; utilize the Intensity image on point clouds

> Alignment of scans "POLYWORKS"

Bottom Scanning

Intensity Image

Point Cloud

Point clou

Intensity Image

Point cloud

Point Cloud

Pointools View Pro

Free viewer to view models

Polyworks IMViewer

Aligning Pipe Sections to each other.

Aligning Pipe Sections

How Did I do This?

PERFORMANCE POINT CLOUD SOFTWARE

PERFORMANCE POINT CI

Rippled PIPE

"QUESTIONS?"

Thank you for your time. "STAY SAFE"

