LG81ER0148

NOVEMBER 1981

F09603-78-G-0745

C-130 A Durability and Damage Tolerance Assessmen (DADTA) : Crack Growth Analysis

PREPARED FOR UNITED STATES AIR FORCE WARNER ROBINS AIR LOGISTICS CENTER ROBINS AFB. GEORGIA

kheed-Georgia Company

A Division of Lockneed Corporation Marietta, Georgia 30063 Tockheed

LG81ER0148 September 1981 C-130A

ABSTRACI

This report presents the results of crack growth analyses performed on the C-130A primary airframe structure, using baseline representative average operational loads spectra, during the C-130 Durability And Damage Tolerance Assessment (DADTA) Program. The major portion of this report is dedicated to the presentation of the results of crack growth analysis of individual critical areas of the C-130A structural airframe. The results of these crack growth analyses are then used to make Tecommendations for the safe operation of the C-130A force. The resultant recommendations are combined into an options matrix which can be used to formulate a Force Structural Maintenance Plan, as reported in Lockheed-Georgia Report, LG81ER0152.

> Use and/or disclosure is governed by the statement on the title page of this document,

V

FOREWORD

LG81ER0148 August 1981 C-130A

The crack growth analyses, presented in this report, were performed during the Durability And Damage Tolerance Assessment (DADTA) of the C-130 airframe. All the analyses, contained in this report, were conducted by Lockheed-Georgia Company, under contract to Warner Robins, Contract No. F09603-78-G-0745, Order No. 0014. The Warner Robins Project Engineer is Mr. James A. Wagner.

Other reports related to the C-130 DADTA program are as follows:

LG78ER0258	C-130 DADTA Planning and Scheduling Report
LG78ER0270:	C-130 DADTA Test Plan
LG80ER0030:	C-130A/B/E/H DADTA Interim Report
LG81ER0146:	C-130 DADTA Test Program
LG81ER0147:	C-130 DADTA General Methodology
LG81ER0149:	C-130B DADTA Crack Growth Analysis
LG81ER0150:	C-130E/E* DADTA Crack Growth Analysis
LG81ER0151:	C-130H DADTA Crack Growth Analysis
LG81ER0152:	C-130A/B/E/E*/H DADTA Summary Report

Appreciation, for their contributions to this report, is extended to:

R. J. Birdseye	W. C. Gray	C. S. Sarphie
D. T. Colston	M. R. Kelley	C. D. Ware
K. C. Cornelius	R. A. Malecki	G. C. Watson
T. W. Deiters	M. R. Orlandella	D. B. Willey
L. C. Eanes	J. S. Phillips	B. K. Young
M. T. Edwards	R. D. Rice	W. F. Young

Use and/or disclosure is governed by the statement on the title page of this document.

iii

The lockneed

.

LG81ER014 September 1981 C-130A

GLOSSARY

a	Crack Length
ac	Critical Crack Length
AFTO	Air Force Technical Order
ASIP	Aircraft Structural Integrity Program
р	Material Thickness
β	Geometric Correction Factor
β(a)	Geometric Correction Factor Referenced to the Crack Length Scale a
$\boldsymbol{\beta}_{\mathtt{T}}$	Total Correction Factor
С	Forman Equation Material Constant
CW	Center Wing
da/dN	Rate of Crack Growth, Inches/Cycle
da/dP	Rate of Crack Growth, Inches/Pass
D	Hole Diameter, Inches
DADTA	Durability And Damage Tolerance Assessment
DART	Damage Analysis in Rapid Time
Δ	Delta, Incremental
f	Stress
f (A K)	Function of K
fty	Yield Stress
F	Fuselage
HRS	Hours
HT	Horizontal Tail
IN	Inches

Tockheed

LG81ER0148 September 1981 C-130A

.

GLOSSARY (Continued)

.

IAT	Individual Aircraft Tracking
Kip	One Thousand Pounds
KSI	Kips Per Square Inch
K	Stress Intensity Factor, KSI IN
K	Critical Stress Intensity Factor, Plane Stress or Mixed Mode, KSI $$ IN
к _т	Uncracked Stress Concentration Factor
K _{Ic}	Critical Stress Intensity Factor, Plane Strain, KSI $\sqrt{{ m IN}}$
ΔK	Stress Intensity Factor Range Parameter, KSI $\sqrt{\mathrm{IN}}$
L	Total Crack Length
M _X	Bending Moment About X Axis, Inch-Pounds
м _у	Bending Moment About Y Axis, Inch-Pounds
MZ	Bending Moment About Z Axis, Inch-Pounds
™ _X	Mean Bending Moment About X Axis
₩ _Y	Mean Bending Moment About Y Axis
MDS	Model/Design/Series
No.	Number
ncg	Acceleration, g's, at Center of Gravity
ng	Acceleration, g's, At Main Gear
ⁿ x	Acceleration, g's, X Direction
ⁿ Y	Acceleration, g's, Y Direction
ⁿ z	Acceleration, g's, Z Direction
n _z	Mean Acceleration, g's, Z Direction
n	Forman Equation Material Constant

The choed

.

LG81ER0148 September 1981 C-130A

GLOSSARY (Continued)

N/P or NAC/PYL	Nacelle/Pylon			
NASTRAN	NASA Structural Analyses Program			
OW	Outer Wing			
OWE	Operating Weight Empty			
OWS	Outer Wing Station			
P	Pressure Load			
PX	Load in X Direction, Pounds			
Py	Load in Y Direction, Pounds			
Pz	Load in Z Direction, Pounds			
PSD	Power Spectral Density			
r	Hole Radius			
R	Range Ratio			
REP	Representative			
R/R	Runway Roughness			
ρ	Ratio of Local Average Stress to Remote Stress			
σ	Stress			
s	Mean Stress			
S/L	Stress-To-Load Ratio			
с	Instability Stress			
TAG	Taxi-Air-Ground (Flight Test Program)			
т.о.	Take Off			
τ	Shear Stress			
UTIL	Utilization			
VERT .	Vertical			

LG81ER0148 September 1981 C-130A

GLOSSARY (Continued)

VGH Velocity, Acceleration, Altitude VT Vertical Tail W Wing WS or Wing Station W.S. β, Constant β_2 Secant Finite Width (Reference 29) β₃ General Tabular Kobayashi's Backface (Reference 29) β₄ β_{5} Isida's Eccentric Crack (Reference 29) β₆ Bowie Factor (Reference 29) β_7 Filled/Loaded Hole (LOHL) (See Section 8.3.2) β_8 Poe's Stiffened Sheet Analysis (Reference 28) Eccentric Crack From Hole (Isida) (See Section 8.3.2) β_{9} β_{10} Hole Edge Correction, Ligament Failed (QSLOT) (See Section 8.3.2) **B**₁₁ C-141 Center Wing Lower Panel 11 β₁₂ C-141 Access Hole in Wing Surface β_{13} Adjacent Hole β_{14} Overlap Plate Joint β_{15} C-141 Lower Rear Spar Cap at BL 59 β_{16} C-141 Rear Spar Cap at IWBRS 86 β_{17} CWSS-Center Wing Spanwise Splice β_{18} WS61U-Upper Rear Beam Cap-Aft Horizontal Cap Flange at WS 61.125 β₁₉ WS61L-Lower Rear Beam Cap-Aft Edge of Skin Panel at WS 59.99

= Lockheed

LG81ER0148 September 1981 C-130A

GLOSSARY (Continued)

β ₂₀	WS79-Lower Rear Beam Cap-Cap Crack at WS 79.63
β ₂₁	LSSS-Lower Surface Spanwise Splice-WS 185 🖌
β ₂₂	WS220L-Lower Surface Wing Splice-Panel Crack at WS 212.69
β ₂₃	OWS6-Lower Surface Wing Splice-Panel 2 Crack at WS 223.5
β ₂₄	OWS6-Lower Surface Wing Splice-Panel 3 Crack at WS 223.5
β ₂₅	OWS6-Lower Surface Wing Splice-Rainbow Fitting Crack at WS 223.5
β ₂₆	OWS35-Lower Surface Weephole at WS 255
B ₂₇	OWS35-Lower Surface King Pin Fitting Attachment at WS 255
β ₂₈	OWS108-Lower Rear Beam Cap at WS 326.6
β ₂₉	OWS162-Lower Front Beam Cap at WS 372.87
β ₃₀	OWS162-Lower Front Beam Cap at WS 380.79
β ₃₁	OW162-Lower Surface Panel 1 Along Drag Angle at WS 382.23
β ₃₂	OWS287-Lower Surface Panel 4 Runout at WS 507
β ₃₃	OWSS-Outer Wing Spanwise Splice-Outer Tab Cracking
β ₃₄	OWSS-Outer Wing Spanwise Splice-Inner Tab Cracking
₿ ₃₅	GENSPLC-General Splice-Fuselage Circumferential Splice or Wing Chordwise Splice

LG81ER0148 September 1981 C-130A

- Lockheed

FIGURE 8.5.1 : ANALYSIS POINT: CW-5C

CENTER WING LOWER SURFACE GENERAL SPANWISE SPLICE AT W.S. 185.5

LG81ER0148 August 1981 C-130A

気/lockheed

141/51 - 10/9/81 Date D Chicled by Date 1> 10/12/81 Prepared by Approved by 715 Date

Figure 2.1: Operational Limits: Center Wing Lower Surface

			CRITICAL CRACE LENGTH, CRIT		T		7
ANALYSIS	DESCRIPTION	CRITICAL			SAFETY	UNHOD. STRUCTURE	
10101		ELEMENT	CRIT	CRIT D.L.S.		LIMIT	
			INS.	K.S.I.	FLT. BRS.	FLT. HRS.	
CW-1	Panel No. 3 at Rear Beam, WS 61.6	Panel	1.90	33.33	8,203	11,445	
CW-2B	Panel No. 2 Grain Holes, WS 109.5	Panel	4.00	36.23	19,509	32,965	
CW-6	Panel No. 2 Pairing Attach Holes, WB \$0.0	Panel	5.48	36.25	13,575	20,691	
CW-SB	Panel 2/3 General Spanwise Splice, W8 151.0	Panel	1.49	36.49	5,539	11,542	
CW-SC	Panel 1/2 General Spanwise Splice, WS 185.5	Panel	1.72	35.67	5,370	12,554	€
CW-SL	Panel 2/3 Splice at Doubler Instl., WS 68.5	Fanel	1.60	39.26	5, 332	9,429	
CW-7B	Panel No. 1 at Engine Drag Pitting, WS 178.0	Panel	2.68	30.57	3,749	7,173	
CW-8	Panel Ng. 1 at Corner Fitting, W8 214.0	Panel	2.04	31.34	9,076	14,290	
CN-9	Panel No. 2 at Rainbow Fitting, WS 214.0	Panel	3.42	32.74	3,128	4,822	
CW-10	Splice Angle at Rainbow Fitting, WS 214.0	Splice Angle	1.37	31.74	46,463	74,344	
GW-11	Rainbow Fitting, WS 214.0	Fitting	0.82	31.74	51,643	76,268	
CW→12	Forward Corner Pitting, WS 214.5	fitting	1.48	31,34	22,190	38,857	

LG81ER0148 September 1981 C-130A

⇒}'Lockheed

•

= >Lockneed

· · · / · 7/ E/ Bate Approved by // / / Bate

18-12-3-1-81

LG81ER0148 August 1981 C-130A

FIGURE 8.5.4 <u>ANALYSIS POINT CW-5C; BETA FORMULAS</u> CENTER WING LOWER SURFACE GENERAL SPANWISE SPLICE AT WS 185.5 <u>PHASE</u> <u>FORMULA</u> I $\beta_{TOTAL} = .712 \beta_7 (a') \beta_4 (a/b)$ II $\beta_{TOTAL} = \beta_7 (a)$ III $\beta_{TOTAL} = \beta_7 (a)$ IV $\beta_{TOTAL} = \frac{.712}{1.12} \beta_{10} (a') \beta_{17} (a') \beta_4 (a/b)$

The streed

18/# /1 - r -

LG81ER0148 August 1981 C-130A

FIGURE 8.5.5 ANALYSIS POINT: CW-5C; OPERATIONAL LIMITS CENTER WING LOWER SURFACE GENERAL SPANWISE SPLICE AT W.S. 185.5

	ſ	SAFETY LIMIT		DURABILITY	LIMIT	
	PHASE	CRACK LENGTH (IN)	FLIGHT HOURS	CRACK LENGTH (IN)	FLIGHT HOURS	
(12/8)	I	.050089	1470	.010089	8477	
2	II	.089315	2085	.089315	2085	
		$\Delta a = .0011$		∆a =	0.0	
\leq	III	.5111594	978	.510594	1165	
	IV	.594-1.715	837	.594-1.715	837	
L		$\sum = 5,370$		$\sum = 12,$	564	

....

Use and/or disclosure is governed by the statement on the ritle gage of this documpon

.

Jockheed

18/81/11 (1-9/81-

D. 4/11/21

LG81ER0148 August 1981 C-130A

FIGURE 8.5.2 ANALYSIS POINT: CW-5C; BASIC DATA

CENTER WING LOWER SURFACE GENERAL SPANWISE SPLICE AT W.S. 185.5

EFFECTIVE STRESS LOAD RATIO (AXIAL STRESS/UNIT M _X)	.001839
BEARING/BY-PASS RATIO	.650
ASSUMED INITIAL FLAW SIZE, a _i	.050 IN.
NUMBER OF CYCLES PER PASS	229,460
MAXIMUM SPECTRUM TENSION STRESS	25.084 KSI
ONCE PER 10,000 HOUR TENSION STRESS	
DESIGN LIMIT GROSS TENSION STRESS	35.671 KSI
CRITICAL CRACK LENGTH, ^a CRIT' AT DESIGN LIMIT STRESS	1.715 IN.

⇒}lockheed

FIGURE 8.5.3 ANALYSIS POINT: CW-5C; CRACK GROWTH SEQUENCE

CENTER WING LOWER SURFACE GENERAL SPANWISE SPLICE, WS 185.5

Use and/or disclosure is governed by the statement on the title page of this document.

LG81ER0148 August 1981 C-130A

-tlockheed

Use and/or disclosure is governed by the state-