DOCKET NO. **SA- 516**

EXHIBIT NO. 20R

NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C

The Laboratory Characterization of Arco Jet Fuel Vapor and Liquid

(79 Pages)

THE LABORATORY CHARACTERIZATION OF ARCO JET FUEL VAPOR AND LIQUID

Final Report

Prepared for the National Transportation Safety Board

by

James E. Woodrow

Faculty Research Associate

Center for Environmental Sciences and Engineering

University of Nevada

Reno, NV 89557-0187

June, 2000

Abstract

Jet fuel -- its liquid and vapor -- was characterized as part of the National Transportation Safety Board's (NTSB's) investigation into the cause of the TWA Flight 800 accident (DCA96MA070; the crash of a 747-131, N93119). For the vapor, headspace gas chromatography was used to measure component partial pressures and total vapor pressures for ten jet fuel samples (Jet-A) provided by the Atlantic Richfield Company (ARCO). These characteristics derived from the fuel vapor were also derived from analysis of the neat liquid for eight of these fuel samples, and the results of the two analytical approaches were compared. Three of the fuel samples were taken from fuel used in the quarter-scale tests #42, 46, and 51 designed to simulate possible fuel tank conditions at the time of the accident. Seven of the ARCO samples had been reformulated to alter the flash point. Two additional samples (giving a total of twelve) were taken from the center wing tank of a 747 aircraft involved in ground tests in Marana, AZ. Measurements of all of the fuel vapor samples were made at 40°C, 50°C, and 60°C and at vapor volume-to-liquid volume (V/L) ratios of 274 (nearly empty tank; ~3 kg/m³) and 1.2 (half-filled tank; ~400 kg/m^3). Characterization of the liquid fuels was done by simple injections of the neat liquids onto a temperature-programmed gas chromatograph.

i

Acknowledgments

The author gratefully acknowledges the technical assistance, helpful suggestions, and encouragement of Dr. Merritt Birky and Joseph Kolly, with the National Transportation Safety Board, and professor Joseph Shepherd, California Institute of Technology, Graduate Aeronautical Laboratories. Thanks, also, to Dr. John Sagebiel, Desert Research Institute, for the many helpful discussions of his and my work related to the TWA 800 investigation. This report was submitted in fulfillment of contractual obligations by the Center for Environmental Sciences and Engineering, University of Nevada, Reno, under the sponsorship of the National Transportation Safety Board. Work was completed as of February 29, 2000.

Table of Contents

•

.

ţ

p: p:	age
Abstract	j
Acknowledgments	ij
List of Figures	iv
List of Tables	.V
introduction	1
Procedures	,1
Headspace (vapor) method.	2
Liquid fuel method	4
Results and Discussion	6
Headspace (vapor) Method	6
Liquid Fuel Method	.17
<u>Half-filled tank (400 kg/m³ [V/L = 1.2])</u>	.19
Nominal loading (3 kg/m ³ [V/L = 274])	31
Summary	37
References	39
Appendix A: Headspace GC results for the ARCO fuel	
amples and the Marana, AZ, ground test fuel samples	41
Appendix B: Vapor data calculated from the liquid GC results	
for the ARCO fuel samples	60
•	

List of Figures

Figure 1.	Typical headspace gas chromatogram of Jet-A vapor showing
	standard retentions (carbon numbers 5-12) and subsections (vertical lines)5
Figure 2.	Typical jet-a liquid chromatogram and n-alkane (C5-C20) retention times7
Figure 3.	Comparison of relative vapor density (A) and partial
	pressure (B) for ARCO, ground test, and Reno fuels. $(V/L = 1.2)$ 10
Figure 4.	Comparison of relative vapor density for quarter-scale test
	#42 fuel at V/L=1.2 and 274 (A) and variation of relative
	vapor density with temperature for fuel #42 at V/L=274 (B)12
Figure 5.	Comparison of vapor composition (A) and saturation
	vapor pressure (B) for ARCO fuels at 40°C and V/L=1.216
Figure 6.	Instrument response vs. hydrocarbon vapor density

iv

page

List of Tables

;

٦

Table 1. Liquid jet fuel sample	es supplied by ARCO, California Institute
of Technology (CIT)	, and Evergreen for fuel vapor characterization
Table 2. ARCO test fuels for f	lash flammability testing14
Table 3. Flash point and vapo	r pressure vs. temperature regression
curves for the ARCO	jet fuel samples15
Table 4. Fuel/air mass ratios a	nd fuel mole fractions for the flash point
ARCO jet fuel sample	es, quarter-scale samples, and ground test
samples at nominal le	pading18
Table 5. Subsection mole perc	ent for liquid ARCO fuel samples20
Table 6. Calculated total vapo	r pressure and average molecular weight
for liquid ARCO fue	samples21
Table 7. Comparison of vapor	density and average vapor molecular
weight derived from	vapor and liquid ARCO jet fuel characterization24
Table 8. Flash point and vapo	r pressure vs. temperature regression
curves for liquid AR	CO jet fuel samples25
Table 9. Fuel/air mass ratios (FARs) for the ARCO fuels at their flash points
Table 10. Comparison of AR	CO jet fuel vapor pressures derived from
vapor and liquid ch	aracterization
Table 11. Example compariso	ns of liquid fuel mole fractions derived from
vapor and liquid ch	aracterization
Table 12. Comparison of liqu	id mole fractions derived from C_5 - C_{12} and
C5 only regression	equations applied to the vapor characterization
of the Base Jet fuel	(quarter-scale test #46)32
Table 13. Measured and calcu	lated vapor pressures for the ARCO jet fuels
under nominal load	ling conditions $(V/L = 274 [-3 \text{ kg/m}^3])$

page

Table 14. Liquid-vapor hydrocarbon distribution coefficients for the ARCO jet fuels35
Table 15. Comparison of vapor pressure vs. temperature regressions derived
from liquid and vapor characterization for the ARCO jet fuel samples
at nominal loading (3 kg/m ³)36
Table A-1. Headspace GC results for ARCO samples at 40°C
(10 mL [V/L = 1.2])
Table A-2. Headspace GC results for ARCO samples at 40°C
(0.08 mL [V/L = 274])
Table A-3. Headspace GC results for ARCO samples at 50°C
(10 mL [V/L = 1.2])
Table A-4. Headspace GC results for ARCO samples at 50°C
(0.08 mL [V/L = 274])
Table A-5. Headspace GC results for ARCO samples at 60°C
(10 mL [V/L = 1.2])
Table A-6. Headspace GC results for ARCO samples at 60°C
$(0.08 \text{ mL } [V/L = 274]) \dots 52$
Table A-7. Headspace GC results for the ground test fuel samples
at 40°C (10 mL [V/L = 1.2])
Table A-8. Headspace GC results for the ground test fuel samples
at 40°C (0.08 mL [V/L = 274])
Table A-9. Headspace GC results for the ground test fuel samples
at 50°C (10 mL [V/L = 1.2])
Table A-10. Headspace GC results for the ground test fuel samples
at 50°C (0.08 mL [V/L = 274])
Table A-11. Headspace GC results for the ground test fuel samples
at 60°C (10 mL [V/L = 1.2])
Table A-12. Headspace GC results for the ground test fuel samples

.

2

•

3. 1

.

at 60°C (0.08 mL [V/L = 274])
Table B-1. Liquid GC results for ARCO samples at 40°C (10 mL $[V/L = 1.2]$)61
Table B-2. Liquid GC results for ARCO samples at 40° C (0.08 mL [V/L = 274])63
Table B-3. Liquid GC results for ARCO samples at 50°C ($10 \text{ mL} [V/L = 1.2]$)65
Table B-4. Liquid GC results for ARCO samples at $50^{\circ}C (0.08 \text{ mL } [V/L = 274])67$
Table B-5. Liquid GC results for ARCO samples at $60^{\circ}C (10 \text{ mL } [V/L = 1.2])69$
Table B-6. Liquid GC results for ARCO samples at $60^{\circ}C (0.08 \text{ mL } [V/L = 274])71$
Table B-7. Fuel/air mass ratios and fuel mole fractions at nominal loading
$(V/L = 274 [-3kg/m^3])$ derived from the liquid characterization of
the eight ARCO jet fuel samples

_

Introduction

Ì

2

2010/07/22/07/22/07

5

As part of the National Transportation Safety Board's (NTSB's) investigation into the cause of the TWA Flight 800 accident (DCA96MA070; crash of a 747-131, N93119), the characteristics of jet fuel (Jet-A) - its liquid and vapor - were determined. For the fuel vapor, a headspace gas chromatographic (HS-GC) method, described in detail in earlier reports (Woodrow and Seiber, 1988 and 1989), was used to determine component partial pressures and total vapor pressures of a dozen samples of jet fuel (Woodrow and Seiber, 1997), some of which represented the type of fuel used in commercial aviation and some of which were fuel samples reformulated to vary the flash point. Using this method, it was possible to accurately determine vapor pressures by modeling the jet fuel vapor, characterized by a complex mixture of hydrocarbons, with just a few n-alkane reference standards. This approach (i.e., modeling the fuel with a few n-alkane reference standards) was used to determine component partial pressures and total vapor pressures of eight of the liquid fuels for comparison with the vapor results. An important goal of this study was to provide technical information about the properties of jet fuel and its vapor under conditions that might have existed in the Flight 800 center wing fuel tank at the time of the accident. Specifically, we wanted to address the question of fuel flammability under flight conditions at 14,000 feet. It is hoped that this information will contribute to a better understanding of the nature of the accident and to the formulation and design of safer fuels and fuel tanks. This report, summarizing our 1998 and 2000 work, is an outgrowth of an earlier NTSBsponsored study of commercial jet fuel characteristics, completed in 1997 and summarized in a report submitted to the NTSB in November of that year (Woodrow and Seiber, 1997). Procedures

In September, 1998, the California Institute of Technology (CalTech), Graduate Aeronautics Laboratory, shipped to the University of Nevada (UNR) seven liquid jet fuel samples formulated by the Atlantic Richfield Company (ARCO) to have a range of flash points. In June, 1998, Evergreen Air Center, on behalf of Boeing, shipped two liquid jet fuel samples taken from the center wing tank (CWT) of a 747 aircraft that had been part of ground tests in Marana, AZ. Finally, three additional liquid jet fuel samples taken from quarter-scale tests #42, 46, and 51 were shipped to UNR by CalTech personnel. These latter samples were taken from the ARCO base jet fuel supply, and they were used in the quarter-scale tests to determine if there were any systematic changes in the fuel stock over the course of the test series. Sample designations and descriptions are summarized in Table 1. All samples were stored in a laboratory refrigerator at 1-2°C.

The two ground test samples were taken from tests #1 and #3. For test #1, the CWT contained approximately 50 gallons of Jet-A and there was no environmental control system (ECS) insulation. Test #3 was essentially a repeat of test #1, except that the CWT contained approximately 1800 gallons of Jet-A. During test #1, steel canisters were provided by Desert Research Institute (DRI) personnel (Dr. John Sagebiel) to sample the CWT ullage at 1, 2, and 3 hours into the test, and after 3 hours for test #3 (Sagebiel, 1998).

Headspace (vapor) method. Into separate chilled 22 mL glass headspace vials (Perkin-Elmer, Norwalk, CT) were placed 0.08 mL and 10 mL of chilled liquid fuel samples, and the vials were immediately sealed with Teflon[®]-lined septa in crimped aluminum caps. These volumes of fuel represented vapor volume-to-liquid volume (V/L) ratios of 274 and 1.2, respectively (i.e., an almost empty fuel tank and an approximately half-filled tank). The sealed samples were placed in an HS-40 autosampler and injector (Perkin-Elmer), where they were thermostated at 40°C, 50°C, and 60°C for at least 30 min. After the samples were thermostated, the HS-40 automatically punctured the septa with a hollow sampling needle, the vials were pressurized to about 150 kPa, the equilibrated vapor was sampled for 0.01 min, the resulting vapor aliquot was injected onto a 60 m x 0.32 mm (i.d.) DB-1 fused silica open tubular (FSOT) capillary column (J&W Scientific, Folsom, CA), and the chromatographed vapor was detected by a flame ionization detector. The column was held at 100°C for 4 min, after which time it was programmed at 2°/min to Table 1. Liquid jet fuel samples supplied by ARCO, California Institute of Technology(CIT), and Evergreen for fuel vapor characterization.

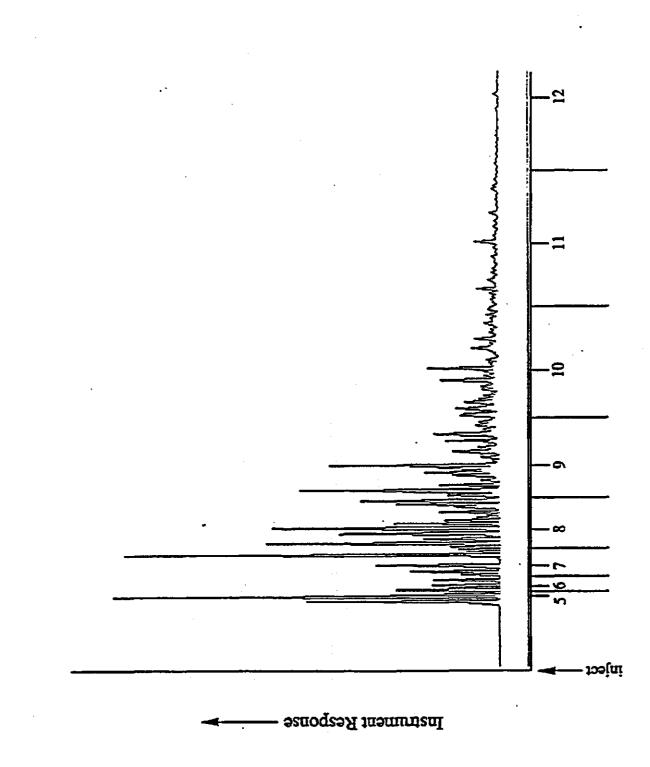
Sample Designation	Sample Description
Base Jeta	ARCO; LIMS# 80036458
2.5%OH	ARCO; Base Jet + 9% of 2.5W% OH; LIMS# 80049765
97.5%	ARCO; 97.5 wt% Btm; LIMS# 80036460
95%	ARCO; 95.0 wt% Btm; LIMS# 80036732
92.5%	ARCO; 92.5 wt% Btm; LIMS# 80037890
90%	ARCO; 90.0 wt% Bim; LIMS# 80039332
87.5%	ARCO; 87.5 wt% Btm; LIMS# 80039902
85%	ARCO; 85.0 wt% Btm; LIMS# 80039903
#42	CIT (ARCO); quarter-scale test #42
#46	CIT (ARCO); quarter-scale test #46
#51	CIT (ARCO); quarter-scale test #51
#1	Evergreen; ground test #1; 50 gal fuel in CWT ^b ; no ECS ^c insulation
#3	Evergreen; ground test #3; 1800 gal fuel in CWT; no ECS insulation

^a Same as quarter-scale fuel sample #42.

^b CWT = center wing tank.

ĩ

^c ECS = environmental control system.

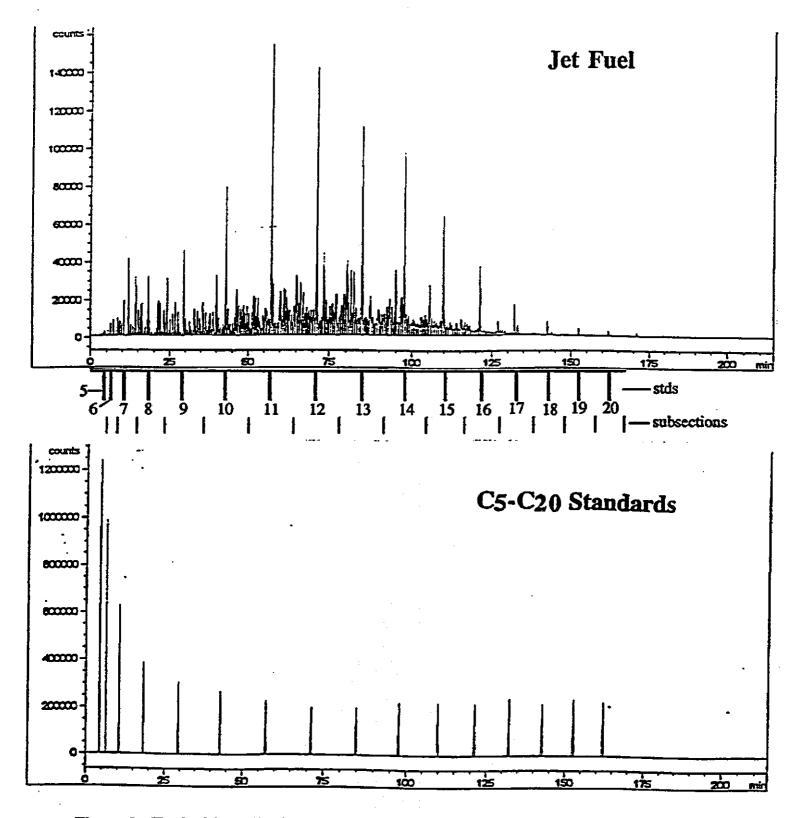

140°C, where it was held for 1 min. The column carrier gas (helium) flow rate was about 3 mL/min, which means that for an injection time of 0.01 min, the volume of vapor sample injected was about 30 μ L (i.e., 3 mL/min x 0.01 min x 1000 μ L/mL).

The fuel samples were evaluated using a mixed hydrocarbon standard, which consisted of an equal volume mix of the normal alkanes pentane (C₅) through dodecane (C₁₂) (tridecane [C₁₃] at 60°C). Into separate chilled headspace vials were placed 1, 0.5, 0.25, and 0.1 μ L of the mixed standard and the sealed vials were processed in the same way as for the fuel samples. These volumes of mixed standard were low enough to allow the hydrocarbons to completely vaporize, so that eight separate vapor density standard curves (nine at 60°C) could be generated for each volume of mixed standard. Using the gas chromatographic retention times of the hydrocarbon standards, the fuel vapor chromatograms were divided into eight or nine subsections, each of which was approximately centered about the retention time of a hydrocarbon standard (Figure 1). The peak areas in each subsection were summed and treated as a single peak in the vapor density regression equations to calculate subsection vapor densities, which were used to calculate subsection partial pressures. All of the subsection partial pressures were summed to obtain total vapor pressures for the fuel samples.

Liquid fuel method. The goal using this method was to characterize eight samples of the liquid ARCO fuels (Base Jet [quarter-scale test #46] and the seven reformulated fuels) using the techniques that were applied to the characterization of the fuel vapor. To reach this goal, the liquid composition of each fuel was modeled using sixteen alkane reference standards (C₅-C₂₀), with the results expressed as mole percent for each of the sixteen subsections, partial pressure for each subsection, and the overall vapor pressure of each fuel.

Each of the eight fuel samples was injected as the neat liquid (0.1-0.2 μ L) onto a 60 m x 0.32 mm (i.d.) DB-1 FSOT capillary column (J&W Scientific) and each hydrocarbon component was monitored using a flame ionization detector installed in a Hewlett-Packard

1



model 5890 Series II gas chromatograph. All samples were automatically injected using a computer-controlled enhanced autoinjector with a nanoliter adapter installed (Agilent, San Fernando, CA). The capillary column was held at 50°C for four minutes, programmed at a rate of 1°C/min to 250°C, where it was held for ten minutes. Each run took about 3.6 hours to complete. Starting with eicosane (C_{20}), and working down in carbon number, a mixed hydrocarbon standard (pentane through eicosane) was prepared by weighing each component as it was added to the mixture. The mixed standard was chromatographed under the same conditions used for the liquid fuel samples. Based on elution times for the reference hydrocarbons, each fuel chromatogram was divided into sixteen subsections, with each subsection centered approximately on its respective reference hydrocarbon (Figure 2). By injecting different amounts of the standard mixture, regression equations (GC peak area vs. mass of hydrocarbon injected) were generated for each fuel subsection. From these regression equations, a mass for each of the sixteen subsections was derived using the summed peak area for each subsection. Each subsection mass was then divided by the molecular weight of the reference hydrocarbon, giving the number of moles for each subsection, from which subsection mole fraction was derived. Using Raoult's law, with the subsection mole fractions and saturation vapor pressures for the reference hydrocarbons, subsection partial pressures could be calculated at any given temperature. **Results and Discussion**

Headspace (vapor) Method

Analysis using headspace sampling and gas chromatography (GC) requires thermodynamic equilibrium between a condensed phase and its vapor phase in a sealed container so that aliquots of the vapor can be removed for quantitative GC analysis. For a liquid fuel mixture in equilibrium with its vapor in a sealed container, GC response of a component in the vapor is proportional to the vapor density. This means that measuring the GC response essentially measures the partial pressure if the instrument calibration factor is known. The calibration factor has a specific value for each component in the fuel mixture

į

and depends on the characteristics of the detector used. However, the complex jet fuel mixture can be represented by a relatively small number of n-alkane reference standards and the properties of the standards can be attributed to the fuel mixture. In other words, a single n-alkane reference standard can be used to represent a summation of GC responses (subsection of the fuel GC) for a series of components in the jet fuel vapor. Each subsection n-alkane reference standard is used to generate a standard curve, which is a correlation of instrument response with vapor mass density (g/L). Then, the partial pressure (P_i) corresponding to each subsection is obtained from the ideal gas law and the molecular weight of the n-alkane reference standard for each subsection. That is,

ł

$$P_{i} = (n/V)_{i} \cdot R \cdot T \cdot 1013.232 \tag{1}$$

where i = 5,...,12, $(n/V)_i$ is the vapor molar density (mole/L), R is the gas constant (0.08205 L-atm/^{*}K•mole), T is absolute temperature, and 1013.232 is a factor to convert atmospheres to mbars. Also, $(n/V)_i = (g/L)/(mw)_i$, where (g/L) is the vapor mass density obtained from the subsection standard curve and $(mw)_i$ is the molecular weight of the subsection reference hydrocarbon. The total vapor pressure (P_{5-12}) for the fuel sample is, then, just simply a summation of the individual partial pressures:

$$\mathbf{P}_{5-12} = \sum P_1 \tag{2}$$

No correction for real gas behavior is necessary since component partial pressures remain far below the critical pressures.

An important objective of this study was to use the described vapor method to determine component partial pressures and total vapor pressures of samples of jet fuel representative of the type of fuel used in commercial aviation and of a series of fuel samples which had been reformulated to vary the flash point. The analytical instrumentation sampled the sealed vials using a pneumatic-balanced pressure principle which avoids the disadvantages associated with gas syringes, such as change of partial pressures of the volatiles due to reduced pressure in the syringe (Ioffe and Vitenberg, 1984a). In a typical operation utilizing the pneumatic-balanced pressure principle, the septum of the thermostated sample was pierced by the hollow sampling needle, the vial was pressurized to either equal or exceed the head pressure of the FSOT column, gas flow to the FSOT column was temporarily interrupted, causing the column head pressure to decrease, and then an aliquot of the headspace was injected onto the FSOT column using the vial pressure as the driving force.

The volumes of the mixed hydrocarbon standard were low enough to assure complete vaporization of the C₅-C₁₃ hydrocarbons under the test conditions. For the higher molecular weight hydrocarbons (e.g., dodecane and tridecane), 0.5 μ L and less of the hydrocarbon mix was used to assure complete vaporization. The resulting vapor densities (g/L) for the reference hydrocarbons were correlated with their gas chromatographic peak areas to generate eight individual calibration curves (nine at 60°C) that were used to calculate subsection partial pressure. These eight or nine regression equations were linear, with correlation coefficient (r²) values close to unity. Each subsection summed GC peak area (5-13) was treated as an individual compound and was used in the appropriate subsection regression equation to calculate a vapor density. As described above, the molecular weights of the subsection reference hydrocarbons were then used to convert the mass densities to molar densities for use in the ideal gas equation (equation 1).

Results for the ten ARCO fuel samples and the two Marana ground test samples are summarized in Appendix A as Tables A-1 through A-12. These tables include subsection and total vapor pressure (mbar), subsection mole percent, and subsection vapor density (g/m³) for the fuel samples at 40°C, 50°C, and 60°C and for two V/L ratios (i.e., 274 and 1.2). Based on the mole percent values, average molecular weights of the fuel vapor were computed for each V/L ratio at each temperature.

Figure 3 compares the ARCO fuels taken from the quarter-scale tests #42, 46, and 51 (designated Base Jet [ARCO]), the fuel used in the ground tests in Marana, AZ (samples #1 and #3), and a sample of fuel obtained locally from the Reno/Tahoe International Airport (Reno – supplied by Exxon). The Reno and ground test fuels had vapor compositions

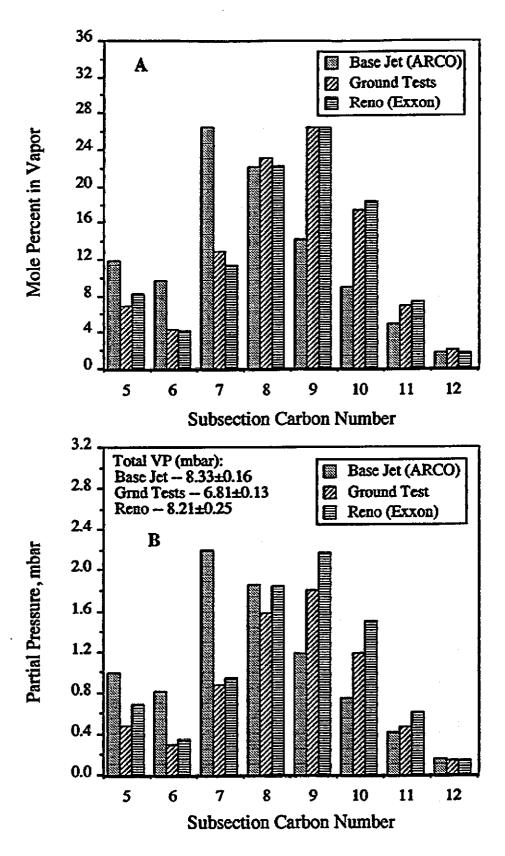


Figure 3. Comparison of relative vapor density (A) and partial pressure (B) for ARCO, ground test, and Reno fuels at 40°C. (V/L = 1.2).

with hydrocarbon distributions centering approximately about subsection carbon number 9, whereas the hydrocarbon distribution for the ARCO Base Jet fuel vapor centered approximately about carbon number 7 (Figure 3A). This relative vapor composition is also reflected in the average molecular weights for the fuel vapors – about 121 for the Reno and ground test fuels compared to about 110 for the ARCO fuel. However, the ARCO and Reno (Exxon) fuels had similar saturation vapor pressures, while the average vapor pressure for the ground test fuels was about 15-20% less, indicating some possible weathering of these fuels (Figure 3B). The ARCO fuel was shipped in a sealed drum directly from the formulator via CalTech personnel and the Reno fuel was obtained directly from the sump of a refueling truck, but the ground test fuel samples were taken from the center wing tank of a Boeing 747 aircraft after fueling under the relatively hot conditions of late Spring in Arizona.

As reported earlier (Woodrow and Seiber, 1997), a decline in relative vapor density (mole percent) was substantial for subsection carbon number 5 in going from an approximately half-filled tank (V/L = 1.2) to a nearly empty tank (V/L = 274), whereas for higher carbon numbers, changes in relative vapor density were minor. For example, the ARCO sample from quarter-scale test #42 showed a decline in subsection 5 by a factor of 6-8, whereas subsection carbon number 7, for example, showed a slight decline by a factor of 1-1.2, as illustrated in Figure 4A. A similar behavior was exhibited by the specially formulated ARCO samples, except that in some cases changes in relative vapor density for subsection carbon number 5 were even greater (e.g., a factor of 7-15 for ARCO sample 90 wt% Btm). This behavior was reflected in the higher average molecular weights for the nominal loading case compared to the half-filled tank (Tables A-1 through A-12).

However, a 20°C increase in fuel temperature (40°C to 60°C) decreased the relative vapor density for subsection carbon numbers 5 and 7 by only a factor of about 2 and 1.1, respectively, as illustrated in Figure 4B for ARCO sample #42. The conclusion from all of this is that a change in liquid fuel volume by a factor of 125 has a greater effect on vapor

1

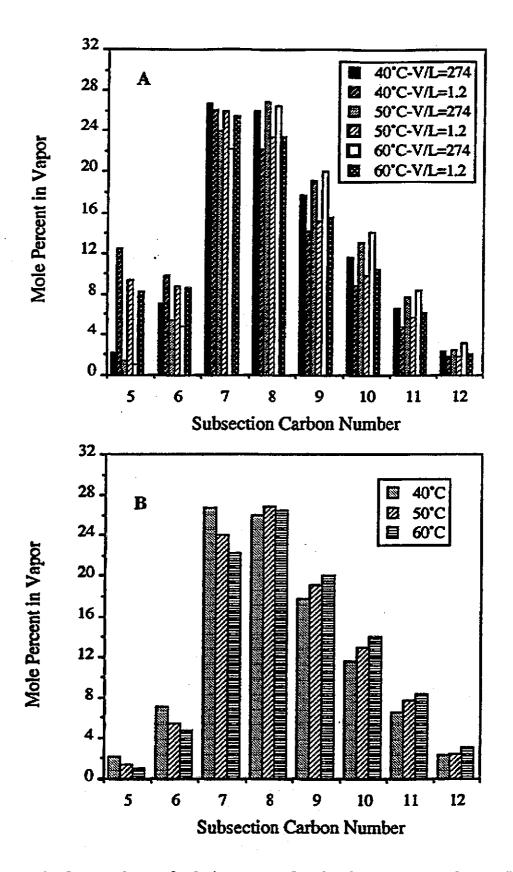


Figure 4. Comparison of relative vapor density for quarter-scale test #42 fuel at V/L=1.2 and 274 (A) and variation of relative vapor density with temperature for fuel #42 at V/L=274 (B).

1979) 1979

composition than does a 20° change in temperature.

Table 2 summarizes the properties of the seven ARCO fuel samples formulated to vary the flash point, and, in Table 3, these various fuel flash points are listed along with the fuel vapor pressure vs. temperature regression equations for both the half-filled (~400 kg/m³) and nominal loading (~3 kg/m³) cases. With these regression equations and the fuel flash points it is possible to calculate fuel vapor pressure at the flash point and, ultimately, fuel/air mass ratio at the flash point (Shepherd et al., 2000).

The flash point samples listed in Table 2 were created by distillation of the Base Jet fuel using a distillation column and procedure similar to that described in ASTM D2892. First, the Base Jet fuel was distilled and the first 2.5 weight percent of this "overhead" (OH) was collected. The lower flash point (87F) fuel was then created by mixing 91 wt% of the Base Jet and 9 wt% of the OH. The mixture is the fuel designated as 2.5 wt% OH in Table 2. The higher flash point fuels were created by distilling the Base Jet fuel and retaining only a fraction of the "bottom" (Btm) of the distillation. These fuels are designated according to the fraction of the initial fuel weight (by percent) that is used to create the fuel sample. A value of " χ wt% Btm" in the designation means that the initial (100 - χ) wt% that came out of the distillation process was not used. All of this results in one sample of Base Jet, one sample of Base Jet enriched with 9 wt% of light hydrocarbons (2.5 wt% OH), and six samples of concentrated heavy hydrocarbons from the mixture Base Jet, ranging from the lightest in molecular weight (97.5 wt% Btm) to the heaviest (85 wt% Btm).

These prepared samples, with flash points from 87F to 165F, should be compared to the Base Jet sample (quarter-scale tests #42, 46, and 51) which represents the commercial grade jet fuel, with a flash point of 114F. The flash points can be directly related to the composition of the fuel vapor, as illustrated in Figure 5. In this figure, the two flash point extremes (87F and 165F) are compared with the Base Jet fuel. Fuel sample 2.5 wt% OH (flash point = 87F) had a hydrocarbon distribution in the vapor that centered about C₇, whereas hydrocarbon distribution for fuel sample 85 wt% Btm (flash point = 165F) Table 2. ARCO test fuels for flash flammability testing (Source: ARCO).

		-			Heat of		
	Flash Point	Distillation	Acidity	Freeze Point	Combustion	FIA-Aromatic	Naphthalenes
Sample	(F)	(*F)	(mg KOH/g)	(*F)	(BTU/Ib)	(Vol%)	(Vol%)
2.5 wt% OH	87	555	1	¥ÛN	:	24.1	2.67
Base Jet ^b	114	556	<0.01	QN	18471	24.4	2.93
97.5 wt% Btm	132.	559	0.03	QN	18482	22.4	3
95 wt% Btm	139	559	0.08	QN	18325	23.8	2.9
92.5 wt% Btm	148	561	0.01	<-65	18478	22.5	3.2
90 wt% Btm	159	558	0.034	-43.6	18477	22.5	3.22
87.5 wt% Btm	160	562	0.03	-38.2	18517	22.9	3.31
85 wt% Btm	165	565	0.03	-36.4	18532	22.9	3.42

^a ND = no data.

^b The commercial ARCO fuel from which samples were taken for quarter-scale tests #42, 46, and 51 (Tables A-1 through A-6).

14

Table 3. Hash point and vapor pressure vs. temperature regression curves for the ARCO jet fuel samples.

		Vapor Pressure vs. Ter	Vapor Pressure vs. Temperature Regressions ^a
Sample	Flash Point, 'F ('C)	Vapor Saturation (400 kg/m ³)b	Nominal Loading (3 kg/m ³)c
2.5 wt% OH	87 (30,6)	Ln VP = 15.294 - 3834.3 (1/T)	Ln VP = 15.303 - 3991.3 (1/T)
Base Jetd	114 (45.6)	Ln VP = 15.790 - 4275.3 (1/T)	Ln VP = 14,680 - 4053.3 (1/T)
97.5 wt% Btm	132 (55.6)	Ln VP = 16.505 - 4701.2 (1/T)	Ln VP = 17.716 - 5195.1 (1/T)
95 wt% Btm	139 (59.4)	Ln VP = 16.429 - 4820.7 (1/T)	Ln VP = 18.031 - 5406.3 (1/T)
92.5 wt% Btm	148 (64.4)	Ln VP = 17.022 - 5101.7 (1/T)	Ln VP = 18.856 - 5754.7 (1/T)
90 wt% Btm	159 (70.6)	Ln VP = 17.738 • 5358.1 (1/T)	Ln VP = 19.118 - 5892.9 (1/T)
87.5 wt% Btm	160 (71.1)	Ln VP = 17.149 - 5261.4 (1/T)	Ln VP = 18.109 - 5648.5 (1/T)
85 wt% Btm	165 (73.9)	Ln VP = 16.169 - 5017.6 (1/T)	Ln VP = 18.839 - 5928.7 (1/T)

^a VP = vapor pressure in mbar; T = K.

^b Derived from V/L = 1.2 (Tables A-1, A-3, and A-5).

^c Derived from V/L = 274 (Tables A-2, A-4, and A-6).

d Averaged data for fuel samples from quarter-scale tests #42, 46, and 51 (Tables A-1 through A-6).

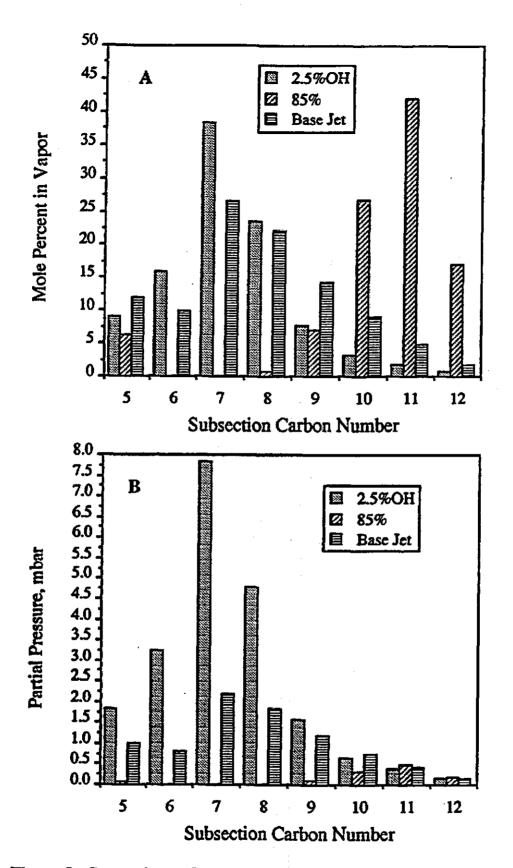


Figure 5. Comparison of vapor composition (A) and saturation vapor pressure (B) for ARCO fuels at 40°C and V/L=1.2.

16

centered about C_{11} (Figure 5A). In other words, fuels enriched in the heavier, less volatile hydrocarbons had the higher flash points. Furthermore, while sample 85 wt% Btm had detectable hydrocarbons for subsection carbon numbers 5 and 8-12, this sample did not have any detectable hydrocarbons for subsection carbon numbers 6 and 7, except at 60°C where there was some measurable hydrocarbon for subsection 6. It appeared that, based on the subsection pressure and mole percent profiles (Figure 5), sample 85 wt% Btm contained a light hydrocarbon spike.

Table 4 summarizes the calculated fuel/air mass ratios and fuel mole fractions in air at sea level and at 14,000 feet for the nominal fuel loading (V/L = 274; ~3 kg/m³) at 40°C, 50°C, and 60°C. We used the vapor pressure, molecular weight, and mass density data for the fuel samples (Tables A-2, A-4, A-6, A-8, A-10, and A-12) to make these calculations. Inspection of the data indicates that, compared with a lower flammability limit of about 0.038 fuel/air mass ratio or 0.009 mole fraction (Shepherd et al., 2000), all of the unweathered commercial grade fuels (#42, #46, #51, #1, #3) either equaled or exceeded these values at 40°C and were well within the flammability range at 50°C for the 14,000 foot altitude. However, the flash point ARCO fuel sample 2.5 wt% OH exceeded the limit at sea level and 40°C, whereas the other samples in this group consistently exceeded the limit only at 60°C for 14,000 feet, with the exceptions of sample 90 wt% Btm, which was about equal to the limit, and samples 87.5 wt% Btm and 85 wt% Btm, which were less than the limit.

Liquid Fuel Method

As discussed under Procedures, the ARCO liquid fuel chromatograms were divided into sixteen subsections, each of which was represented by a normal alkane reference (Figure 2). However, for direct comparison with the headspace vapor characterization results, much of the liquid characterization results discussed below represent subsections C_5-C_{12} (plus C_{13} at 60°C) only. Appendix B (Tables B-1 through B-7) is a summary of ARCO fuel vapor data derived from the liquid results for subsections C_5-C_{12} (plus C_{13} at

		Fu	el/Air Mass F	Ratio $(V/L = 2)$.74)	
		°C	5	D°C	60	<u>).C</u>
Sample	0 ft ^a	14 kftb	0 ft ^a	14 kft ^b	0 ft ^a	14 kft ^b
2.5% OH	0.047	0.081	0.073	0.126	0.104	0.180
97.5%	0.013	0.022	0.022	0.038	0.038	0.066
95%	0.010	0.017	0.016	0.028	0.030	0.052
92.5%	0.008	0.014	0.013	0.022	0.025	0.043
90%	0.007	0.012	0.011	0.019	0.022	0.038
87.5%	0.006	0.010	0.009	0.016	0.017	0.029
85%	0.005	0.009	0.008	0.014	0.016	0.028
#42 ^c	0.023	0.040	0.035	0.060	0.051	0.088
#46 ^c	0.023	0.040	0.035	0.060	0.050	0.086
#51°	0.022	0.038	0.034	0.059	0.050	0.086
#1d	0.022	0.038	0.036	0.062	0.055	0.095
#3d	0.022	0.038	0.036	0.062	0.057	0.099
		Fu	el Mole Frac	tion $(V/L = 2)$		
	40	°C	50)°C	60	°C
Sample	0 ft ^e	14 kft ^f	0 ft ^e	14 kft ^f	0 ft ^e	14 kft ^f
2.5% OH	0.012	0.021	0.019	0.033	0.027	0.047
97.5%	0.003	0.005	0.005	0.009	0.008	0.014
95%	0.002	0.003	0.003	0.005	0.006	0.010
92.5%	0.002	0.003	0.002	0.003	0.005	0.009
9 0%	0.001	0.002	0.002	0.003	0.004	0.007
87.5%	0.001	0.002	0.002	0.003	0.003	0.005
85%	0.0009	0.002	0.001	0.002	0.003	0.005
#42 ^C	0.006	0.010	0.008	0.014	0.012	0.021
#46 ^c	0.006	0.010	0.008	0.014	0.012	0.021
#51 ^c	0.005	0.009	0.008	0.014	0.012	0.021
#1 ^d	0.005	0.009	0.008	0.014	0.012	0.021
#3d	0.005	0.009	0.008	0.014	0.013	0.022

Table 4. Fuel/air mass ratios and fuel mole fractions for the flash point ARCO jet fuel samples, quarter-scale test samples, and ground test samples at nominal loading.

^a Atmospheric mass density (dry air): 1127.4 g/m³, 40°C; 1092.4 g/m³, 50°C; 1059.6

 g/m^3 , 60°C. b Mass ratios at 14 kft were determined by dividing the ratios at sea level by the factor 0.578.

^c Quarter-scale tests.

d Ground tests (Marana, AZ).

^c Air molar density: 39.1 moles/m³, 40°C; 37.9 moles/m³, 50°C; 36.7 moles/m³, 60°C. Molar densities were determined from the average molecular weight of air (~28.84 g/mole) and the mass densities of air at the various temperatures.

^f Fuel mole fractions at 14 kft were determined by dividing the fractions at sea level by the factor 0.578.

60°C). Tables B-1 through B-6 include subsection and total vapor pressure (mbar), subsection mole percent, and subsection vapor density (g/m³) for fuel vapor at 40°C, 50°C, and 60°C and for two V/L ratios (i.e., 274 [3 kg/m³] and 1.2 [400 kg/m³]). Based on the calculated mole percent values, average molecular weights of the fuel vapor were computed for each V/L ratio at each temperature. The data in these tables can be compared directly with the headspace vapor data in Appendix A (Tables A-1 through A-6). Table B-7 summarizes the calculated fuel/air mass ratios and fuel mole fractions in air at sea level and at 14,000 feet for the nominal fuel loading (V/L = 274; ~3 kg/m³) at 40°C, 50°C, and 60°C. This table can be compared directly with Table 4.

Half-filled tank (400 kg/m³ [V/L = 1.2]). Figure 2 shows a typical chromatogram for a liquid fuel (Base Jet [quarter-scale test #46]), along with a chromatogram of the mixed hydrocarbon standard. The approximately evenly spaced prominent peaks in the liquid fuel represented the normal alkanes, whose retention times matched those for the reference hydrocarbons. The sixteen regression equations – correlations of mass of hydrocarbon injected with instrument response (e.g., peak area) – were linear, with correlation coefficient (r^2) values near unity. As was done in the headspace vapor method, each subsection summed GC peak area (5-20) in the liquid method was treated as an individual compound and was used in the appropriate subsection reference standard regression equation to calculate subsection mass (m_i). Each mass was then divided by the molecular weight of the reference hydrocarbon ([mw]_i), giving the number of moles (n_i) from which subsection mole fraction was derived. That is,

$$m_i / [mw]_i = n_i \tag{3}$$

where i = 5,...,20. Then, subsection mole fraction (X_i) was given by

$$X_i = n_i / \sum n_{5-20} \tag{4}$$

Table 5 lists the subsection mole percent values (X_i •100) for each of the eight fuels. These liquid mole percent values can be used to calculate fuel vapor pressure at any given temperature. For example, Table 6 lists the total vapor pressures calculated for each fuel at

Table 5. Subsection mole percent for liquid ARCO fuel samples.

.

				Subsection Mole Percent	Aole Percent			
Sample	5	6	7	8	6	10	11	12
Base Jet ^a	0.045	0.291	2.30	3.94	6.64	11.5	17.7	18.4
2.5wt% OH	0.110	1.14	7.44	9.02	7.90	10.0	15.4	15.5
97.5wt%	0.018	0.038	0.681	2.46	6.22	12.0	18.6	19.1
95wt%	0.004	0.005	0.154	0.984	4.66	12.3	19.4	19.9
92.5wt%	0,006	1	0.036	0.408	2.81	11.4	20.0	20.6
90wt%	0.005	0.012	0.085	0.235	1.79	9.92	20.7	21.7
87.5wt%	0.005	0.0003	0.003	0.052	0.971	7.84	19,9	21.8
85wt%	0.004	0.0006	0.003	0.013	0.406	5.88	19.9	22.7
					•			

K				Subsection N	Subsection Mole Percent			
Sample	13	14	15	16	17	18	19	20
Base Jeta	15.8	11.8	6,94	3.01	1.18	0.294	0.061	0.040
2.5wt% OH	13.8	9.98	5,95	2.49	0.968	0.182	0.043	0.031
97.5wt%	16.6	12.3	7.25	3.10	1.19	0.290	0,060	0.040
95wt%	17.4	12.9	7.48	3.18	1.26	0.323	0.065	0.033
92.5wt%	18.0	13,3	8.05	3.52	1.33	0.399	0.064	0.044
90wt%	18.4	13.9	8.05	3.45	1.32	0.280	0.068	0.029
87.5wt%	19.3	14.5	8.69	4.09	1.73	0.690	0.246	0.130
85wt%	20.0	15.1	9.02	4.33	1.65	0.664	0.217	0.119

-

a Quarter-scale test #46.

	Tota	l Vapor Pressure,	mbar	
Sample	40°C ^a	50°Cª	60.Cp	Ave Liquid MW
Base Jet	7.91	12.6	19.4	169.1
2.5 wt% OH	20.3	31.2	46.8	160.2
97.5 wt% Btm	4.05	6.74	11.0	171.6
95 wt% Btm	2.34	4.07	6.98	173.8
92.5 wt% Btm	1.68	2.98	5,25	175.9
90 wt% Btm	1.51	2.67	4.73	176.8
87.5 wt% Btm	1.06	1.94	3.55	179.8
85 wt% Btm	0.865	1.60	3.00	181.0

 Table 6. Calculated total vapor pressure and average molecular weight for liquid ARCO fuel samples.

^a For subsections C_5 - C_{12} only.

^b Base Jet and 2.5 wt% OH: C₅-C₁₂ only. Remaining samples: C₅-C₁₃.

40°C, 50°C, and 60°C, along with estimated average molecular weights for the liquids. To obtain the data in Table 6, the saturation vapor pressures for each subsection reference hydrocarbon at each temperature was calculated using the Harlacher equation (Reid et al., 1977), which is valid up to the critical conditions and takes the following form:

$$Ln P_{i}^{\bullet} = A + (B/T) + C \cdot Ln T + (D \cdot P_{i}^{\bullet})/T^{2}$$
(5)

where P_i^* (i = 5,...,20) is the vapor pressure (torr) and T is the absolute temperature. The terms A, B, C, and D were taken from Appendix A in Reid et al. (1977). Calculation was done by a rapid iteration method using equation solving software. The torr units were converted to mbar by the conversion factor 1.3332 (i.e., mbar = torr•1.3332). Each subsection partial pressure (P_i , i = 5,...,20) was then obtained from the product of the subsection saturation pressure (P_i^*) and subsection liquid mole fraction ($X_i = mole\%/100$) using Raoult's law:

$$P_{i} = \gamma_{i} \cdot X_{i} \cdot P_{i}^{*} \tag{6}$$

For these calculations, it was assumed that the activity coefficient (γ_i) for each component was unity. Subsection mole fraction (X_i) and reference hydrocarbon molecular weight $([mw]_i)$ were used to calculate average liquid molecular weight $([mw]_{5-20})$:

$$[mw]_{5-20} = \sum (X_i \cdot [mw]_i)$$
(7)

By using the liquid subsection partial pressures (P_i) , derived from the subsection mole fractions as discussed above, the vapor composition above each liquid fuel was estimated at 40°C, 50°C, and 60°C. This was done by using a rearranged form of the ideal gas law equation:

$$(n/V)_i = P_i/(R \cdot T \cdot 1013.232)$$
 (8)

where $(n/V)_i$ is subsection molar density in the vapor (moles/L), R is the gas constant (0.08205 L-atm/^{*}K•mole), T is absolute temperature, and 1013.232 converts from mbar to atmospheres. This subsection molar density was then used to calculate total vapor mass density ([g/L]₅₋₂₀):

ŧ

$$[g/L]_{5-20} = \sum [g/L]_i$$
 (9)

where

$$[g/L]_i = (n/V)_i \cdot [mw]_i$$
 (10)

And, average molecular weight of the total vapor $([mw_v]_{5-20})$ was also calculated:

$$[\mathbf{m}\mathbf{w}_{\mathbf{v}}]_{5-20} = \sum \mathbf{Y}_{\mathbf{i}} \cdot [\mathbf{m}\mathbf{w}]_{\mathbf{i}}$$
(11)

and

a,

$$Y_{i} = (n/V)_{i} / \sum (n/V)_{5-20}$$
(12)

where Y_i is the subsection mole fraction in the vapor.

Table 7 summarizes the results for vapor density (g/m^3) and average vapor molecular weight, and these results are compared with the results derived directly from the characterization of the fuel vapor for subsections C_5-C_{12} (plus C_{13} at 60^{*}C) only. For the average vapor molecular weight, the two sets of results compared within 0.1-3% (ave: 1.2%), 0.4-2% (ave: 1.3%), and 1-2% (ave: 1.7%) at 40°C, 50°C, and 60°C, respectively. The vapor density results compared within 3-29% (ave: 18%), 4-18% (ave: 11%), and 1.5-14% (ave: 6%) at the same respective temperatures. Table 8 lists regressions of vapor pressure vs. temperature derived from liquid characterization. These equations should be compared to the regressions in Table 3 for the half-filled tank (400 kg/m^3). Using the regressions in Tables 3 and 8, vapor pressures were calculated at the flash points of the ARCO fuels. Results are shown in the last two columns of Table 8: "HS-GC", derived from the regressions in Table 3, and "Liquid-GC", derived from the regressions in Table 8. Overall, the two sets of data compared reasonably well. The average difference was 4.8% (range: 1.1-16%), with a median difference of 2.8%. The flash point vapor pressure data in Table 8 can be taken one step further to give the fuel/air mass ratios (FARs) at the flash points. Table 9 summarizes the results for the ARCO fuels, showing that the FARs for headspace and liquid characterizations compared well. The average difference was 5.0% (range: 0-16%), with a median difference of 3.0%. The greatest differences were for the two extremes -- 2.5 wt% OH (10%) and 85 wt% Btm (16%). These differences were due primarily to limits in the headspace vapor method's

		Ave Molecular Wt. (vapor)		Vapor Density, g/m ³		
Sample	Тетр., [•] С	HS-GC ^a	Liquid GC ^b	HS-GC	Liquid GC	
Base Jet	40	110.4	108.6	35.4	33.0	
2.5 wt% OH		103.8	101.6	81.4	79.1	
97.5 wt%		123.4	120.0	21.2	18.7	
95 wt%		132.7	131.6	14.5	11.8	
92.5 wt%		137.5	137.0	10.7	8.83	
90 wt%		138.0	136.4	10.0	7.90	
87.5 wt%		143.5	143.6	7.85	5.86	
85 wt%		147.4	146.9	6.55	4.88	
Base Jet	50	112.6	110.4	54.9	51.6	
2.5 wt% OH		105.1	102.8	127.0	119.4	
97.5 wt%		124.8	122.0	32.0	30.6	
95 wt%		134.6	133.2	21.8	20.2	
92.5 wt%		140.1	138.7	18.5	15.4	
90 wt%		140.0	138.6	15.7	13.8	
87.5 wt%		146.0	145.4	12.6	10.5	
85 wt%		149.3	148.6	10.3	8.83	
Base Jet	60	113.8	112.2	77.4	78.6	
2.5 wt% OH		106.3	103.8	163,2	175.7	
97.5 wt%		127.5	124.6	50.7	49.5	
95 wt%		138.0	135.6	35.7	34.2	
92.5 wt%		143.3	141.4	27.8	26.8	
90 wt%		144.5	141.8	27.7	24.2	
87.5 wt%		150.7	148.4	21.2	19.0	
85 wt%		153.2	151.8	16.8	16.4	

Table 7. Comparison of vapor density and average vapor molecular weight derived from vapor and liquid ARCO jet fuel characterization.

^a Derived from vapor characterization.

.

A LUCK MARK

^b Derived from liquid characterization.

Table 8. Flash point and vapor pressure vs. temperature regression curves for liquid ARCO jet fuel samples.

.

- -

			VP at Flash	VP at Flash Point, mbar
Sample	Flash Point, "F ("C)	VP vs. Temp. Regressions ^a	HS-GC ^b	Liquid-GC
2.5 wt% OH	87 (30.6)	Ln VP = 16.917 - 4352.9 (1/T)	14.4	13.2
Base Jetc	114 (45.6)	Ln VP = 17.008 - 4675.9 (1/T)	10.7	10.3
97.5 wt% Btm	132 (55.6)	Ln VP = 18.031 - 5206.5 (1/T)	9.01	8.90
95 wt% Btm	139 (59.4)	Ln VP = 19.038 - 5693.9 (1/T)	6.86	6.74
92.5 wt% Btm	148 (64.4)	Ln VP = 19.480 - 5936.3 (1/T)	6.70	6.59
90 wt% Btm	159 (70.6)	Ln VP = 19.410 - 5948.3 (1/T)	8.53	8.15
87.5 wt% Btm	160 (71.1)	Ln VP = 20.169 - 6296.4 (1/T)	6.42	6.49
85 wt% Btm	165 (73.9)	Ln VP = 20.543 - 6478.0 (1/T)	5.50	6.48

^a VP = vapor pressure in mbar, T = K. Regressions derived from liquid characterization.

b See Table 3 for regressions derived from vapor characterization (400 kg/m³ equivalent).

c Same as fuel sample from quarter-scale test #46.

		FAR at Fuel	Flash Point
Sample	Ave. Vapor MW	Liquid-GC ^a	HS-GCb
2.5 wt% OH	100.7	0.045	0.050
Base Jet ^C	110.2	0.039	0.040
97.5 wt% Btm	124.2	0.038	0.038
95 wt% Btm	136.5	0.031	0.032
92.5 wt% Btm	143.1	0.032	0.033
90 wt% Btm	144.9	0.040	0.042
87.5 wt% Btm	151.5	0.034	0.033
85 wt% Btm	155.2	0.034	0.029

Table 9. Fuel/air mass ratios (FARs) for the ARCO fuels at their flash points.

^a Derived from liquid characterization.

^b Derived from vapor characterization.

^c Liquid-GC: Quarter-scale test #46; HS-GC: Averaged data for fuel samples from quarter-scale tests #42, 46, and 51 (Tables A-1 through A-6).

ability to accurately model the most volatile fuel at 60°C and the least volatile fuel at 40°C (see the following discussion).

i

Table 10 compares the total fuel vapor pressures, along with percent difference ($\%\Delta$), derived from vapor and liquid characterizations. For the 2.5 wt% OH fuel, the somewhat lower vapor-derived value at 60°C was probably due to some flame detector saturation by this rather volatile fuel. Otherwise, the two data sets compared reasonably well overall. There was a trend toward greater differences between the vapor pressures at 40°C, with the vapor-derived values being greater. The information in Table 11 suggests, at the least, a partial explanation as to why this was the case. Liquid mole fractions for subsections C₅-C₁₂ are listed for the fuels Base Jet (quarter-scale test #46) and 85 wt% Btm, as examples. The data under "Liquid GC" were taken from the liquid characterization work, while the data under "HS-GC" were calculated from vapor characterization data (i.e., dividing the vapor partial pressure by the saturation pressure). For both fuels, the mole fraction sum for the "HS-GC" data approached that for the "Liquid GC" data only when the temperature for the former fuel was increased. This is believed to be a consequence of the way the headspace instrument responds to higher molecular weight (lower volatility) reference standards below, but near, their saturation vapor densities.

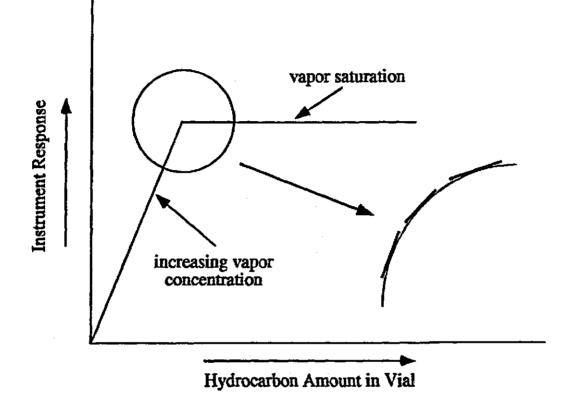
In the ideal situation, as the amount of hydrocarbon is increased in the vapor, instrument response will increase until vapor saturation is reached, where the slope of the instrument response will undergo a sharp change leading to a plateau (area enclosed in the circle in Figure 6). At this point, increasing the amount of hydrocarbon in the closed container will not affect instrument response. In practice with the HS-GC instrument, however, the headspace response seems to follow a curve when the hydrocarbon vapor concentration approaches saturation. This phenomenon is shown in the right-hand portion of Figure 6, along with several lines tangent to this curve at different points. These lines represent regression lines for a hydrocarbon standard near the hydrocarbon's vapor saturation. For example, as the temperature of dodecane standard is lowered from 60°C to Table 10. Comparison of ARCO jet fuel vapor pressures derived from vapor and liquid characterization.

				ARCO Jet F	ARCO Jet Fuel Vapor Pressure, mbara	ssure, mbar ⁱ	-		
		40°C			50°C			2 . 09	
Sample	HS-GC	Liquid GC	₽%	HS-GC	Liquid GC	₽%	HS-GC	Liquid GC	₩
Base Jet	8.34	7.91	5.3	13.1	12.6	3.9	18,8	19.4	3.1
2.5 wt% OH	20,4	20.3	0.5	32.5	31.2	4.1	42.5	46.8	9.6
97.5wt%	4.46	4.05	9,6	6.89	6.74	2.2	11.0	11.0	¢
95wt%	2.84	2.34	19.3	4.35	4.07	6.6	7.17	6.98	2.7
92.5wt%	2.02	1.68	18.4	3.55	2.98	17.4	5.37	5.25	2.2
90wt%	1.90	1.57	19.0	3.01	2.80	7.2	5.32	4.79	10.5
87.5wt%	1.42	1.06	29.0	2.31	1.94	17.4	3.90	3.55	9.4
85wt%	1.16	0.865	29.1	1.85	1.60	14.5	3.04	3.00	1.3

^a HS-GC = headspace gas chromatograph. Vapor pressures were derived from fuel vapor characterization.

Liquid GC: Vapor pressures were derived from liquid fuel characterization.

 Table 11. Example comparisons of liquid fuel mole fractions derived from vapor and liquid characterization.


_		Liquid Fuel 1	Mole Fraction	<u> </u>
			HS-GC	
Subsection	Liquid GC	40°C	50°C	60°C
5	4.5 x 10 ⁻⁴	8.3 x 10 ⁻⁴	7.2 x 10 ⁻⁴	6.8 x 10 ⁻⁴
6	2.9 x 10 ⁻³	2.2 x 10 ⁻³	2.2 x 10 ⁻³	2.2 x 10 ⁻³
7	2.3 x 10 ⁻²	1.8 x 10 ⁻²	1.8 x 10 ⁻²	1.7 x 10 ⁻²
8	3.9 x 10 ⁻²	4.6 x 10 ⁻²	4.7 x 10 ⁻²	4.3 x 10 ⁻²
9	6.6 x 10 ⁻²	8.7 x 10 ⁻²	8.5 x 10 ⁻²	7.6 x 10 ⁻²
10	0.1146	0.1539	0.1476	0.1307
11	0.1768	0.2363	0.2319	0.1925
12	0.1842	0.2517	0.1874	0.1741
Mole Frac. Sum	0.6070	0.7959	0.7198	0.6362

Base Jet (quarter-scale test #46):

85 wt% Btm:

_		Liquid Fuel J	Mole Fraction	
			HS-GC	
Subsection	Liquid GC	40°C	50°C	60°C
· <u>5</u>	4.0 x 10 ⁻⁵	6.3 x 10 ⁻⁵	5.2 x 10 ⁻⁵	3.1 x 10 ⁻⁵
6	6.0 x 10 ⁻⁶	-		2.6 x 10 ⁻⁶
7	2.8 x 10 ⁻⁵		-	_
8	1.3 x 10 ⁻⁴	2.4 x 10 ⁻⁴	6.0 x 10 ⁻⁵	9.6 x 10 ⁻⁵
9	4.1 x 10 ⁻³	5.8 x 10 ⁻³	4.4 x 10 ⁻³	3.5 x 10 ⁻³
10	5.9 x 10 ⁻²	6.4 x 10 ⁻²	5.9 x 10 ⁻²	5.2 x 10 ⁻²
11	0.1988	0.2887	0.2619	0.2300
12	0.2266	0.3344	0.2538	0.2311
Mole Frac. Sum	0.4887	0.6932	0.5792	0.5167

Liquid Fuel Mole Fraction

ł

Figure 6. Instrument response vs. hydrocarbon vapor density.

40°C, the slope of the dodecane regression line can decrease by 35-40% as the line moves along the curve toward saturation. Responses for standard reference hydrocarbons C₉, C₁₀, and C₁₁ will also be affected in this way by temperature change, with the effect less pronounced at the lower carbon number. The overall result is that, as sample temperature is lowered, higher carbon number subsections (i.e., C₁₀-C₁₂) are biased toward higher mole fraction values.

1

1

A possible way to address this problem would be to use the pentane standard regression equation for subsection C₅ for all of the vapor subsections, assuming that the individual components in the higher carbon number subsections are well below their saturation vapor densities. An important justification for using the pentane regression equation is that equal masses of two different n-alkanes will give equivalent responses with the flame ionization detector (responds to moles of carbon); so, the pentane standard can be substituted for the standards hexane-dodecane. Also, compared to dodecane, slopes for the pentane standard regressions at 40°C and 60°C compare within 3-4% (compare with 35-40% for dodecane). The results from applying this approach to the Base Jet fuel vapor (quarter-scale #46) are shown in Table 12, where the liquid fuel mole fractions derived from the C₅ regression equation (again, by dividing the vapor partial pressure by the saturation pressure) are compared to those taken from Table 11. As can be seen, applying the C₅ regression equation to the vapor subsections C₅-C₁₂ gave more consistent summed liquid mole fractions and resulted in fuel vapor pressures that compared better with the vapor pressures from the liquid fuel characterization (see Table 10).

<u>Nominal loading (3 kg/m³ [V/L = 274]</u>). Using the data from the liquid characterization, the molar concentration in the liquid (i.e., mole/L) was calculated for each subsection carbon number. This was simply done by dividing the subsection mass by the reference hydrocarbon molecular weight (equation 3), and then dividing the result by the total volume of sample injected into the analytical instrument. As described earlier, the subsection partial pressures were calculated using each subsection liquid mole fraction Table 12. Comparison of liquid mole fractions derived from C₅-C₁₂ and C₅ only regression equations applied to the vapor characterization of the Base Jet fuel (quarter-scale test #46).

	1		Liquid Fuel Mole Fraction	Aole Fraction		
	40°C	c.	50	50°C	60°C	C
Subsection	C5-C12 ⁸	C ₅ b,c	C5-C12	C _S c	C3-C12	C ₅ c
S	8.3 x 10 ⁻⁴	8.3 x 10 ⁻⁴	7.2 x 10 ⁻⁴	7.3 x 10-4	6.8 x 10 ⁻⁴	6.8 x 10 ⁻⁴
و	2.2 x 10 ⁻³	2.2 x 10 ⁻³	2.2 x 10 ⁻³	2.2 x 10 ⁻³	2.2 x 10 ⁻³	2.2 x 10 ⁻³
7	1.8 x 10 ⁻²	1.8 x 10 ⁻²	1.8 x 10 ⁻²	1.8 x 10 ⁻²	1.7 x 10 ⁻²	1.8 x 10 ⁻²
ø	4.6 x 10 ⁻²	4.5 x 10 ⁻²	4.7 x 10 ⁻²	4.5 x 10 ⁻²	4.3 x 10 ⁻²	4.4 x 10 ⁻²
6	8.7 x 10 ⁻²	7.9 x 10 ⁻²	8.5 x 10 ⁻²	7.7 x 10 ⁻²	7.6 x 10 ⁻²	7.6 x 10 ⁻²
10	0.1539	0.1258	0.1476	0.1254	0.1307	0.1264
11	0.2363	0.1742	0.2319	0.1833	0.1925	0.1810
12	0.2517	0.1188	0.1874	0.1139	0.1741	0.1414
Mole Frac. Sum	0.7959	0.5638	0.7198	0.5655	0.6362	0.5897
((:	

^a C₅-C₁₂ regression equations used.

b C5 regression equation used.

^c Vapor pressure (mbar): 40°C -- 7.92 (7.91, Table 10)

50°C -- 12.4 (12.6, Table 10) 60°C -- 19.1 (19.4, Table 10)

(Table 5) and saturation vapor pressure, calculated using the Harlacher equation (equation 5). These partial pressures were then converted to their equivalent vapor concentrations (mole/L) using the ideal gas law equation (equation 8).

The resulting liquid and vapor concentration data were used in the following expression:

$$C_G = C_L^{*}/(K + [V/L])$$
 (13)

where C_G is the concentration in the vapor (mole/L), C_L° is the initial concentration in the liquid (mole/L), K is the hydrocarbon liquid-vapor distribution coefficient, and V/L is the vapor volume-to-liquid volume ratio that would occur in the headspace vial. This expression is known as the "headspace equation" (Ioffe and Vitenberg, 1984b) and it shows that the vapor concentration (C_G) of a hydrocarbon component in the headspace vial depends not only on K, but also on V/L. For a given K, C_G will decrease (increase) as V/L is increased (decreased). With C_G , C_L° and V/L (= 1.2 [400 kg/m³]), it is then possible to solve for K for each subsection carbon number:

$$K = (C_{L} - [C_{G} V/L])/C_{G}$$
 (14)

The choice of value for V/L may be somewhat arbitrary, but the value of 1.2 was selected, since this was the ratio used in the headspace method to determine vapor pressures for the half-filled tank. Given C_L^* , K, and V/L (= 274), C_G was then calculated for each hydrocarbon subsection under nominal loading:

$$C_G (\text{nom. load}) = C_L^*/(K + 274)$$
 (15)

Table 13 compares measured (i.e., headspace) vapor pressures for the ARCO fuels at V/L = 274 (~3 kg/m³) with calculated pressures derived using the method just described. The two sets of data compare reasonably well. The average difference was 6.4% (range: 0.5-15%), with a median difference of 6.2%. Table 14 is a compilation of subsection distribution coefficients for the ARCO fuels. Since the distribution coefficient (K) is proportional to C°_{L}/C_{G} , the higher the value for K, the more the distribution favors the condensed, liquid phase. Finally, Table 15 lists regressions of vapor pressure vs.

		v	apor Pressure, mb	par
Sample	Method	40°C	50°C	60°Ca
Base Jet (#46)	Measuredb	5.72	8.54	12.2
	Calculated ^C	6.09	9.17	13.4
2.5 wt% OH	Measured	12.7	19.4	27.3
	Calculated	14.7	20.9	28.8
97.5 wt% Btm	Measured	3.08	5.04	8.35
	Calculated	3.48	5.62	8.88
95 wt% Btm	Measured	2.19	3.46	6.19
	Calculated	2.18	3.72	6.24
92.5 wt% Btm	Measured	1.66	2.62	5.02
	Calculated	1.57	2.77	4.83
90 wt% Btm	Measured	1.40	2.18	4.35
	Calculated	1.39	2.44	4.28
87.5 wt% Btm	Measured	1.11	1.71	3.29
	Calculated	1.00	1.82	3.35
85 wt% Btm	Measured	0.940	1.49	2.94
	Calculated	0.819	1.52	2.85

Table 13. Measured and calculated vapor pressures for the ARCO jet fuels under nominal loading conditions (V/L = $274 [-3 \text{ kg/m}^3]$).

^a For samples 97.5 wt%-85 wt%, listed vapor pressures are for subsections C₅-C₁₃.

^b Measured using HS-GC method at V/L = 274 (0.08 mL fuel in 22 mL vial).

^c Calculated using the headspace equation (see text for explanation):

 $C_{\rm G} = C^{*}_{\rm L}/(K + [V/L])$

Table 14. Liquid-vapor hydrocarbon distribution coefficients for the ARCO jet fuels.

	-			Sul	Subsection Hydrocarbon Distribution Coefficient (K) ^a	arbon Distributi	on Coefficient (К) ^а		
	J. umeT	~	9	7	8	6	10	11	12	13
Dem Let (AK)		79.2	264	846	2.61E+03	8.03E+03	2.32E+04	6.78E+04	1.95E+05	4.69E+05
Int the sept	2	57.9	187	563	1.65E+03	4.76E+03	1.31E+04	3.65E+04	9.94E+04	2.28E+05
	99	43.1	134	386	1.08E+03	2.94E+03	7.82E+03	2.03E+04	5.31E+04	1.51E+05
2.5 wt% OH	40	83.5	278	892	2.75E+03	8.46E+03	2.44E+04	7.15E+04	2.06E+05	4.94E+05
	2	61.1	197	594	1.74E+03	5.02E+03	1.38E+04	3.84E+04	1.05E+05	2.40E+05
	ક્ર	45.5	141	407	1.13E+03	3.10E+03	8.25E+03	2.14E+04	5.60E+04	1.59E+05
07 Swt%littm	4	672	260	833	2.57E+03	7.90E+03	2.28E+04	6.68E+04	1.92E+05	4.62E+05
	205	57.0	184	554	1.62E+03	4.69E+03	1.29E+04	3.59E+04	9.78E+04	2.24E+05
	S.	42.4	132	380	1.06E+03	2.90E+03	7.70E+03	2.00E+04	5.23E+04	1.49E+05
Q Surt Co Rtm	V	692	257	8 29	2.54E+03	7.80E+03	2.25E+04	6.60E+04	1.90E+05	4.56E+05
111111111111	5	56.2	181	547	1.60E+03	4.63E+03	1.28E+04	3.54E+04	9.66E+04	2.22E+05
	9	41.8	130	375	1.05E+03	2.86E+03	7.60E+03	1.98E+04	5.16E+04	1.47E+05
O) Saut 02 Rtm	40	76.0	1	813	2.50E+03	7.71B+03	2.22E+04	6.52E+04	1.87E+05	4.50E+05
	9	55.5	1	341	1.58E+03	4.57E+03	1.26E+04	3.50E+04	9.54E+04	2.19E+05
	35	413	1	371	1.03E+03	2.83E+03	7.51E+03	1.95E+04	5.10E+04	1.45E+05
Offwer@6134m	34	756	252	608	2.49E+03	7.67E+03	2.21E+04	6.48E+04	1.86E+05	4.48E+05
1117A110	Ş	\$52	821	538	1.57E+03	4.55E+03	1.25E+04	3.48E+04	9.50E+04	2.18E+05
	5	41.1	128	369	1.03E+03	2.81E+03	7.48E+03	1.94E+04	5.08E+04	1.44E+05
R7 Swt%Rtm	Ş.4	74.3	248	795	2.45E+03	7.54E+03	2.18E+04	6.38E+04	1.83E+05	4.40E+05
	Ģ	543	175	529	1.55E+03	4.47E+03	1.23E+04	3.42E+04	9.34E+04	2.14E+05
	ŝ	40.4	126	363	1.01E+03	2.77E+03	7.35E+03	1.91E+04	4.99E+04	1.42E+05
Q5urt0%Rtm	S.	73.8	246	790	2.43E+03	7.49E+03	2.16E+04	6.33E+04	1.82E+05	4.38E+05
	Ģ	685	174	525	1.54B+03	4.446+03	1.22E+04	3.40E+04	9.27E+04	2.13E+05
	38	40.1	125	360	1.00E+03	2.75E+03	7.30E+03	1.90E+04	4.96E+04	1.41E+05
	25									2

a K $\propto C^{1}/C_{G}$, where C^{1} is the initial concentration in the liquid and C_{G} is the vapor concentration at equilibrium.

Table 15. Comparison of vapor pressure vs. temperature regressions derived from liquid and vapor characterization for the ARCO jet fuel samples at nominal loading (3 kg/m³).

		Vapor Pressure vs. Ten	Vapor Pressure vs. Temperature Regressions ^a
Sample	Flash Point, "F ('C)	Liquid-GC	HS-GC ^b
2.5 wt% OH	87 (30.6)	Ln VP = 13.889 - 3505.4 (1/T)	Ln VP = 15.303 - 3991.3 (1/T)
Base Jet ^C	114 (45.6)	Ln VP = 14,939 - 4110.1 (1/T)	Ln VP = 14.680 - 4053.3 (1/T)
97.5 wt% Btm	132 (55.6)	Ln VP = 16.842 - 4881.5 (1/T)	Ln VP = 17.716 - 5195.1 (1/T)
95 wt% Btm	139 (59.4)	Ln VP = 18.284 - 5479.8 (1/T)	Ln VP = 18.031 - 5406.3 (1/T)
92.5 wt% Btm	148 (64.4)	Ln VP = 19,154 - 5855,2 (1/T)	Ln VP = 18.856 - 5754.7 (1/T)
90 wt% Btm	159 (70.6)	Ln VP = 19,159 - 5897.2 (1/T)	Ln VP = 19.118 - 5892.9 (1/T)
87.5 wt% Btm	160 (71.1)	Ln VP = 20.113 - 6297.8 (1/T)	Ln VP = 18.109 - 5648.5 (1/T)
85 wt% Btm	165 (73.9)	Ln VP = 20.546 - 6496.0 (1/T)	Ln VP = 18.839 - 5928.7 (1/T)
	210 H		

^a VP = vapor pressure in mbar; T = K.

b Data taken from Table 3.

^c Liquid-GC: Quarter-scale test #46; HS-GC: Averaged data for fuel samples from quarter-scale tests #42, 46, and 51 (Tables A-1 through A-6).

temperature for nominal loading (3 kg/m³) using the data in Table 13 ("Calculated"). Regressions from Table 3 are included for comparison ("HS-GC").

Summary

1. For the ARCO fuels reformulated for flash point, there was an inverse relationship between vapor pressure and flash point temperature (i.e., the fuel with the highest vapor pressure had the lowest flash point).

2. The commercial grade ARCO and Reno (Exxon) fuels had different formulations – component distribution favored the lighter hydrocarbons in the ARCO fuel – but both fuels had essentially the same saturation vapor pressures (within 1-7%) at the test temperatures.

3. The two fuels used in the Marana, AZ, ground tests (#1, #3) were similar to the Reno fuel in formulation, but had about a 15-20% lower vapor pressure, which might have been due to some weathering of the fuel in the warm (>40°C) center wing tank of a 747 aircraft.

4. Vapor densities for all of the commercial grade jet fuels (quarter-scale test samples #42, 46, 51, and Marana, AZ, ground test samples #1 and 3) either equaled or exceeded the lower flammability limit (fuel/air mass ratio = 0.038) for nominal fuel loading (V/L = $274 [-3 \text{ kg/m}^3]$) at 40°C and 14,000 foot altitude.

5. All but two of the reformulated flash point ARCO fuels equaled or exceeded the lower flammability limit at 60°C for 14,000 feet. The exceptions – fuels 87.5 wt% Btm and 85 wt% Btm – were less than the limit at 60°C. Fuel 97.5 wt% Btm exceeded the limit at 50°C, and fuel 2.5 wt% OH exceeded the limit at sea level and 40°C.

6. Overall, liquid characterization gave results for the half-filled tank situation that were essentially equivalent to the results from vapor characterization. But, liquid characterization better represented the contribution to fuel vapor composition from the higher molecular weight components. This led to the modification to the vapor method involving the use of the C₅ reference standard regression for all of the vapor subsections (i.e., C₅-C₁₃). For

example, for the Base Jet fuel (quarter-scale test #46), use of the C₅ reference standard only led to fuel vapor pressures of 7.92, 12.4, and 19.1 mbar at 40°C, 50°C, and 60°C, respectively. These results compared well with the values derived from liquid characterization of 7.91, 12.6, and 19.4 mbar at the same respective temperatures (see Tables 10 and 12).

7. Furthermore, liquid characterization also gave results for the nominal loading situation that compared well with the results from vapor characterization.

8. Using the techniques described in this report, it is possible to characterize (model) a complex hydrocarbon mixture under any specified set of conditions. For example, using Raoult's law, the liquid characterization results can be used to calculate fuel vapor pressure at any given temperature, if the saturation vapor pressures for the reference hydrocarbons at those temperatures are known.

É.

References

É.

Ioffe, B.V., and A.G. Vitenberg. 1984a. Head-Space Analysis and Related Methods in Gas Chromatography. (Translated from the Russian by I.A. Mamantov). John Wiley & Sons: New York, pp. 94-96.

Ioffe, B.V., and A.G. Vitenberg. 1984b. *Head-Space Analysis and Related Methods in Gas Chromatography*. (Translated from the Russian by I.A. Mamantov). John Wiley & Sons: New York, pg. 26.

Reid, R.C.; J.M Prausnitz; T.K. Sherwood. 1977. The Properties of Gases and Liquids. McGraw-Hill: New York, pp. 629-665.

Sagebiel, J.C. 1998. Analysis of Vapor Samples Collected from the Center Wing Tank of a Boeing 747-100 Aircraft during Ground Tests. Draft Final Report to the National Transportation Safety Board, October.

Shepherd, J.E.; C.D. Nuyt; J.J. Lee. 2000. Flash Point and Chemical Composition of Aviation Kerosene (Jet A). Explosion Dynamics Report FM99-4, California Institute of Technology, May 26.

Woodrow, J.E., and J.N. Seiber. **1988**. Vapor-pressure measurement of complex hydrocarbon mixtures by headspace gas chromatography. *Journal of Chromatography*, 455:53-65.

Woodrow, J.E., and J.N. Seiber. 1989. Evaluation of a Method for Determining Vapor Pressures of Petroleum Mixtures by Headspace Gas Chromatography. Final Report to the California Air Resources Board (Contract #A6-178-32), September. Woodrow, J.E., and J.N. Seiber. **1997**. *The Laboratory Characterization of Jet Fuel Vapor under Simulated Flight Conditions*. Final Report to the National Transportation Safety Board (Order No. NTSB12-97-0255), November.

Appendix A

į

Headspace GC results for the ARCO fuel samples and the Marana, AZ, ground test fuel samples Table A-1. Headspace GC results for ARCO samples at 40°C (10 mL [V/L = 1.2]).

L

	Total Pressure.	mbar	20.4±0.5	4.46±0.06	2.84 ± 0.06	2.02±0.07	1.90 ± 0.07	1.42 ± 0.02	1.16±0.01	8.51±0.08	8.34±0.11	8.13±0.28	
		12	0.148	0.174	0.164	0.165	0.179	0.182	0.198	0.150	0.149	0.147	
		11	0.380	0.492	0.496	0.464	0.501	0.500	0.485	0.407	795.0	0.418	
lbar		10	0.649	664.0	0.793	0.666	0.584	0.456	0.310	0.753	0.745	0.735	
l Pressure, m		6	1.56	1.03	0.682	0.400	0.280	0.152	0.082	1.20	1.19	1.15	
Subsection Partial Pressure, mbar		œ	4,78	0.926	0.362	0.158	0.136	0.024	0.010	1.89	1.88	1.77	
Sub		7	7.84	0.568	0.151	0.025	0.086	0.002		2.22	2.20	2.18	
		y	3.24	0.125	0.048	0.002	0.030	0.002	1	0.827	0.818	167.0	
		v	83	0344	0.143	0.141	0.100	0.107	0.073	1.06	0.962	0.943	
		Samide	2 5 40 OH	97 296	050%	42.50	90%	87 596	850	<u>"C</u> P#	97#	#51	

-				Subsection Mole Percent	Mole Percent				
									Ave
Sample	Ŷ	v	5	ø	6	10	11	12	MW
2 Car OH	X QK	15.9	38.4	23.4	7.64	3.18	1.86	0.724	103.8
07 500	22.2	2.80	12.7	20.8	23.1	17.9	11.0	3.90	123.4
0505	2,12	1.69	5.32	12.8	24.0	27.9	17.5	5.78	132.7
07 50	K 08	000	1.24	7.82	19,8	33.0	23.0	8,16	137.5
0.00	5 27	58	4 54	7.17	14.8	30.8	26.4	9.44	138.0
27 500		0.140	0.140	1.68	10.7	32.0	35.1	12.8	143.5
850	121	2	;	0.864	7.08	26.8	41.9	17.1	147.4
<u></u>	12.5	9.72	26.1	22.2	14.1	8.85	4.78	1.76	110.1
97#	11.5	9.81	26.4	22.5	14.3	8.93	4.76	1.79	110.4
#51	11.6	9.72	26.8	21.8	14.1	9.04	5.14	1,81	110.6

Table A-1, cont

.

1		_				·			-		
	Total Density, g/m ³	81.4	21.2	14.5	10.7	10.0	7.85	6.55	36.0	35.4	34.6
	12	0.969	1.14	1.07	1.08	1.17	1.19	1.30	0.982	0.975	0.962
	11	2.28	2.96	2.98	2.79	3.01	3.00	2.91	2.44	2.38	2.51
n ³	10	3.55	4.37	4.34	3.64	3.19	2.49	1.69	4.12	4.07	4.02
r Density, g/r	6	7.69	5.08	3.36	1.97	1.38	0.749	0.404	5.91	5.86	5.67
Subsection Vapor Density, g/m ³	80	21.0	4.06	1.59	0.694	0.597	0.105	0.044	8.30	8.25	1.77
Sub	2	30.2	2.19	0.581	0.096	0.331	0.008	1	8.55	8.47	8.39
	6	10.7	0.414	0.159	0.007	660.0	0.007		2.74	2.71	2.62
	5	5.07	0.954	0.396	0.391	0.277	0.297	0.202	2.94	2.67	2.61
i	Sample	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%	#42	95#	#\$1

			Sub	section Partie	Subsection Partial Pressure, mbar	bar			-
									Total
									Pressure,
Samole	ŝ	9	7	œ	0	10	11	12	mbar
2.5% OH	0.309	1.47	5.10	3.56	1.24	0.547	0.341	0.138	12.7±0.30
97.50	0.058	0.069	0.356	0.658	0.775	0.632	0.373	0.162	3.08±0.10
950	0.031	0.035	0.103	0.266	0.537	0.629	0.426	0.165	2.19 ± 0.05
92.5%	0.020	1	0.016	0.128	0.347	0.558	0.427	0.166	1.66±0.05
000	0.010	0.013	0.052	660.0	0.211	0.458	0.404	0.151	1.40±0.03
87.50	0.017		0,029	0.042	0.114	0.352	0.400	0.157	1.11 ± 0.05
85%	0.016	1		0.035	0.066	0.253	0.401	0.172	0.94+0.06
#42	0.124	0.400	1.51	1.47	1.00	0.655	0.369	0.132	5.66±0.10
#46	0.120	0.398	1.52	1.46	1.01	0.678	0.385	0.150	5.72±0.20
#51	0.112	0.368	1.42	1.36	0.968	0.658	0.396	0.155	5.44±0.02

÷
274]
л.
Ę
י[עו
Ē
0°C (0.08
ē
ŭ
\$
at
S
np.
981
ARCO 58
ž
T A
3
alts
Ges
ບົ
Ö
ğ
dsp
6B(
Ï
ų
εA
p
Ta

				Subsection Mole Percent	Aole Percent				
									V IV
Sample	ŝ	9	7	80	6	10	11	12	MM
2.5% OH	2.43	11.6	40.1	28.0	9.76	4.30	2.68	1.09	108.6
97.5%	1.88	2.24	11.5	21.3	25.1	20.5	12.1	5.25	128.4
950	1.41	1.60	4.70	12.1	24.5	28.7	19.4	7.53	136.3
92.5 <i>d</i> h	1.20		0.963	7:70	20.9	33.6	25.7	66'6	142.4
%06	0.715	0.930	3.72	7.08	15.1	32.8	28.9	10.8	142.7
87.5%	1.53		2.61	3.78	10.3	31.7	36.0	14.1	146.6
85%	1.70	1	1	3.71	7.00	26.8	42.5	18.2	150.0
#42	2.19	7.07	26.7	26.0	17.7	11.6	6.52	2.33	117.4
#46	2.10	6,96	26.6	25.5	17.6	11.8	6.73	2.62	117.8
#51	2.06	6.77	26.1	25.0	17.8	12.1	7.28	2.85	118.3

Table A-2, cont.

.

	- 1		Su	bsection Vap	Subsection Vapor Density, e/m ³	/m ³			F
	,								Total
_	0			ø	9	10	11	\$	nensity,
0.857 4.87 1 106	-	P	k	2 2			11	77	g/m ³
	0	ŀ		0.01	11.0	2.99	2.05	0.903	0 65
0.440	0	1.1		2.89	3.82	3.46	1 24		2122
0.116	0.116 0.35	0.35	96		2 6 6		1.7.12	1'00	15.2
0.055 1 1 0.055		ľ	c	2.2.V	2017	0 44	2.56	1.08	5.11
			3	70C'N	1.71	3.05	2.56	90	0.00
0.200	0.043 0.20	0.20	0	0.434		2 20			20.2
0.047 - 0.112			2	1810	222		2.43	0.988	7.66
0.044			Ī		700.0	1.92	2.40	1.03	6.26
			Ţ	0.134	0.325	1.38	2.4	113	54.5
18.2 26.1 14.6.0	8.0 20.1	2	_	6.45	4 93	2 4 2			
0.333 1.32 5.85	1.32 5.8	8.5		179	00		77.7	0.804	25.5
0310 1 22 24	1 2 2 2 2 2		Ţ		1,70	3./1	2.31	0.982	25.9
	1.U	'n		16.6	4.77	3,60	238		1
								1.0.1	1.5

Table A-3. Headspace GC results for ARCO samples at 50° C (10 mL [V/L = 1.2]).

			Cit.	Section Dent					
			1nc	ITAT IIOIIDOS	Suusseuon rarial pressure, mbar	lbar			
									Tota
Sample	ŝ	v	٢	a	c	ç			Pressure,
2.5% OH	7 2 1	1 00			~	ΓΩ	11	12	mbar
CH EM		4.77	11.0	8.51	2.82	1.15	0.666	1000	27 2.53
0/10/16	0.407	0.142	0.808	65		20		1999	C'N#C'7C
1020 020	0 161				1.11	1,43	0.745	0.264	6.89+0.06
	121-2	200.0	0.173	0.559	1.14	1.30	0764	0.540	
0/10/26	0.147	1	0.036	066.0	0 X 00			0+7*0	4.33±0.05
1006	116			1444	00011	1.20	202.0	0.277	3.55+0.5
04 50	011.0	0+0.0	0.114	0.177	0.435	1.00	0.866	0.363	3 71 7 72
0/.0./0	0.119	1	1	0.034	0.50	0.7.0		70710	CU.U±10.c
85%	0.082			1 22 2	244	071.0	0750	0.286	2.31±0.11
CV#			;	400.0	0.105	0.516	0.838	0.302	1 84-0 13
	1.24	1.10	3.42	3.09	2.00	128	0440	07.0 V	CONTROL I
#46	1.15	1.16	3 41	2 10	100		0+1-2	0.45	13.2±0.2
#51	<u> </u>			01.6	2.01	1.29	0.742	0.223	13.1+0.3
		1.10	3.20	3.02	2.03	31	0.770	1355	20.0.0
							2112	0.4.0	13.2±0.03

				1	-	_		т		F	-			Т			T	
		Ave	MM	105		124.8	34.6		140,1	140.0	1 1 2 2	140.0	149.3	1175	C"715	112.6	0 611	114.0
		ţ	12	0.690	2 0.5	0.0	5.52	7.91	10.1	8.70	15.2	14.4	16.4	1 R.A		1.70	CO -	1.70
		;	11	2.05	10.8		1/.0	256		28.8	101		40.4	5.67	1.2	10.0	5.83	
		ç	2	3.54	18.7		67.27	35.5		53.2	31.5	57.0	<i>1</i> ,	9.71	0 04	00'2	16.6	
In Damant		0		8.09	24.8		7.04	19,4		14.4	9.51	5 68		15.2			4.01	
Silheetion Mole Dement		α	20	707	22.1	120		0.40	60 X	00%	1.47	0.216		4.0.4	23.7		277	
		7			11.7	3.98		1.02	3 70		1	;		0.02	26.1		C.02	
		Q			2,00	0.207		:	33		:	1	NX X	200	8.80	<u>0 70</u>		
		ŝ	7.70	10.2	12.0	3.70			3.85		114	4.44	9.41		8.19	8.85		
		Sample	2.5% OH	07 50		0%CK	92.50		% %	<u>87 < 0.</u>		0%02	#42	747	0++#	#21		

Table A-3, cont.

,

.

	ota	Density,	s ^{III}	77		7.0	X		n X		5	12,0	10.3		2.4	6.4	2.22
		Å				0	2		T			-	-		n		ľ
		<u>-</u>	14	1.42		1.0/	1.52		1./0	1.66	101	101	1.92	121	ţ	4	Re L
		11	-	3.88	424		4,45	530		5.04	\$ 30		4,85	435		4.32	4.48
'm ³		Q		6,09	6.83		0.89	6.68		5.30	3.86		4.13	6.78		0.05	6.94
Subsection Vapor Density, g/m ³		6		13,3	8.17		0.44	3.28		2"08	1.05	1.02.0	Incin	9.55	120	2.00	69.6
osection Vap		80	22.0	200	6.46	920		0.974	1 7.65	0.133	0.145			13.1	6 6	1.14	12.8
		7	AA 3		3.01	544		0.134	0 475		1	1		17.8	12.1		13.1
		v	16.0		0:400	0.029		1	0.128		;	\$	2 77	2112	3.72	VIL C	7/10
		Ş	6.72		T-07	0.432	1302	<i></i>	0.312	A 3AA	0200	0.220	2 2 2	2.2.2	3.09		2112
		Sample	2.5% OH	07 802		%ck	93 592			<u>87 द0</u>		0%CX	CP#		10 0 #		

Table A.4. Headspace GC results for ARCO samples at 50°C (0.08 mL [V/L = 274]).

			Sub	Subsection Partial Pressure, mbar	Il Pressure, n	bar			
	9		٤	8	σ	10	=	12	Total Pressure, mhar
	1.5	0	7.16	6.02	2.21	0.963	0.582	0.214	19.4±0.7
	0.0	50	0.499	1.12	1.37	1.07	0.633	0.233	5.04 ± 0.14
0.014 0.00	0.0(33	0.110	0.412	0.908	1.09	0.684	0.243	3.46 ± 0.06
	1		0.022	0.158	0.504	0,964	0.721	0.248	2.62 ± 0.04
0.007 0.01	0.01	5	0.068	0.121	0.317	0.725	0.696	0.230	2.18 ± 0.08
0.004	1		1	0.023	0.166	0.560	0.730	0.231	1.71 ± 0.11
	1		:	0.005	0.081	0.428	0.702	0.262	1.49±0.01
_	0.4	73	2.08	2.33	1.67	1.13	0.675	0.210	8.69±0.12
0.115 0.46	ò	61	2.04	2.28	1.64	1,10	0.672	0.228	8.54±0.28
0.111 0.44	0.4	46	2.03	2.15	1.60	1,10	0.669	0.231	8.34±0.21

				Subsection A	Subsection Mole Percent				
Sample	5	9	7	ø	6	10	1	12	Ave
2.5% OH	1.71	9.80	36.9	31.1	11.4	4.97	3.00	1.10	110.4
97.5%	1.03	1.19	16'6	22.2	27.2	21.2	12.6	4.62	129.7
95%	0.404	0.087	3.18	11.9	26.2	31.5	19.7	101	138.3
92.5%	0.305	1	0.838	6.02	19.2	36.7	27.5	9.45	143,9
90%	0.321	0.688	3.12	5.55	14.5	33.3	31.9	10.6	144.2
87.5%	0.233	1	ł	1.34	9.68	32.7	42.6	13.5	150.2
85%	0.739	1	3	0.336	5.44	28.7	47.1	17.6	152.3
#42	1.43	5.45	24.0	26.8	19.2	13.0	LLL	2.42	119.8
#46	1.35	5.40	23.9	26.7	19.2	12.9	7.87	2.67	119.9
#51	1.33	5.35	24.3	25.8	19.2	13.2	8.02	2.77	120.1
#51	1.33	5.35	24.3		25.8	_	19.2	19.2 13.2	1 19.2 13.2 8.02

Table A-4, cont.

`

	Density.	12 o/m3	┨	┦		1.54 17.8		┦		1.46 9.58	╀	1 23 20 4	┥	1.45 28.1	1.46 373
		11	054	3 40	00,1	3.98	4.20		CV. 1	4.25	4.08	3 03	2.02	14.0	3.89
m3		9	5.10	5 67		2110	5.11	2 04	1010	2.97	2.27	5.99	5 93	3	5.83
r Density of	(9	10.6	6 54		4:34	2.41	1		0.793	0.387	7.98	7 83	3	7.64
Subsection Vanor Density o/m3	(x	25.6	4.76		C/.1	0.672	0515		1 260,0	0.021	9.91	9.70		y.14
Sut	C	/	26.7	1.86		014.0	0.082	0.254		:	1	7.76	1.61		10.1
	Ň	0	6.10	0.192	A 61 A		1	0.048		:	1	1.52	1.48	517	1.40
	V	0	0.889	0.140	N NR		0.021	0.019			0.030	0.333	0.309	0.500	0.470
•	Samula	aurine	2.5% OH	97.5%	4250		0/.C.74	%06	87 505		8,00	#42	917#	17#	771

1
নি
_
mL [V/L = 1.2]
- 11
.1
, [VIL
>
. 1
멑
0
\simeq
\sim
25
2
t 60°C (10 n
6
1
5
చ
Ť
- 94
E
8
D san
\frown
×
S, C
2
~
- 눈
2
-
쁕
Sult
5
٥
-
13
×
\sim
o o
8
ace
pace C
Ispace (
Idspace (
eadspace (
Headspace C
Headspace C
. Headspace C
5. Headspace C
-5. Headspace C
A-5. Headspace C
A-5. Headspace C
le A-5. Headspace C
ble A-5. Headspace C
able A
Table A-5. Headspace C

			ŝ	ubsection	Subsection Partial Pressure, mbar	ssure, mb	١٢			
Sample	ŝ	و	2	œ	δ	10	11	12	13	Total Pressure, mbar
2.5% OH	3.10	6,16	14.7	11.1	4.19	1.77	1.07	0.388		42.5±0.9
97.5%	0.512	0.202	1.24	2.32	2.67	2.10	1.33	0.478	0.151	11.0±0.1
95%	0.163	0.016	0.255	0.825	1.73	2.13	1.39	0.504	0.155	7.17 ± 0.22
92.5%	0.161	0.003	0.047	0.300	0.955	1.85	1,40	0.503	0.149	5.37±0.13
%06	0.128	0.053	0,192	0.265	0.657	1.60	1.57	0.651	0.202	5.32±0.17
87.5%	0.109	0.002	0.002	0.044	0.305	1.12	1.55	0.586	0.187	3.90±0.29
85%	0.067	0,002	'l	0.010	0.136	0.787	1.35	0.527	0,160	3.04 ± 0.22
#42	1.57	1.64	4.84	4.47	2.98	1.98	1.18	0.399	1	19.1±0.7
#46	1.46	1.63	4.82	4.46	2.98	1.96	1.13	0.397	1	18.8±0.6
#5I	1.49	1.62	4,78	4.42	2.96	1.97	1.17	0.391	1	18.8±0.8

4			_			_					
	Ave MW	106.3	127.5	138.0	143.3	144.5	150.7	153.2	113.6	113.8	113.8
ſ	13		1.37	2.16	2.78	3.80	4.79	5.26	-	-	1
	12	0.913	4.34	7.03	6.37	12.2	15.0	17.3	2.09	2.11	2.08
	11	2.52	12.1	19.4	26.1	29.5	1.68	44.4	6.19	6.00	6.22
Percent	01	4.17	1.91	29.7	34.5	30.1	28.7	25.9	10.4	10.4	10.5
Subsection Mole Percent	6	98.6	24.3	24.1	17.8	12.4	7.81	4,48	15.6	15.8	15.7
Subsect	8	26.1	21.1	11.5	5.59	4.98	1.13	0.329	23.4	23.7	23.5
	<i>ل</i>	34.6	11.3	3.56	0.876	3.61	0.051	1	25.4	25.6	25.4
	9	14.5	1,84	0.223	0.056	266'0	0.051	0.066	8,60	8.65	8.62
	Ş	7.30	4.65	2.27	3.00	2.41	2.79	2.20	8.24	7.75	7.92
	Sample	2.5% OH	97.5%	95%	92.5%	%0 6	87.5%	85%	#42	#46	#51

Table A-5, cont.

1			- 1				Ċ				
	Total Density, g/m ³	163.2	50.7	35.7	27.8	27.7	21.2	16.8	78.2	77.4	77.3
	13	:	1.00	1.03	0,992	1.34	1.24	1.06		1	1
	12	2.39	2.94	3.10	3.09	4.00	3.60	3.24	2.45	2.44	2.40
	11	6,04	7.51	7.85	06"/	8.86	8.75	7.62	6,66	6.38	6.60
Subsection Vapor Density, g/m ⁻	10	9,10	10.8	10.9	9.51	8.22	5.76	4.04	10.2	10.1	10.1
Vapor De	6	19.4	12.4	8.01	4.42	3.04	1.41	0:930	13.8	13.8	13.7
Subsection	ø	45.8	9.57	3.40	1.24	1.09	0.182	0.041	18,4	18.4	18.2
52	7	53.2	4.49	0.923	0.170	0.695	0,007	2	17.5	17.4	17.3
	9	19.2	0.629	0.050	0,009	0,165	0.006	0.006	5.10	5.07	5.04
	Ś	8.08	1.33	0.425	0.420	0.334	0.284	0.174	4,09	3.80	3.88
	Sample	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%	#42	#46	#51

Table A-6. Headspace GC results for ARCO samples at 60°C (0.08 mL [V/L = 274]).

144.00 V. 144.00

		_	_			T	-	-	-	-	-	-		-	•
ī		Total	Pressure,	mbar	27.3 ± 0.8	8.35+0.32	6, 19+0.29	5.02+0.10	1 3 5 40 78	3.29+0.12	2.94+0.10	12.3±0.2	12.2 ± 0.4	12.1±0.4	
				13	1	0.171	0.191	0.189	0.212	0.176	0.197		:	:	
				12	0.385	0.481	0.555	0.591	0.556	0.518	0.600	0.385	0.391	0.400	
	ar			11	10.1	1.23	1.31	1.42	1.35	1.32	1.30	1.03	1.04	1.08	
	ssure, mb		ç	2	1.63	1.85	1.88	1.72	1.35	0.986	0.714	1.72	1.72	1.73	
	Subsection Partial Pressure, mbar		¢	۷	3.54	2.14	1.45	0.829	0.534	0.250	0.117	2.47	2.45	2.42	
	ubsection		C	0	8.58	1.66	0.616	0.236	0.200	0:030	0.007	3.26	3.22	3,16	
			r		9.36	0.704	0.172	0:030	0.119		1	2.74	2.70	2.65	
			V	,	2.43	0.067	0,003		0.019	4	ł	0.581	0.566	0.559	•
			v	222	0.356	0.044	0.009	0.010	0.007	0.006	1	0.133	0.126	0.116	
-			Samula		HO %C7	97.5%	95%	92.5%	%06	87.5%	85%	#42	#46	#51	

					_				_			
	Ave	MM	112.2	133.2	141.7	147.0	147.9	153.2	156.3	121.3	121.5	121.9
		13	1	2.05	3.09	3.76	4.88	5.36	6.71	:	:	:
		12	1.41	5.76	8.97	11.8	12.8	15.8	20.4	3.12	3.20	3.30
		11	3.70	14.7	21.2	28.2	31.1	40.2	44.3	8.36	8.52	16.8
Percent		10	26'5	22.2	30.4	34.2	31.1	30.0	24.3	14.0	14,1	14.3
Subsection Mole Percent		6	13.0	25.6	23.4	16.5	12.3	7.61	3.99	20.0	20.1	20.0
Subsec		8	31.4	19,9	96.6	4.70	4.60	0.913	0.238	26.5	26.4	26.1
		-	34.3	8.43	2.78	0.597	2.74	:	1	22.2	22.1	21.9
	•	9	8,90	0.803	0.048	1	0.437	ł	:	4.72	4.63	4.61
	4	2	1.30	0.527	0.145	0.199	0.161	0.182	;	1.08	1.03	0.957
		Sample	HO %C.2	97.5%	95%	92.5%	90%	87.5%	85%	#42	#46	#51

. . .

Table A-6, cont.

	Total Density, g/m ³	110.6	40.2	31.6	26.7	23.2	18.2	16.6	54.0	53.6	53.3
	13		1.14	1.27	1.26	1.41	1.17	1.31	:	1	:
	12	2.37	2.96	3.41	3.64	3.42	3.19	3.69	2.37	2.40	2.46
	11	5.70	6.94	7.40	8.02	7.62	7.45	7.34	5.81	5.87	6.10
Subsection Vapor Density, g/m ³	10	8.38	9.51	9.66	8.84	6.94	5.07	3.67	8.84	8.84	8.89
Vapor De	6	16.4	16'6	6.72	3.84	2.47	1.16	0.542	11.4	11.3	11.2
subsection	8	35.4	6.85	2.54	0.974	0.825	0.124	0.029	13.4	13.3	13.0
S)	7	33.9	2.55	0.622	0.109	0.431	ł	ł	9.92	9.77	9.59
	6	7.56	0.208	0,009		0.059		:	1.81	1.76	1.74
	5	0.928	0.115	0.023	0.026	0.018	0,016	1	0.346	0.328	0.302
	Sample	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%	#42	#46	#51

Total Pressure, mbar	6.83±0.17	60.0 1 0.09
 12	0.142	0.135
11	0.461	0.476
10	1.18	1.18
6	1.83	1.78
8	1.60	1.55
7	0.871	0.876
6	0.286	0.301
5	0.462	0.492
Sample	#1	#

		•		CULOR DATA INTO L CI CON					
Sample	S	6	7	8	6	10	11	12	Ave MW
#1	6.76	4.19	12.7	23.4	26.8	17.3	6.75	2.08	121.0
#3	7.24	4.43	12.9	22.8	26.2	17.4	10'4	1.99	120.7

	r		
	Total Density, g/m ³	31.8	31.5
	12	0.929	0.884
	11	2.77	2.86
m ³	10	6.45	6.45
r Density, g/i	6	9.02	8.77
ubsection Vapor Density, g/m ³	8	7.02	6.80
Sub	7	3.35	3.37
	6	0.947	0.997
	s	1.28	1.36
	Sample	#1	#3

Table A-8. Headspace GC results for the ground test fuel samples at 40° C (0.08 mL [V/L = 274]).

–	Total Pressure,	+		
	5		0+1+0	0.144
	11	7772	C74'N	0.456
nbar	Ş		1,01	1.05
ubsection Partial Pressure, mbar	٥	1,1	1.47	1.48
section Partie	α		1.44	1.22
Sub	٢		n/c'n	0.590
	×		7C1'N	0.142
	V		AON'N	0.077
	Comula	Valityle	#1	#3

	Ave MW	126.2	126.2
	12	2.88	2.79
	11	8.40	8.84
	10	20.0	20.4
Subsection Mole Percent	6	29.4	28.7
Subsection N	8	24.1	23.6
	L	11.3	11.4
	9	2.61	2.75
	2	1.36	1.49
	Sample	1#	#3

	Total Density,	g/m ³	24.5	25.0
		12	0.956	0.942
		11	2.55	2.74
g/m ³		10	5.52	5.74
or Density, g/		9	7.34	7.29
ubsection Vapor Density, 1		8	5.36	5.36
Sut		7	2.19	12.2
		و	0.437	0.470
		S	161.0	0.213
		Sample	#1	£#
		-		

Table A-9. Headspace GC results for the ground test fuel samples at 50°C (10 mL [V/L = 1.2]).

Г				Т		Г	-
	Pressure			<u>e V. e 11</u>	C'OHY'II	1 1 2 2 2 1	
		5	77	DUC U	201700	206.0	
		11		0,805	0,000	0.807	2000
		5	24	2.02		2.02	
		6		3.14		3.00	
		00		2.66		7.00	
			×.	1.30		וטע	
	1	0		0.40/		C+2 /	
	1	0		0,000		~~~~	
		Sample	17	#1	7#		
	Total	Total		7 8 9 10 11 12	6 7 8 9 10 11 12 P 3 0.407 1.36 2.66 3.14 2.02 0.805 0.300 1	7 7 8 9 10 11 12 7 1.36 2.66 3.14 2.02 0.805 0.209	6 7 8 9 10 11 12 3 0.407 1.36 2.66 3.14 2.02 0.805 0.209 0.437 1.39 2.60 3.06 2.02 0.807 0.305

			Ave			11111		777			144.0	
					2			1.00		0		
				Ŧ			101	01.1			3	
				5	2				ŀ	X	T 12 T	
AOIC PERCENT				0	h					7.12		
Subsection Mole Ferent			,	~	2		2.3.7			3		
			ļ	,			[2.]			t i		
•			١	0)		000		S			
		-	ţ	0								
	 _		 Contraction of the second s			*	111					

Total	Density.	a land	Bur	51.0	E V 3	^ .
		12		1.32		
		11		4.68	470	
		10		10.7	10.7	+
	l			0'CT	14.6	
	¢	×		11.5	[1.0	
	t	`	5.07 2	10.0	5.19	
	N	0	121	1.01	1.40	
	v	J	1 63		1.72	
	Sample	Author	#		#3	
				7 8 9 10 11 12 I	6 7 8 9 10 11 12 1 1.31 5.07 11.3 15.0 10.7 4.68 1.32	7 8 9 10 11 12 1 1 5.07 11.3 15.0 10.7 4.68 1.32 1 0 5.19 11.0 14.6 10.7 4.70 13.0

•

Table A-10. Headspace GC results for the ground test fuel samples at 50° C (0.08 mL [V/L = 274]).

-		Total	Pressine		IMDAT	0 72, 771	ITTOTCC'O	011.00	
				5	71	010	701 0	A 100	
				11	11	164.0	7.141	0.745	
bar				10	10	74		1.78	
Partial Pressure, mbar				6		2.59		2.57	
ubsection Partia				ø		2.03		7.01	
Sub			l	7	l k	0.851		1/0'0	
			1	٥		001.0		7110	
			1	n	500 0	0,000	0.097	2001	
	_		Come la	Sample	#	TH	C#	2	

ŕ		Ave		11417	196.0	140.7	137 1	14/.0
			12		S I C	DT • 7	256	
		1			8.63		883	
		 ç	2	X X	20.8		21.1	
Nole Percent		¢	ע		0.16	ľ X X	30.4	
Subsection Mole Percer		0	0	0.75	0. 1 .1	k	5.0	
		7	-	10.01	7.01		1.01	
-		y	Ņ	27	1.01		10.14	
		5		444		ŝ	1100	
	 	Sample	•	#		#		

		–			_	Т		Г	
-		Total	Density.			3.00	0.70	20.0	27.7
				5	3		1.10	36	1140
				-	:	4 20	244	4.34	
e/m ³				10		6.66		9.43	
	۰F.		(5		12.4		12.3	
Subsection Vapor Density				×		8.63		0.00	
Sut			t	~		5.18	2 477	17.0	
			V	þ		noc.n	1 553	****	
		-	v	C	0 332	0.440	1 234		
			Samula	Vigning	,#	T //	C#		

Table A-11. Headspace GC results for the ground test fuel samples at 60° C (10 mL [V/L = 1.2]).

			Sub	ibsection Partial Pressure, mbar	al Pressure, n	lbar			
									Total
Sample	5	9	7	ø	6	10	11	12	Pressure, mhar
#1	0.731	0.542	1.90	3.89	4.80	3.07	1.38	0.344	
#3	0.772	0.583	1.96	3.86	4.76	3.28	1.34	0.360	16.9±0.2

	Ave	123.7	123.6	
	12	2.06	2.13	
	11	8.28	7.92	
	10	18.4	19.4	
ubsection Mole Percent	6	28.8	28.1	
Subsection N	œ	23.4	22.8	
	7	11.4	11.6	
	6	3.25	3.45	
	S	4.39	4.56	
	 Sample	#1	#3	

	Total Density, p/m ³	74.4	75.5
	12	2.12	2.21
	=	64.2	7.56
'm ³	10	15.8	16.8
ubsection Vapor Density, g/m ³	6	22.2	22.0
section Vapo	ø	16.0	15.9
Sut	7	6.88	7.09
	6	1.69	1.81
	S	1.90	2.01
	Sample	#1	#3

Table A-12. Headspace GC results for the ground test fuel samples at 60°C (0.08 mL [V/L = 274]).

:

	Total Pressure, mbar		0.410 13.0±0.3
		1.19 0.	1.34 0.
ibar	10	2.84	2.96
section Partial Pressure, mbar	6	3.97	3.97
section Parti	8	2.86	2.84
Sul	2	1.08	1.16
	ر	0.174	0.192
	5	0.093	0.088
	Sample	#1	#3

	Ave MW	128.6	129.1	
	12	2.73	3.16	
	11	9.48	10.3	
	10	22.6	22.8	
Mole Percent	6	31.6	30.6	
Subsection N	8	22.8	21.9	
	7	8.60	8.95	
•	6	1.39	1.48	
	S	0.741	0.679	
	Sample	1#	#3	

			Sut	Subsection Vapor Density, g/m ³	or Density, g/	'n ³			
									Total Density,
Sample	5	6	7	8	6	10	11	12	g/m ³
1#	0.242	0.542	3.91	11.8	18.4	14.6	6.72	2.11	58.3
E #	0.229	0.598	4.20	<u> </u>	18.4	15.2	7.56	2.52	60.4

59

.

Vapor data calculated from the liquid GC results for the ARCO fuel samples

	Total	Pressure,	mbar	7.91	20.3	4.05	2.34	1.68	1.51	1.06	0,865
			12	0,109	0.092	0.113	0.118	0.122	0.128	0.129	0.134
			11	0.297	0.259	0.313	0.326	155.0	0.348	0.335	0.334
bar			10	0.555	0.485	0.582	0.596	0.551	0.480	0.379	0.284
Subsection Partial Pressure, mbar			6	0.910	1.08	0.852	0.638	0.385	0.245	0.133	0.056
section Partia			8	1.62	3.71	101	0.404	0.167	260.0	0.022	0.005
Sub			7	2.81	9,11	0.834	0.188	0.045	0.104	0,003	0.003
			ø	1.09	4.25	0.141	0.020	1	0.047	0.001	0.002
			¥0	0.517	1.27	0.205	0.051	0.070	0.059	0.060	0.046
			Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%

mL [V/L = 1.2]).
0
c(10
5
4
at
8
ă
sam
0
ARC
5
3
Į
2
ō
ŏ
Ā
Į.
Ť
-
Ξ
Š
Tat

L			Sub	Subsection Mole Percent in Vapor	Percent in V	tpor			
Sample	N.	0	7	ø	0	10	11	12	Ave MW
Base Jet	6.54	13.8	35.6	20.5	11.5	7.01	3.76	1.38	108.6
2.5% OH	6.25	21.0	45.0	I8.3	5.34	2.40	1.28	0.454	101.6
97.5%	5.07	3.49	20.6	24.9	21.0	14.4	7.73	2.79	120.0
95%	2.17	0.863	8.03	17.3	27.2	25.5	13.9	5.03	131.6
92.5%	4.20	1	2,66	66.6	23.0	32.8	20.1	7.26	137.0
%06	3.90	3.10	6.93	6.41	16.2	31.9	23.1	8.51	136.4
87.5%	5.65	0,106	0.311	2.03	12.5	35.7	31.5	12.1	143.6
85%	5.33	2.59	0.396	0.608	6.42	32.9	38.1	15.5	146.9

Table B-1, cont.

			Sut	Subsection Vapor Density,	or Density, g/m ³	'm ³			
Sample	S	6	7	8	6	10	11	12	Total Density, g/m ³
Base Jet	I.43	3.60	10.8	7.11	4.48	3.03	1.78	0.714	33.0
2.5% OH	3.51	14.1	35.1	16.3	5.33	2.65	1.56	0.602	79.1
97.5%	0.570	0.468	3.21	4.43	4.20	3.18	1.88	0.739	18.7
95%	0.141	0.067	0.724	1.78	3.14	3.26	1.96	0.771	11.8
92.5%	0.195	1	0.172	0.735	1.90	3.01	2.02	161.0	8.83
%06	0.163	0.155	0.402	0.424	1.21	2.62	2.09	0.840	06.7
87.5%	0.166	0.004	0.013	0.095	0.656	2.08	2.01	0.845	5.86
85%	0.128	0.007	0.013	0.023	0.274	1.56	2.01	0.878	4.88

Table B-2. Liquid GC results for ARCO samples at 40° C (0.08 mL [V/L = 274]).

	Total	Pressure, mbar	6.09	14.7	3.48	2.18	1.57	1.39	1.00	0.819
		12	0.109	0.092	0.113	0.118	0.122	0.128	0.129	0.134
		11	0.296	0.258	0.312	0.324	0.335	0.346	0.334	0.332
ıbar		10	0.550	0.480	0.575	0.589	0.544	0.474	0.375	0.281
I Pressure, mbar		6	0.880	1.05	0.823	0.616	0.372	0.236	0.128	0.054
ubsection Partial		ø	1.47	3.37	0.914	0.365	0.151	0.087	0.019	0.005
Sub		7	2.13	7.00	0.631	0.142	0.034	0.078	0.002	0.002
		Q	0.536	2.18	0.070	0.010	1	0.023	1	0.001
		ŝ	0.118	0.309	0.048	0.012	0.016	0.013	0.013	0.010
		Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%

			Sub	Subsection Mole Percent in Vapor	Percent in Vi	apor			
									Ave
Sample	ŝ	. 9	7	8	6	10	11	12	MW
Base Jet	1.94	8.81	35.0	24.1	14.4	9.04	4.86	1.79	113.6
2.5% OH	2.04	14.6	47.5	23.0	7.14	3.27	1.76	0.626	105.6
97.5%	1.33	66'1	18.1	26.2	23.6	16.5	8,96	3.24	124.1
95%	0.520	0.451	6.49	16.8	28.3	27.1	14.9	5.41	133.9
92.5%	0,987	1	2.12	9.61	23.6	34.6	21.3	7.73	139.8
%06	0.933	1.62	5.64	6.28	17.0	34.2	25.0	9.24	140.3
87.5%	1.30	0.054	0.246	1.94	12.8	37.4	33.3	12.9	147.2
85%	1.21	0.130	0.311	0.577	6.54	34.3	40.6	16.4	150.4

Table B-2, cont.

	Total Density, g/m ³	26.6	59.6	16.6	11.2	8.45	7.47	5.66	4.74
	12	0.712	0.602	0.738	0.770	0.795	0.838	0.844	0.877
	11	1.78	1.55	1.87	1.95	2.01	2.08	2.00	2.00
m ³	10	3.01	2.62	3.14	3.22	2.97	2.59	2.05	1.54
Subsection Vapor Density, g/m ³	6	4.34	5.17	4.06	3.04	1.83	1.16	0.632	0.264
section Vapo	8	6.43	14.8	4.01	1.60	0.663	0.382	0.085	0.021
Sut	7	8.21	26.9	2.42	0.544	0.128	0:301	0.009	0.010
	6	1.78	7.12	0.229	0.032	1	0.074	0.002	0.004
	2	0.333	0.832	0.128	0.031	0.043	0.036	0.036	0.028
	Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%

1.21)
-
L=1
>
IVI,
귿
2
Ē
- Ö
Q
_ M
ы
8
ā
E
28
RCO 8
- ଧ
Ř
<
片
4
ts
Ξ
5
5
ğ
Ξ.
. <u></u>
ਛੋ
Ē
ς Ω
B.3
ē
p
2
L -4

			Sub	anadian Mala	00				
		- 6-		oursection (viole reform in vapor	Fercent in V	apor			
						-			
5 6	6		2	œ	6	10	11	5	Ave
5.67 12.4	12.4		34.3	20.9	12.5	7.98	4.51	175	<u>7011</u>
5.58 19.5	19.5		44.7	19.2	5.97	2.81	1.58	1 493	
4.19 3.01			0.6	24.2	21,8	15.6	8.85	3 37	125.0
1.71 0.711		ſ	7.07	16.0	27.0	26.4	15.2	5.81	0.221
3.25 2			:29	9.10	22.2	33.4	21.5	8.21	1387
3.03 2.51 2			66'9	5.85	15.8	32.4	24.8	120	130.5
4.26 0.083 0	0.083 0.0	0	.262	1.80	11.8	35.4	33.0	13.4	145.4
3.98 0.202 0	0.202		0.329	0.533	6.00	32.2	39.9	16.9	148.6

Table B-3, cont.

			Sut	Subsection Vapor Density, g/m ³	or Density, g/	m ³			
									Total Density,
Sample	5	9	2	8	6	10	11	12	g/m ³
Base Jet	16.1	5.01	16,1	11.2	7.48	5.31	3.29	1.39	51.6
2.5% OH	4.68	19.6	52.1	25.5	8.90	4.64	2.87	1.17	119.4
97.5%	0.759	0.651	4.77	6.95	7.00	5.57	3.47	1.44	30.6
95%	0.188	660'0	1.07	2.78	5.25	5.71	3.61	1.50	20.2
92.5%	0.260		0.255	1.15	3,16	5.27	3.73	1.55	15.4
%06	0.218	0.215	0.597	0.665	2.01	4.60	3.85	1.64	13.8
87.5%	0.222	0.005	0.019	0.148	1.09	3.63	3.72	1.65	10.5
85%	0.171	0.010	0.020	0.036	0.457	2.72	3.70	1.71	8.83

		Total	Pressure,	mbar	9.17	1 V V V	20.5	5.62		3.72	2.77		2.444	1.82	v 7 ·	70.1
				12	0.218		0.184	0 226	0.440	0.236	0.244	N A EM	1CZ.U	0.259		607.0
				11	A 560		0.490	A 403	722.0	0.616	0.636		0.057	0.633		0,631
74]).	bar			10	7 002	00210	0.859	54	1.UJ	1.05	0 073		0.849	0 K70	2/0/0	0.502
mL [V/L=2	Pressure, m			6	01, 1	1.40	LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL		1.39	1.04	A 655	0.040	0.398	A 51K	01410	060.0
ARCO samples at 50°C (0.08 mL [V/L = 274]).	Subsection Partial Pressure, mbar			α		C717	5.18		1.40	0.559	1000	103.0	0.133	767.7	0,000	0.007
CO samples a	sdu?			r		2.91	0 < 7		0.857	107		0,040	0.106	2010	0,003	0.003
sults for AR(Ň	0	0.637	5 25	2.12	0.082	6100	710.0	1	1 007	140.0	0.001	0.001
Liquid GC re					0	-0.127	1000	1770	050.0	0000	0.014	0.017	K IV V	410'0	0.014	001
Table B-4. Liquid GC results for					Sample	Race at		HO %C7	07 505	21212	0%66	92.5%	1000	%N%	87.5%	020

•

141-14 V

0.001

0.014 0.014 0.011

95% 92.5% 90% 87%

ſ		Ave	MM	1 116.4		IU/.0	126.6		135.7		141.4	142.4	1 20 1	140.4	151.51		
			12	38.6		0.881	EU Y		6.35		0.00	10.5		14.2	777		
			11	K 1 2		2.34		14.2	16.6		23.0	0 96		34.7		211	
	apor		10	107	10.1	4.10	0.01	10.2	28.3		35.1	24.0	0.40	36.7	6.66	7.00	
	Percent in Vs		6	12.5	10.4	8.44		24.0	770	2117	22.6	6 7 1	C.01	11.8	27.4	CK.C	
	Subsection Mole Percent in Vapor		00		C.42	24.7		24.9		10.0	8.34		0.40	162		0.477	
	Sub		٢		31.7	75.7		15.2		2.1.0	1.64		4.35	181	0110	0.228	
			v	2	6.94	13.5	14.4	46		0.312			1.09	2022		0.083	
			t.	C	1.39	221	5	0.884		0.327	0.600	*20.0	0.569	1240	0, /04	0.705	
•				Sampic	Race let		LU %0.7	07 60	arc.12	050	20 E CU	01.0.74	%U0		%C'/8	850%	

Table B-4, cont.

	Total Density, g/m ³	39.8	83.8	26.5	18.8	14.6	12.9	10.1	8.55
	12	1.38	1.17	1.44	1.50	1.55	1.63	1.64	1.70
	11	3.27	2.85	3.44	3.58	3.70	3.82	3.68	3.67
m ³	10	5.22	4.55	5.45	5.59	5.16	4.50	3.55	2.66
Subsection Vapor Density, g/m ³	6	7.08	8,44	6.62	4.96	2.99	1.90	1.03	0.431
section Vapo	8	9.56	22.0	5.95	2.38	0.983	0.566	0.126	0.031
Sub	7	10.8	35.7	3.20	0.718	0.169	0.396	0.012	0.013
• •	9	2.04	8.23	0.263	0.037	-	0.085	0.002	0'004
	5	0.342	0.870	0.133	0.033	0.045	0.037	0.037	0.029
	Sample	Base Jet	2.5% OH	97.5%	%56	92.5%	%06	87.5%	85%

Table B-5. Liquid GC results for ARCO samples at 60°C (10 mL [V/L = 1.2]).

				-	_	_		_	, -		Ł
	Total Pressure,	mbar	19.4	46.8	11.0	6.98	5.25	4.73	3.55	3.00	
		13	1		0.135	0.141	0.146	0.150	0.156	0.163	
		12	0.420	0.354	0.435	0.454	0.469	0.494	0.497	0.517	
ar		11	1.04	506'0	1.09	1.14	1.18	1.21	1.17	1.17	
ssure, mb		10	1.72	1.50	1.80	1.85	1.71	1.49	1.18	0.882	
Subsection Partial Pressure, mbar		6	2.59	3°.6	2.42	1.82	1.10	269.0	615.0	0.158	
ubsection		8	4.09	9:36	2.55	1.02	0.423	0.244	0.054	0.013	
Ś		7	6.38	20.7	1.89	0.427	0.101	0.237	0.008	0.008	
		. 6	2.20	8.61	0.286	0.041	Ţ	0.095	0.002	0.004	
		ŝ	0.959	2.35	0.381	0.094	0.130	0.109	0.111	0.086	
		Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%	

.

1	_	_									
_		Ave	MW	112.2	103.8	124.6	135.6	141.4	141.8	148.4	151.8
			13	:	;	1.23	2.02	2.79	3.17	4,40	5.42
			12	2.16	0.757	3.95	6.50	8.93	10.4	14.0	17.2
or			11	5:35	1.93	46'6	16.3	22.4	25.7	32.9	38.9
Subsection Mole Percent in Vapor			10	8,86	3.21	16.4	26.5	32.5	31.5	33.1	29.4
Mole Perc			6	13.3	6.58	22.0	26.0	20.9	14.7	10.6	5.28
ubsection		•	8	21.1	20.0	23.2	14,6	8.06	5.16	1.53	0.443
S			٢	32.9	44.1	17.2	6.11	1.93	5.01	0.211	0.260
			9	11.4	18.4	2.60	0.586	:	2.00	0.064	0.152
			Ś	4.94	5.01	3.46	1.35	2.49	2.31	3.13	2.86
			Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%

Table B-5, cont.

	·	-	T		7				T
	Total Density, _{8/m³}	78.6	175.7	49.5	34.2	26.8	24.2	0.61	16.4
	13	;	:	0.900	0.939	0.975	866'0	1.04	1.08
	12	2.58	2.18	2.68	2.79	2,88	3.04	3.06	3.18
3	п	5.86	5.11	6.17	6,43	6.64	6.86	6.61	6.59
Subsection Vapor Density, g/m ³	10	8.84	7.73	9.27	9.50	8.77	7.65	6.04	4.53
Vapor De	6	12.0	14.3	11.2	8.41	5.07	3.23	1.75	0.733
Subsection	œ	16.9	38.6	10.5	4.21	1.74	1.01	0.225	0.055
	7	23.1	74.8	6.85	1.54	0.366	0.858	0.027	0.028
	9	6.86	26.8	0.892	0.127		0.295	0.007	0.014
	Ś	2.50	6.12	0.993	0.245	0.340	0.284	0.22.0	0.223
	Sample	Base Jet	2.5% OH	97.5%	%c6	92.5%	%A%	0/C'/2	80%

Table B-6. Liquid GC results for ARCO samples at 60°C (0.08 mL [V/L = 274]).

		-	-	_		_	_		_
	Total Pressure, mbar	13.4	28.8	8.88	6.24	4.83	4.28	3.35	2.85
	13	1		0.135	0.141	0.146	0.150	0.156	0.162
	5	0.417	0.353	0.433	0.451	0,466	0.491	0.494	0.514
ar	11	1.02	0.894	1.08	1.12	1.16	1.20	1.15	1.15
I Partial Pressure, mbar	10	1.67	1.46	1.74	1.78	1.65	1.44	1,13	0.850
Partial Pre	6	2.37	2.83	2.22	1.66	0.999	0.635	0.345	0.144
Subsection	æ	3.26	7.54	2.03	0.810	0.335	0.193	0.043	0.010
S	7	3.75	12.4	1.10	0.247	0.058	0.136	0.004	0.004
	و :	0.731	2.96	0.094	0.013	:	0.030	0.001	0.001
	S	0,134	0.343	0.052	0.013	0.018	0.015	0.015	0.011
	Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%

		T	1	F	T	T	T	7-	1
	Ave MW	119.3	109.6	129,8	138.5	144.0	145.6	151.0	154.2
	13	;		1.52	2.25	3.03	3.49	4.66	5.70
	13	3.12	1.22	4.87	7.22	9.66	11.5	14.8	18.0
5	11	7.67	3.11	12.1	18.0	24.0	28.0	34.4	40.4
Subsection Mole Percent in Vapor	10	12.5	5.06	19.6	28.6	34.1	33.5	33.9	29,8
Mole Pero	6	17.7	9.84	24,9	26,6	20.7	14.8	10.3	5.05
ubsection	8	24.4	26.2	22.8	13.0	6.93	4.50	1.28	0.367
S	7	28.1	43.1	12.4	3.96	1.21	3,19	0.128	0.156
	و	5.47	10.3	1.06	0.213	1	0.710	0.022	0.050
	s	1.01	1.19	0.591	0.206	0.364	0.342	0.440	0.395
	Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	%06	87.5%	85%

Table B-6, cont.

.

٩

	Total	Density,	g/m ³	57.6	_						15.9	
			13	1	;	0.899	0.937	0.973	0.996	1.04	1.08	
			12	2.57	2.17	2.66	2.78	2.87	3,02	3.04	3,16	
			11	5.79	5.05	60.9	6.34	6.55	6.76	6.52	6.49	
HIDLY, BULL			10	8.57	7.48	8.95	61.6	8.46	7.38	5.83	4.37	
Subsection vapor penalty, guin			6	11.0	13.1	10.3	7.68	4.63	2.94	1.60	0.667	
Innegano			ø	13.5	31.1	8.37	3.34	1.38	0.796	0.177	0.043	
2			5	13.6	44.9	3.99	0.896	0.211	0.494	0.016	0.016	
			9	2.27	02.6	0.292	0.041	1	0.095	0.002	0.004	
			ŝ	0.350	0.894	0.137	0.033	0.046	0.038	0.038	0.029	
			Sample	Base Jet	2.5% OH	97.5%	95%	92.5%	<u>%06</u>	87.5%	85%	

ſ	Fuel/Air Mass Ratio ($V/L = 274$)										
1	40	°C	50	°C	60	°C					
Sample	0 ft ^a	14 kft ^b	0 ft ^a	14 kft ^b	0 ft ^a	14 kft ^b					
2.5% OH	0.053	0.092	0.077	0.133	0.107	0.185					
Base Jet ^C	0.024	0.042	0.036	0.062	0.054	0.093					
97.5%	0.015	0.026	0.024	0.042	0.039	0.067					
95%	0.010	0.017	0.017	0.029	0.029	0.050					
92.5%	0.007	0.012	0.013	0.022	0.024	0.042					
90%	0.007	0.012	0.012	0.021	0.021	0.036					
87.5%	0.005	0.009	0.009	0.016	0.017	0.029					
85%	0.004	0.007	0.008	0.014	0.015	0.026					
		Fu	el Mole Fract	tion $(V/L = 2)$	74)						
1	40	°C	50)°C	60°C						
Sample	0 ft ^d	14 kft ^c	0 ft ^d	14 kft ^e	0 ft ^d	14 kft ^e					
2.5% OH	0.014	0.024	0.020	0.035	0.028	0.048					
Base Jet ^C	0.006	0.010	0.009	0.016	0.013	0.022					
97.5%	0.003	0.005	0.006	0.010	0.009	0.016					
95%	0.002	0.003	0.004	0.007	0.006	0.010					
92.5%	0.002	0.003	0.003	0.005	0.005	0.009					
90%	0.001	0.002	0.002	0.003	0.004	0.007					
87.5%	0.001	0.002	0.002	0.003	0.003	0.005					
85%	0.0008	0.001	0.001	0.002	0.003	0.005					

Table B-7. Fuel/air mass ratios and fuel mole fractions at nominal loading (V/L = 274 [~3 kg/m³]) derived from the liquid characterization of the eight ARCO jet fuel samples .

^a Atmospheric mass density (dry air): 1127.4 g/m³, 40°C; 1092.4 g/m³, 50°C; 1059.6 g/m³, 60°C.

b Mass ratios at 14 kft were determined by dividing the ratios at sea level by the factor 0.578.

^c Ouarter-scale test #46.

d Air molar density: 39.1 moles/m³, 40°C; 37.9 moles/m³, 50°C; 36.7 moles/m³, 60°C. Molar densities were determined from the average molecular weight of air (~28.84 g/mole) and the mass densities of air at the various temperatures.

• Fuel mole fractions at 14 kft were determined by dividing the fractions at sea level by the factor 0.578.