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Abstract

Jet fuel - its liquid and vapor — was characterized as part of the National
Transportation Safety Board's (NTSB's) investigation into the cause of the TWA Flight
800 accident (DCA96MAQT0; the crash of a 747-131, N93119). For the vapor, headspace
gas chromatography was used to measure component partial pressures and total vapor
pressures for ten jet fuel samples (Jet-A) provided by the Atlantic Richfield Company
(ARCO). These characteristics derived from the fuel vapor were also derived from analysis
of the neat liquid for eight of these fuel san{ﬁles, and the results of the two analytical
approaches were compared. Three of the fuel samples were taken from fuel used in the
quarter-scale tests #42, 46, and 51 designed to simulate possible fuel tank conditions at the
time of the accident. Scven of the ARCO samples had been reformulated to alter the flash
point. Two additional samples (giving a total of twelve) were taken from the center wing
tank of a 747 aircraft involved in ground tests in Marana, AZ. Measurements of all of the
fuel vapor samples were made at 40°C, 50°C, and 60°C and at vapor volume-to-liquid
volume (V/L) ratios of 274 (nearly empty tank; ~3 kg/m3) and 1.2 (half-filled tank; ~400
ke/m3). Characterization of the liquid fuels was done by simple injections of the neat
liquids onto a temperature-programmed gas chromatograph.
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Introduction

As part of the National Transportation Safety Board's (NTSB's) investigation into the
cause of the TWA Hight 800 accident (DCA96MAQ70; crash of a 747-131, N93119), the
characteristics of jet fuel (Jet-A) — its liquid and vapor — were determined, For the fuel
vapor, a headspace gas chromatographic (HS-GC) method, described in detail in eatlier
reports (Woodrow and Seiber, 1988 and 1989), was used to determine component partial
pressures and total vapor pressures of a dozen samples of jet fuel (Woodrow and Seiber,
1997), some of which represented the type of fuel used in commercial aviation and some of
which were fuel samples reformulated to vary the fiash point. Using this method, it was
possible to accurately determine vapor pressures by modeling the jet fuel vapor,
characterized by 2 complex mixture of hydrocarbons, with just a few n-alkane reference
standards. This approach (i.c., modeling the fuel with a few n-alkane reference standards)
was usedt to determine component partial pressures and total vapor pressures of eight of the
liquid fuels for comparison with the vapor resulis. An important goal of this study was to
provide technical information about the properties of jet fuel and its vapor under conditions
that might have existed in the Flight 800 center wing fuel tank at the time of the accident.
Specifically, we wanted to address the question of fuel flammability under flight conditions
at 14,000 feet. Itis hoped that this information will contribute to a better understanding of
the nature of the accident and to the formulation and design of safer fuels and fue! tanks,
This report, summarizing our 1998 and 2000 work, is an outgrowth of an eartier NTSB-
sponsored study of commercial jet fuel characteristics, completed in 1997 and summarized
in  report submitted to the NTSB in November of that year (Woodrow and Seiber, 1997).
Procedures

In September, 1998, the California Institute of Technology (CalTech), Graduate
Acronautics Laboratory, shipped to the University of Nevada (UNR) seven liquid jet fuel
samples formulated by the Atlantic Richfield Company (ARCO) to have a range of flash
points. In Rume, 1998, Evergreen Air Center, on behalf of Boeing, shipped two liquid jet



fuel samples taken from the center wing tank (CWT) of a 747 aircraft that had been part of
ground tests in Marana, AZ. Finally, three additional liquid jet fuel samples taken from
quarter-scale tests #42, 46, and 51 were shipped to UNR by CalTech personnel. These
latter samples were taken from the ARCO base jet fuel supply, and they were used in the
quarier-scale tests to determine if there were any systernatic changes in the fuel stock over
the course of the test series. Sample desigpations and descriptions arc summarized in Table
1. All samples were stored in a laboratory refrigerator at 1-2°C.

The two ground test samples were taken from tests #1 and #3. For test #1, the CWT
contained approximately 50 gallons of Jet-A and there was no environmental control
system (ECS) insulation. Test #3 was essentially a repeat of test #1, except that the CWT
contained approximately 1800 gallons of Jet-A. During test #1, steel canisters were
provided by Desert Research Institute (DRI) personnel (Dr. John Sagebiel) to sample the
CWT ullage at 1, 2, and 3 hours into the test, and after 3 hours for test #3 (Sagebiel,
1998).

Headspace (vapor) method. Into separate chilled 22 mi. glass headspace vials (Perkin-
Eimer, Norwalk, CT) were placed 0.08 mL and 10 mL of chilled liquid fuel samples, and
the vials were immediately sealed with Tefion®-lined septa in crimped aluminum caps.
These volumes of fuel represented vapor volume-to-liquid volume (V/L) ratios of 274 and
1.2, respectively (i.c., an almost empty fuel tank and an approximately half-filled tank).
The sealed samples were placed in an HS-40 autosampler and injector (Perkin-Elmer),
where they were thermostated at 40°C, 50°C, and 60°C for at least 30 min. Afier the
samples were thermostated, the HS-40 automatically punctured the septa with & bollow
sampling needle, the vials were pressurized to about 150 kPa, the equilibrated vapor was
sampled for 0.01 min,‘ the resulting vapor aliquot was injected onto a 60 m x 0.32 mm
(i.d.) DB-1 fused silica open tubular (FSOT) capillary column (J&W Scientific, Folsom,
CA), and the chromatographed vapor was detected by a flame ionization detector. The
column was held at 100°C for 4 min, after which time it was programmed at 2°/min to
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Table 1. Liquid jet fuel samples supplied by ARCO, California Institute of Technology
(CIT), and Evergreen for fuel vapor characterization.

Sample Designation Sample Description
Base Jet? ARCO; LIMS# 80036458
2.5%0H ARCO; Base Jet + 9% of 25W% OH;
LIMS# 80049765
97.5% ARCO; 97.5 wt% Btm; LIMS# 80036460
95% ARCO; 95.0 wt% Btm; LIMS# 80036732
92.5% ARCO; 92.5 wi% Btm; LIMS# 80037890
0% ARCO; 90.0 wit% Bim; LIMS# 80039332
87.5% ARCO; 875 wit% Btm; 1LIMS# 80039902
85% ARCO; 85.0 wt% Btm; LIMS# 80039903
#42 CIT (ARQCO); guarter-scale test #42
#46 CIT (ARCO); quarter-scale test #46
#31 CIT (ARCO); quarter-scale test #51

#1

Evergreen; ground test #1; 50 gal fuel in
CWTY; no ECSC insulation

#3

Evergreen; ground test #3; 1800 gal fuel in
CWT; no ECS insnlation

2 Same as quarter-scale fuel sample #42.
b CWT = center wing tank.
€ ECS = environmental control system.




140°C, where it was held for 1 min. The column carrier gas (ﬁclium) flow rate was about
3 ml/min, which means that for ar injection time of 0.01 min, the volume of vapor sample
injected was about 30 L (i.¢., 3 mL/min x 0.01 min x 1000 #L/mL).

The fuel samples were evaluated using a mixed hydrocarbon standard, which consisted
of an equal volume mix of the normal alkanes pentane (Cs) through dodecane (C12)
(tidecanc [Cy3] at 60°C). Into separate chilled headspace vials were placed 1, 0.5, 0.25,
and 0.1 gL of the mixed standard and the sealed vials were processed in the same way as
for the fuel samples. These volumes of mixed standard were low enough to allow the
hydrocarbons to completely vaporize, so that eight separate vapor density standard curves
(nine at 60°C) could be generated for each volume of mixed standard. Using the gas
chromatographic retention times of the hydrocarbon standards, the fuel vapor
chromatograms were divided into eight or nine subsections, each of which was
approximately centered about the retention time of a hydrocarbon standard (Figure 1). The
peak areas in each subsection were summed and treated as a single peak in the vapor
density regression equations to calculate subsection vapor densities, which were used to
calculate subsection partial pressures. All of the subsection pariial pressures were summed
to obtain total vapor pressures for the fuel samples.

Liquid fpel method. The goal using this method was to characterize eight samples of
the liguid ARCO fuels (Basc Jet {quarter-scale test #46] and the seven reformulated fuels)
esing the techniquesthatwen;. applied to the characterization of the fuel vapor. To reach
this goal, the liquid composition of each fuel was modeled using sixteen alkane reference
standards (Cs-Cap), w:th the results expressed as mole percent for each of the sixteen
subsections, partial pressure for éach subsection, and the overall vapor pressure of each
fuel. |

Each of the eight fuel samples was m_;ectcd as the neat liquid (0.1-0.2 xL) onto 2 60 m
x 0.32 mm (i.d.) DB-1 FSOT capillary column (J&W Scientific) and each hydrocarbon
component was monitored using a flame ionization detector installed in a Hewlett-Packard
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model 5890 Series IT gas chromatograph. All samples were automatically injected using a
computer-controlled enhanced autoinjector with a nanoliter adapter installed (Agilent, San
Fernando, CA). The capillary column was held at 50°C for four minutes, programmed at 2
rate of 1'C/min to 250°C, where it was held for ten minutes. Each run took about 3.6
hours to complete. Starting with eicosane (Czg), and working down in carbon number, a
mixed hydrocarbon standard (pentane through eicosane) was prepared by weighing each
component as it was added to the mixture. The mixed standard was chromatographed
under the same conditions used for the liquid fuel samples. Based on elution times for the
reference hydrocarbons, each fuel chromatogram was divided into sixteen subsections,
with each subsection centered approximately on its respective reference hydrocarbon
(Figure 2). By injecting different amounts of the standard mixture, regression equations
{GC peak area vs. mass of hydrocarbon injected) were generated for each fuel subsection.
From these regression equations, a mass for each of the sixteen subsections was derived
using the summed peak area for each subsection. Each subsection mass was then divided
by the molecular weight of the reference hydrocarbon, giving the number of moles for each
subsection, from which subsection mole fraction was derived. Using Raoult's law, with
the subsection mole fractions and saturation vapor pressures for the reference
hydrocarbons, subscction partial pressures could be calculated at any given temperature.
Results and Discossion
Headspace (vapor) Meth;:d

Analysis using heaﬁspaoc sampling and gas chromatography (GC) requires
thermodynamic cquilibrium between a condensed phase and its vapor phase in a scaled
container 80 that aliquots of the vapor can be removed for quantitative GC analysis. Fora
liquid fuel mixture in equilibrium with its vapor in a sealed container, GC response of 2
component in the vapor is proportional to the vapor density. Tlns means that measuring the
GC response essentially measures the partial pressure if the instrument calibration factor is
known. The calibration factor has a specific value for each component in the fuel mixture
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and depends on the characteristics of the detector nused. However, the complex jet fuel
mixtare can be represented by a relatively small number of p-alkane reference standards and
the properties of the standards can be attributed to the fuel mixture. In other words, a
single p-alkane reference standard can be used to represent a summation of GC responses
{subsection of the fue! GC) for a series of components in the jet fuel vapor. Each
subsection n-alkane reference standard is used 1o generate a standard curve, whichis a
correlation of instrument response with vapor mass density (g/L). Then, the partial
pressure (Pj) corresponding to each subsection is obtained from the ideal gas law and the
molecular weight of the p-alkane reference standard for each subsection. That is,

Pi=@N)RTe1013232 (1)
where i = §....,12, (n/V); is the vapor molar density (mole/L), R is the gas constant
(0.08205 L-atm/Kemole), T is absolute temperature, and 1013.232 is a factor to convert
atmospheres to mbars. Also, (/V); = (g/L)/(mw);, where (g/L) is the vapor mass density
obtained from the subsection standard eurve and (nw); is the molecular weight of the
subsection reference hydrocarbon. The total vapor pressure (Ps.;2) for the fuel sample is,
then, just simply a summation of the individual partial pressures:

Ps.12=2ZH @

No correction for real gas behavior is necessary sinoe component partial pressures remain
far below the critical pressures.

An important objective of this smdy was to use the described vapor method to
determine component partial pressures and total vapor pressures of sarnples of jet fuel
representative of the type of fuel used in commercial aviation and of & series of fuel samples
which had been reformulated to vary the flash point. The analytical instamentation
sampled the sealed vials using a pneumatic-balanced pressure principle which avoids the
disadvantages associated with gas syringes, such as change of partial pressures of the
volatiles due to redeced pressure in the syringe (Ioffe and Vitenberg, 1984a). In a typical
operation utilizing the pnermatic-balanced pressure principle, the septum of the



thermostated sample was pierced by the hollow sampling needle, the vial was pressurized
to either equal or exceed the head pressure of the FSOT column, gas flow to the FSOT
column was temporarily interrupted, causing the column head pressure to decrease, and
then an aliquot of the headspace was injected onto the FSOT colurn using the vial pressure
as the driving force.

The volumes of the mixed hydrocarbon standard were low enough to assure complete
vaporization of the C5-Cj3 hydrocarbons under the test condiﬁons. For the higher
molecular weight hydrocarbons (e.g., dodecane and tridecane), 0.5 ;L and less of the
hydrocarbon mix was used to assure complete w)apoﬂzaﬁon. The resulting vapor densities
(g/L) for the reference hydrocarbons were correlated with their gas chromatographic peak
areas to generate eight individual calibration curves (nine at 60°C) that were used to
calculate subsection partial pressure. These eight or nine regression equations were lincar,

with correlation cocfficient (r2) values close to unity. Each subsection summed GC peak
area (5-13) was treated as an individual compound and was used in the appropriate
subsection regression equation to calculate a vapor density. As described above, the
molecular weights of the subsection reference hydrocarbons were then used to convert the
mass densities to molar densities for use in the ideal gas equation (equation 1).

Results for the ten ARCO fuel samples and the two Marana ground test samples are
summarized in Appendix A as Tables A-1 through A-12. These tables include subsection
and total vapor pressure (mML subsection mole percent, and subsection vapor density
(g/m3) for the fuel samples at 40°C, 50°C, and 60°C and for two V/L ratios (i.c., 274 and
1.2). Based on the mole percent values, average molecular seights of the fizel vapor were
wmputedfotmh V/L ratio at each temperature.

Figure 3 compares the ARCO fuels taken from the quarter-scale tests #42, 46, and 51
(designated Base Jet [ARCOY]), the fuel used in the ground tests in Marana, AZ (samples #1
and #3), and a sample of fuel obtained locally from the Reno/Tahoe International Airport
(Reno — supplied by Exxon). The Reno and ground test fuels bad vapor compositions
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with hydrocarbon distributions centering approximately about subsection carbon number 9,
whereas the hydrocarbon distribution for the ARCO Base Jet fuel vapor centered
approximately about carbon number 7 (Figure 3A). This relative vapor composition is also
reflected in the average molecular weights for the fuel vapors — about 121 for the Reno and
ground test fuels compared to about 110 for the ARCO fucl. However, the ARCO and
Reno (Exxon) fuels had similar saturation vapor pressures, while the average vapor
pressure for the ground test fucls was about 15-20% less, indicating some possible
weathering of these fuels (Figure 3B). The ARCO fucl was shipped in a sealed drum
directly from the formulator via CalTech personnel and the Reno fuel was obtained directly
from the sump of a refueling truck, but the ground test fuel samples were taken from the
center wing tank of a Boeing 747 aircraft after fueling under the relatively hot conditions of
late Spring in Arizona.

As reported earlier (Woodrow and Seiber, 1997), a decline in relative vapor density
(mole percent) was substantial for subsection carbon number 5 in going from an
approximately half-filled tank (V/L = 1.2) to a nearly empty tank (V/L = 274), whereas for
higher carbon pumbers, changes in relative vapor density were minor. For example, the
ARCO sample from quarter-scale test #42 showed a decline in subsection 5 by a factor of
6-8, whereas subsection carbon number 7, for. example, showed a slight decline by a factor
of 1-1.2, as illustrated in Figure 4A. A similar behavior was exhibited by the specially
formmulated ARCO samples, except that in some cases changes in relative vapor density for
subsection carbon number 5 were even greater (e.g., a factor of 7-15 for ARCO sample 90
wit% Btm). This behavi& was reflected in the higher average molecular weights for the
nominal loading case compared to the half-filled tank (Tables A-1 through A-12).

However, a 20°C increase in fuel temperatire (40°C to 60°C) decreased the relative
vapor density for subsection carbon numbers 5 and 7 by only a factor of about 2 and 1.1,
respectively, as illustrated in Figure 4B for ARCO sample #42. The conclusion from all of
this is that a change in liqnid fue! volume by a factor of 125 has a greater effect on vapor
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composition than does a 20" change in temperature.

Table 2 summarizes the properties of the seven ARCO fuel samples formulated to vary
the flash point, and, in Table 3, these various fuel flash points are listed along with the fuel
VAapor pressure vs. temperature regression equations for both the half-filled (~400 kg/m3)
and nominal loading (~3 kg/m3) cases. With these regression equations and the fuel flash
points it is possible to calculate fuet vapor pressure at the flash point and, ultimately,
fuel/air mass ratio at the fiash point (Shepherd et al., 2000).

The fiash point samples listed in Table 2 were created by distillation of the Base Jet fucl
using a distillation column and procedure similar to that described in ASTM D2892. First,
the Base Jet fuel was distilled and the first 2.5 weight percent of this "overhead” (OH) was
collected. The lower fiash point (87F) fuel was then created by mixing 91 wit% of the Base
Jet and 9 wt% of the OH. The mixtare is the fuel designated as 2.5 wt% OH in Table 2.
The higher flash point fuels were created by distilling the Base Jet fuel and retaining only a
fraction of the "bottom” (Btm) of the distillation. These fuels are designated according to
the fraction of the initial fuel weight (by percent) that is used to create the fuel sample. A
value of "y, wt% Bti" in the designation means that the initial (100 - ) w1% that came out
of the distillation process was not used. All of this results in one sample of Base Jet, one
sample of Base Jet enriched with 9 wi% of light hydrocarbons (2.5 wi% OH), and six
samples of concentrated heavy hydrocarbons from the mixture Base Jet, ranging from the
lightest in molecular weight (97.5 wi% Btm) to the heaviest (85 wt% Btm).

These prepared samples, with flash points from 87F to 165F, should be compared to
the Base Jet sample (quarter-scale tests #42, 46, and 51) whick reproscats the commercial
grade jet fuel, with a flash point of 114F. The flash points can be directly related to the
composition of the fuel vapor, as illustrated in Figure 5. In this figure, the two flash point
extremes (87F and 165F) are compared with the Base Jet fuel. Fucl sample 2.5 wt% OH
(flash point = §7F) bad a hydrocarbon distribution in the vapor that centered about C7,
whereas hydrocarbon distribution for fuel sample 85 wt% Btm (flash point = 165F)
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centered about Cy3 (Figure 5A). In other words, fuels enriched in the heavier, less volatile
hydrocarbons had the bigher flash points. Furthermore, while sample 85 wt% Btm had
detectable hydrocarbons for subsection carbon numbers 5 and 8-12, this sample did not
have any detectable hydrocarbons for subsection carbon numbers 6 and 7, except at 60°C
where there was some measurable hydrocarbon for subsection 6. It appeared that, based
on the subsection pressure and mole percent profiles (Figure 5), sample 85 wi% Btm
contained a light hydrocarbon spike.

Table 4 summarizes the calculated fuel/air mass ratios and fuel mole fractions in air at
sea level and at 14,000 fest for the nominal fuel loading (V/L = 274; ~3 kg/m?3) at 40°C,
50°C, and 60°C. We used the vapor pressure, molecular weight, and mass density data for
the fuel samples (Tables A-2, A4, A-6, A-8, A-10, and A-12) to make these calculations.
Inspection of the data indicates that, compared with 2 lower flammability limit of about
0.038 fuelair mass ratio or 0.009 mole fraction (Shepherd et al., 2000), all of the
unweathered commercial grade fuels (#42, #46, #51, #1, #3) either equaled or exceeded
these values at 40°C and were well within the flammability range at 50°C for the 14,000
foot altitude. However, the flash pomt ARCO fuel sample 2.5 wi% OH exceeded the limit
at sea level and 40°C, whereas the other samples in this group consistently exceeded the
limit only at 60°C for 14,000 fect, with the exceptions of sample 90 wi% Btm, which was
about equal to the limit, and samples 87.5 wt% Btm and 85 wi% Btm, which were less
than the limit | '

Liguid Fuel Method

As discussed under frocedures, the ARCO liquid fuel chromatograms were divided
into sixteen subsections, each of which was represented by a normal alkane reference
(Figure 2). However, for direct comparison with the headspace vapor characterization
results, much of the liquid characterization results discussed below represent subsections
Cs-C12 (plus Cy3 at 60°C) only. Appendix B (Tables B-1 through B-7) is a summary of
ARCO fuel vapor data derived from the liquid results for subsections Cs-Cj2 (plus Cy3 at

17



Table 4. Fuel/air mass ratios and fuel mole fractions for the flash point ARCO jet fuel
samples, quarter-scale test samples, and ground test samples at nominal loading.

Fuel/Air Mass Ratio (V/L =274)

a0 50°C 0°C
Sample 0fit | 14KkiD 0fi2 14 kft® 0fi2 14 kftP
25% OH | 0.047 0.081 0.073 0.126 0.104 0.180
I 97.5% 0.013 0.022 0.022 0.038 0.038 0.066
5% 0.010 0.017 0.016 0.028 | 0.030 0.052
— 092.50 0.008 | 0014 | 0.013 0.022 0.025 0.043

W% 0.007 0.012 0.011 0.019 0.022 0.038
 87.5% 0.006 0.010 0.009 0.016 0.017 0.029
5% 0.005 0.009 0.008 0.014 0.016 0.028
F#42C 0.023 | 0.040 0.035 0.060 0.051 0.088
FAGC 0.023 0.040 0.035 0.060 0.050 0.086

751C 0.022 0.038 0.034 0.059 0.050 0.036

#1d 0.022 ~0.038 0.036 0.062 0055 | 009
#3d 0.022 | 0.038 0.036 [ 0.062 - 0.057 ~0.099
Fuel Mole Yracuon (VIL=274)
4C 50°C 60°C

Sample 0 ft° 14 kfit 0 fi€ 14 kfil 0ft® 14 kfil
[2.5% OH | 0.012 0.021 0.019 0.033 0.027 0.047 |
[ 97.5% 0.003 0.005 0.005 0.009 0.008 0.014
[ 95% | 0.002 0.003 0.003 0.005__|_0.006 0.010
[~ 02.5% | 0.002 0.003 0.002 0.003 0.005 0.009 .
—90% 0.001 0.002 0.002 0.003 0.004 0.007 |
| 87.5% 0.001 0.002 0.002 0.003 0.003 0.005
85% | 0.0009 0.002 0.001 0.002 0.003 0.005_ |
#42C 0.006 0.010 0.008 0014 | 0.012 0.021 |
FAGC 0.006 | 0.010 0.008 0014 | 0012 0.021
#51¢ 0.005 0.009 0.008 0014 | 0.012 0.021 |
Z14 0.005 | 0.009 0.008 0.014 0.012 0.021 |
#3d 0.005 0.009 | 0.00% 0.014 0.013 0022

2 Atmospheric mass density (dry air): 1127.4 g/m3, 40°C; 1092.4 g/m3, 50°C; 1059.6

3, 60°C.
ETL%SS ratios at 14 kft were determined by dividing the ratios at sea level by the factor
€ Quarter-scale tests.
d Ground tests (Marana, AZ).
¢ Airmolar density: 39.1 moles/m3, 40°C; 37.9 moles/m3, 50°C; 36.7 moles/im3, 60°C.
Molar densities were determined from the average molecular weight of air (~28.84 g/mole)
and the mass densities of air at the various temperatures.
: Fucl(z)nso7l§ fractions at 14 kft were determined by dividing the fractions at sea level by the
actor 0.578.
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60°C). Tables B-1 through B-6 include subsection and total vapor pressure (mbar),
subsection mole percent, and subsection vapor density (g/m3) for fuel vapor at 40°C, 50°C,
and 60°C and for two V/L ratios (.., 274 [3 kg/m3] and 1.2 [400 kg/m3]). Based on the
calculated mole percent values, average molecular weights of the fuel vapor were computed
for each V/L ratio at each temperature. The data in these tables can be compared directly
with the headspace vapor data in Appendix A (Tables A-1 through A-6). Table B-7
summmarizes the calculated fuel/air mass ratios and fuel mole fractions in air at sea level and
at 14,000 feet for the nominal fuel loading (V/L =274; ~3 kg/m3) at 40°C, 50°C, and
60°C. This table can be compared directly with Table 4.

Half-filled tank (400 kg/m3 [V/L. = 1,21). Figure 2 shows a typical chromatogram for a
liquid fuel (Base Jet [quarter-scale test #46]), along with a chromatogram of the mixed
bydrocarbon standard. The approximately evenly spaced prominent peaks in the liquid fuel
represented the normal alkanes, whose retention times matched those for the reference
hydrocarbons. The sixteen regression equations — cormrelations of mass of hydrocarbon
injected with instrument response (¢.g., peak area) ~ were linear, with correlation
coefficient (r2) values pear unity. As was donc in the headspace vapor method, each
subsection summed GC peak area (5-20) in the liquid method was treated as an individual
compound and was used in the appropriate subsection reference standard regression
equation to calculate subsccti_on mass (m;). Each mass was then divided by the molecular
weight of the reference hydrocarbon ([mwl), giving the number of moles (;) from which
sobsection mole fraction was derived. That is,

my/[mw]; =nj 3)
where i = 5,...,20. Then, subsection mole fraction (Xj) was given by

Xi =ni/Zns.2 @
Table 5 lists the subsection mole percent values (Xj*100) for cach of the eight fuels. These
liquid mole percent values can be used to calculate fuel vapor pressure at any given
temperature. For example, Table 6 lists the total vapor pressures calcutated for each fuel at

19
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Table 6. Calculated total vapor pressure and average molecular weight for iquid ARCO

fuel samples. 1
Total Vapor Pressure, mbar

Sample 40°ce 50°Ca 60"CP Ave Liquid MW
Base Jet 7.91 12.6 19.4 169.1
2.5 wt% OH 20.3 31.2 46.8 160.2
97.5 wt% Bim 4.05 6.74 11.0 171.6
95 wt% Btm 2.34 4.07 6.98 173.8
92.5 wt% Btm 1.68 2.98 5.25 175.9
90 wt% Bim 1.51 2.67 4.73 176.8
87.5 wi% Btm 1.06 1.94 3.55 179.8
85 wt% Btm 0.865 1.60 3.00 181.0

2 For subsections Cs-Cy only. |

b Basc Jet and 2.5 wi% OH: Cs-Cz only. Remaining samples: Cs-Cy3.
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40°C, 50°C, and 60°C, along with estimated average molecular weights for the liquids. To
obtain the data in Table 6, the saturation vapor pressures for each subsection reference
hydrocarbon at each temperature was calculated using the Harlacher equation (Reid et al.,
1977), which is valid up to the critical conditions and takes the following form:

La P;* = A+B/THCLeT-+HDP; Y12 G)
where P;* (i = 5.,...,20) is the vapor pressure (torr) and T is the absolute temperature. The
terms A, B, C, and D were taken from Appendix A in Reid et al. (1977). Calculation was
done by a rapid iteration method using equation solving software. The torr units Were
converted to mbar by the conversion factor 1.3332 (i.e., mbar = torr1.3332). Each
subsection partial pressure (P, i = 5.,...,20) was then obtained from the product of the
subsection saturation pressure (P;") and subsection liquid mole fraction (X; = mole%/100)
using Raoult's law:

P =yie Xi'Fy' ©
For these calculations, it was assumed that the activity coefficient (y;) for each component
was unity. Subsection mole fraction (Xj) and reference hydrocarbon molecular weight
([mw1;) were used to calculate average liquid molecular weight (fmwls.20):
[mwls20 = 2 ( Xjo[mw];) Q)]

By using the liquid subsection partial pressures (F;), derived from the subsection mole
fractions as discussed above, the vapor composition above each liquid fucl was estimated at
40°C, 50°C, and 60°C. This was done by using a rearranged form of the ideal gas law
equation:

(0/V);, = Fi/(R+T=1013.232) ®)
where (n/V); is subsection molar density in the vapor (moles/L), R is the gas constant
(0.08205 L-atm/ Kemole), T is absolute temperature, and 1013.232 converts from mbar to
atmospheres. This subsection molar density was then used to calculate total vapor mass
density ([g/Lls.20) |
lg/Lls-20 = Z{g/Lk ©)



where

[g/L}i = @/V)[mw]; (10)
And, average molecular weight of the total vapor ([mwyls.20) was also calculated:

[mwyls.2g = ZYjlmwk (11)
and _

Y =@VH/Z@V)s20 (12)

where Y; is the subsection mole fraction in the vapor.

Table 7 summarizes the results for vapor density (g/m3) and average vapor molecular
weight, and these results are compared with the results derived directly from the
characterization of the fuel vapor for subsections Cs5-C12 (plus Cy3 at 60°C) only. For the
average vapor molecular weight, the two scts of results compared within 0.1-3% (ave:
1.2%), 0.4-2% (ave: 1.3%), and 1-2% (ave: 1.7%) at 40°C, 50°C, and 60°C,
respectively. The vapor density results compared within 3-29% (ave: 18%), 4-18% (ave:
11%), and 1.5-14% (ave: 6%) at the same respective temperatures. Table § lists
regressions of vapor pressure vs. temperature derived from liquid characterization. These
equations should be compared to the regressions in Table 3 for the half-filled tank (400
kg/m?). Using the regressions in Tables 3 and 8, vapor pressures were calculated at the
flash points of the ARCO fuels. Results are shown in the last two columns of Table §:
"HS-GC", derived from the regressions in Table 3, and "Liquid-GC", derived from the
regressions in Table 8. Overall the two sets of data compared reasonably well, The
average difference was 4.8% (range: 1.1-16%), with a median difference of 2.8%. The
flash point vapor pressure data in Table 8 can be taken one step further to give the fucl/air
mass ratios (FARs) at the flash points. Table 9 summarizes the results for the ARCO fuels,
showing that the FARs for headspace and liquid characterizations compared well. The
average difference was 5.0% (range: 0-16%), with a median difference of 3.0%. The
greatest differences were for the two extremes -- 2.5 wit% OH (10%) and 85 wi% Btm
(16%). These differences were due primarily to limits in the headspace vapor method's
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Table 7. Comparison of vapor density and average vapor molecular weight derived from
vapor and liquid ARCO jet fuel characterization.

Ave Molecular Wt. (vapor) Vapor Density, g/m?

Sample | Temp.,'C | HS-GC? | LiquidGCb | HS-GC | Liguid GC
Basc Jet 40 1104 108.6 35.4 33.0
2.5 wi% OH 103.8 101.6 81.4 79.1
97.5 wi% 1234 120.0 21.2 18.7
95 wi% 132.7 131.6 14.5 11.8
92.5 wt% 137.5 137.0 10.7 8.83
90 wi% 138.0 136.4 10.0 7.90
8£7.5 wi% 143.5 143.6 7.85 5.86
85 wi% 1474 146.9 6.55 4.88
Base Jet 50 112.6 110.4 54.9 51.6
2.5 wt% OH 105.1 102.8 127.0 119.4
97.5 wi% 124.8 122.0 32.0 30.6
95 Wi% 134.6 133.2 21.8 20.2
92.5 wi% 140.1 138.7 18.5 15.4
90 wi% 140.0 138.6 15.7 13.8
87.5 wi% 146.0 145.4 12.6 10.5
85 wi% 149.3 148.6 10.3 8.83
Base Jet 60 113.8 112.2 77.4 78.6
2.5 wi% OH 106.3 103.8 163.2 175.7
97.5 wi% 127.5 124.6 50.7 49.5
95 wt% 138.0 135.6 35.7 34.2
92.5 wi% 143.3 1414 27.8 26.8
90 wi% 144.5 141.8 27.7 242
87.5 wi% 150.7 148.4 21.2 19.0
85 wt% 153.2 151.8 16.8 16.4

2 Derived from vapor characterization.
b Derived from liquid characterization.
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Table 9. Fuel/air mass ratios (FARs) for the ARCO fuels at their flash points.

FAR at Fuel Flash Point
Sample Ave. Vapor MW Liquid-GCa HS-GCb

2.5 wi% OH 100.7 0.045 0.050
Base Jet© 110.2 0.039 0.040
97.5 wi% Bun 124.2 0.038 0.038
935 wt% Btm 136.5 0.031 0.032
92.5 wt% Bim 143.1 0.032 0.033
o0 wit% Btm 144.9 0.040 0.042
£7.5 wi% Btm 151.5 0.034 0.033
85 wt% Btm 155.2 0.034 0.029

2 Derived from liquid characterization.

b Derived from vapor characterization.

¢ Liquid-GC: Quarter-scale test #46; HS-GC: Averaged data for fuel samples from
quarter-scale tests #42, 46, and 51 (Tables A-1 through A-6).




27

ability to accurately model the most volatile fuel at 60°C and the least volatile fuel at 40°C
(see the following discussion).

Table 10 compares the total fuel vapor pressures, along with percent difference (%A),
derived from vapor and liquid characterizations. For the 2.5 wt% OH fuel, the somewhat
lower vapor-detived value at 60°C was probably due to some flame detector saturation by
this rather volatile fuel. Otherwise, the two data sets compared reasonably well overall.
There was a trend toward greater differences between the vapor pressures at 40°C, with the
vapor-derived values being greater. The information in Table 11 suggests, at the least, a
partial explanation as to why this was the case. Liquid mole fractions for subsections Cs-
Ci2 are listed for the fuels Base Jet (quarter-scale test #46) and 85 wi% Btm, as examples.
The data under "Liquid GC" were taken from the liquid characterization work, while the
data under "HS-GC" were calculated from vapor characterization data (i.e., dividing the
vapor partial pressure by the saturation pressure). For both fuels, the mole fraction sum
for the "HS-GC" data approached that for the "Liquid GC" data only when the temperature
for the former fuel was increased. This is believed to be a consequence of the way the
headspace instrument responds to higher molecular weight (lower volatility) reference
standards below, but near, their saturation vapor densities.

In the ideal situation, as the amount of hydrocarbon is increased in the vapor,
instrument response will increase until vapor saturation is reached, where the slope of the
instrument response will undergo a sharp change leading to a plateau (area eaclosed in the
circle in Figure 6). At this point, increasing the amount of hydrocarbon in the closed
container will not affect l;nstnnncnt response. In practice with the HS-GC instrument,
however, the headspace response seems to follow a curve when the hydrocarbon vapor
concentration approaches saturation. This phenomenon is shown in the right-hand portion
of Figure 6, along with several linﬁs tangent to this curve at different points. These lines
represent regression lines for 2 hydromibon standard near the hydrocarbon's vapor
saturation. For example, as the temperature of dodecane standard is lowered from 60°C to
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Table 11. Example comparisons of liquid fuel mole fractions derived from vapor and
liquid characterization.

Base Jet (quarter-scale test £4G):

Liquid Fuel Mole Fraction
HS-GC
Subsection Liquid GC 40°C 50°C 60°C
5 4.5 x 1004 g8.3x 104 7.2 x 10~* 6.8 x 104
6 2.9x 103 2.2 x 1073 22x103 2.2x 103
7 2.3x102 1.8 x 102 1.8 x 102 1.7 x 102
8 39 x 102 46x 102 4.7 x 102 43 x 102
9 6.6 x 102 - 87x 102 8.5 x 102 7.6 x 102
10 0.1146 0.1539 0.1476 0.1307
11 0.1768 0.2363 0.2319 0.1925
12 0.1842 02517 0.1874 0.1741
Mole Frac. Sum 0.6070 0.7959 0.7198 0.6362
85 wt% Btm:
Liguid Fue! Mole Fraction
HS-GC
Subsection Liquid GC 40°C 50'C 60"C
5 4,0 x 105 6.3 x 109 52x 105 3.1x 105
6 6.0 x 106 - - 2.6 x 106
7 2.8 x 105 - - -
8 1.3 x 104 24x 104 6.0x 105 9.6 x 105
9 41x103 58x103 44x103 35x 103
10 5.9x 102 6.4 x 102 5.9x 102 5.2x102
11 0.1988 0.2887 0.2619 0.2300
12 0.2266 10.3344 02538 0.2311
Mole Frac. Sum 0.4887 06932 0.5792 0.5167
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40°C, the slope of the dodecane regression line can decrease by 35-40% as the line moves
along the curve toward saturation. Responses for standard reference hydrocarbons Cs,
C10, and Cyj will also be affected in this way by temperature change, with the effect less
pronounced at the lower carbon pumber. The overall result is that, as sample temperature
is lowered, higher carbon number subsections (i.¢., C19-Cj2) are biased toward higher
mole fraction values.

A possible way to address this problem wouid be to use the pentane standard
regression equation for subsection Cs for all of the vapor subsections, assuming that the
individual components in the higher carbon number subsections are well below their
saturation vapor densities. An important justification for using the pentanc regression
equation is that equal masses of two different n-alkanes will give equivalent responses with
the fiame ionization detector (responds to moles of carbon); so, the pentane standard can
be substituted for the standards hexane-dodecane. Also, compared to dodecane, slopes for
the pentane standard regressions at 40°C and 60°C compare within 3-4% (compare with
35-40% for dodecane). The results from applying this approach to the Base Jet fuel vapor
(quarter-scale #46) are shown in Table 12, where the liquid fuel mole fractions derived
from the Cs regression equation (again, by dividing the vapor partial pressure by the
saturation pressure) are compared 1o those taken from Table 11. As can be seen, applying
the Cs regression equation to the vapor subsections Cs-Cj» gave more consistent summed
liquid mole fractions and resulted in foel vapor pressures that compared better with the
vapor pressures from the liquid fuel characterization (see Table 10).

Nominal loading (3 k'g!m3ﬂﬂ£_5_2]j]). Using the data from the liquid
characterization, the molar concentration in the liquid (i.e., mole/L) was calculated for each
subsection carbon number, This was simply done by dividing the subsection mass by the
reference hydrocarbon molecular weight (equation 3), and then dividing the result by the
total volume of sample injected into the analytical instrument. As described earlier, the
subsection partial pressures were calculated using each subsection liquid mole fraction

31
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(Table 5) and saturation vapor pressure, calculated using the Harlacher equation (equation
5). These partial pressures were then converted to their equivalent vapor concentrations
(mole/L) using the ideal gas law equation (equation 8).

The resulting liquid and vapor concentration data were used in the following
expression:

Co=CU/(K+[V/L)) (13)
where Cg is the concentration in the vapor (mole/L), C", is the initial concentration in the
liquid (mole/L), K is the hydrocarbon liquid-vapor distribution coefficient, and V/L is the
vapor volume-to-liquid volume ratio that would occur in the headspace vial. This
expression is known as the "headspace equation” (Toffc and Vitenberg, 1984b) and it
shows that the vapor concentration (Cg) of a hydrocarbon component in the headspace vial
depends not only on K, but also on V/L. For a given K, Cg will decrease (increase) as V/L
is increased (decreased). With Cg, C'1, and V/L (= 1.2 [400 kg/m3)]), it is then possible to
solve for K for each subsection carbon number:

K=(C"L-[Cc VLY/Cg 14
The choice of value for V/L may be somewhat arbitrary, but the value of 1.2 was selected,
since this was the ratio used in the headspace method to determine vapor pressures for the
half-filled tank. Given C'y, K, and V/L (= 274), Cg was then calculated for each
bydrocarbon subsection under nominal loading:

Cé (nom_load) = C'1 /(K +274) (15)

Table 13 compares measured (i.., headspace) vapor pressures for the ARCO fuels at
VIL = 274 (~3 kg/m?) with calculated pressures derived using the method just described.
The two scts of data compare rmonablj well. The average difference was 6.4% (range:
0.5-15%), with a median difference of 6.2%. Table 14 is a compilation of subsection
distribution cocfficients for the ARCO fuels. Since the distribution coefficient (K) is
proporiional to C'y/Cg, the higher the value for K, the more the distribution favors the
condensed, liquid phase. Finally, Table 15 lists regressions of vapor pressure vs.
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Table 13. Measured and calculated vapor pressures for the ARCO jet fuels under nominal
loading conditions (V/L = 274 {~3 kg/m3]).

Vapor Pressure, mbar

Sample Method 40°C 50°C 60°Ca
Base Jet (#46) | Measuredd 5.72 8.54 12.2
Calculated® 6.09 9.17 13.4

2.5 wi% OH Measured 12.7 19.4 27.3
Calculated 14.7 20.9 28.8

975 wi% Btm |  Measured 3.08 5.04 8.35
Calculated 3.48 5.62 8.88

95 wi% Bim Mezsored 2.19 3.46 6.19
Calculated 2.18 3.72 6.24

925wt% Bim | Measured 1.66 2.62 5.02
Calculated 1.57 271 4.83

90 wt% Btm Measered 1.40 2.18 4.35
Calculated 1.39 244 4.28

87.5wt% Bim |  Measured 1.11 1.71 3.29
Calculated 1.00 1.82 3.35

85 wi% Btm Measured 0.940 1.49 2.94
Calculated 0.819 1.52 2.85

2 For samples 97.5 wt%-85 wt%, listed vapor pressures are for subsections Cs-Cy3.

b Measured using HS-GC mcthod at V/L = 274 (0.08 mL fuel in 22 mL vial).

¢ Calculated using the headspace equation (see text for explanation):
Co=C't/K+[V/L])
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temperature for nominal loading (3 kg/m3) using the data in Table 13 ("Calculated™),
Regressions from Table 3 are included for comparison ("HS-GC").

Summary

1. For the ARCO fuels reformulated for flash-point, there was an inverse relationship
between vapor pressure and flash point temperature (i.c., the fuel with the highest vapor
pressure had the lowest flash point).

2. The commercial grade ARCO and Reno (Exxon) fuels had different formulations —
component distribution favored the lighter hydrocarbons in the ARCO fuel — but both fuels
had essentially the same saturation vapor pressures (within 1-7%) at the test temperatures.

3. The two fuels used in the Marana, AZ, ground tests (#1, #3) were similar to the
Reno fuel in formulation, but had about a 15-20% lower vapor pressure, which might have
been due to some weathering of the fuel in the warm (>40°C) center wing tank of a 747
aircraft.

4. Vapor densities for all of the commercial grade jet fuels (quarter-scale test samples
#42, 46, 51, and Marana, AZ, ground test samples #1 and 3) cither equaled or exceeded
the lower flammability limit (fuel/air mass ratio = 0.038) for nominal fuel loading (V/L =
274 [~3 kg/m3]) at 40°C and 14,000 foot altitude.

5. Al but two of the reformulated flash point ARCO fuels equaled or exceeded the
lIower flammability limit at 60°C for 14,000 feet. The exceptions ~ fuels 87.5 wt% Btm
and 85 wt% Bun -- were_lessthanthelinﬁtatﬁ()’c. Fuel 97.5 wt% Btm exceeded the limit
at 50°C, and fuel 2.5 wt% OH exceeded the limit at sca level and 40°C.

6. Overall, liquid characterization gave results for the half-filled tank situation that were
essentially equivalent to the results from vapor characterization. But, liquid characterization
better representad the contribution to fuel vapor composition from the higher molecular
weight components. This led to the modification to the vapor method involving the use of
the Cs reference standard regression for all of the vapor subsections (i.c., C5-Cy3). For
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example, for the Base Jet fuel (quarter-scale test #46), use of the Cs reference standard
only led to fuel vapor pressures of 7.92, 12.4, and 19.1 mbar at 40°C, 50°C, and 60°C,
respectively. These results compared well with the values derived from liquid
characterization of 7.91, 12.6, and 19.4 mbar at the same respective temperatures (sec
Tables 10 and 12).

7. Furthermore, liquid characterization also gave results for the nominal loading
sitnation that compared well with the results from vapor characterization.

8. Using the techniques described in this report, it is possible to characterize (model) a
complex hydrocarbon mixture under any specified set of conditions. For example, using
Raoult's law, the liquid characterization results can be used to calculate fuel vapor pressure
at any given temperature, if the saturation vapor pressures for the reference hydrocarbons at

those temperatures are known.



References

Ioffe, B.V., and A.G. Vitenberg., 1984a. Head-Space Analysis and Related Methods in
Gas Chromatography. (Translated from the Russian by LA, Mamantov). John Wiley &
Sons: New York, pp. 94-96.

Ioffe, B.V., and A.G. Vitenberg. 1984b. Head-Space Analysis and Related Methods in
Gas Chromatography. (Translated from the Russian by L A. Mamantov). John Wiley &
Sons: New York, pg. 26.

Reid, R.C.; JM Prausnitz; T.K. Sherwood. 1977. The Properties of Gases and
Liquids. McGraw-Hill: New York, pp. 629-665.

Sagebiel, J.C. 1998. Analysis of Vapor Samples Collected from the Center Wing Tank
of @ Boeing 747-100 Aircraft during Ground Tests. Draft Final Report to the National
Transportation Safety Board, October.

Shepherd, J.LE.; C.D. Nuyt; JJ. Lee. 2000. Flash Point and Chemical Composition of
Aviation Kerosene (Jet A). Explosion Dynamics Report FM99-4, California Institute of
Technology, May 26.

Woodrow, LE., and J.N. Sciber. 1988. Vapor-pressure measurement of complex
hydrocarbon mixtures by headspace gas chromatography. Journa!l of Chromatography,
455:53-65.

Woodrow, LE., and J.N. Sciber. 1989. Evaluation of a Method for Determining Vapor
Pressures of Petroleum Mixtures by Headspace Gas Chromatography. Final Report to the
Califoria Air Resources Board (Contract #A6-178-32), September.

39



Woodrow, JE., and J.N. Sciber. 1997. The Laboratory Characterization of Jet Fuel
Vapor under Simulated Flight Conditions. Final Report to the National Transportation
Safety Board (Order No. NTSB_12-97-UZSS), November.



Appendix A
Headspace GC resuits for the ARCO fuel samples and
the Marana, AZ, ground test fuel samples
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Appendix B
Vapor data calculated from the liquid GC results for the ARCO fuel samples
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Table B-7. Fuel/air mass ratios and fuel mole fractions at nominal loading (V/L =274 [~3
kg/m3]) derived from the liquid characterization of the eight ARCO jet fuel samples .

FocUAR Mass Rafio (VIL=274)

40°C 50°C 60°C
Sample 0ftd 14 kfib 0fid 14 kft? 0 fi2 14 kitD
25% OH | 0.053 0.092 0.077 0.133__|__0.107 0.185
Base Jet© | 0024 | 0.042 0.036 0.062 0,054 0.093
| 97.5% 0.015 0.026 0.024 0.042 0.039 0.067
~95% | 0.010 0.017 0.017 0.029 0.029 0.050
—02.5% 0.007 0.012 0.013 0.022 0.024 0.042
—90% | _0.007 | 0012 | 0012 | 0.021 0.021 0.036
~ 87.5% 0.005 0.009 0.009 ~0.016 0.017 0.029
T 85% 0.002 0.007 0.008 0.014 0.015 0.026

Fuel Mole Fm—c&'_ On (V7E=77-4)
40°C 50°C 60°C

[ Sampie 0fid 14 kft® 0fid 14 ki 0fd 14 Kite
2500 | 0014 0.024 0.020 0.035 0.028 0.048

Base Jet€ | 0.000 0.010 0.009 0.016 0.013 0.02Z |
 97.5% 0.003 0.005 0.006 0.010 0.000 0.016
5% 0.002 0.003 0.004 0.007 0.006 0.010
T 925% | 0002 | 0.003 0.003 0.005 0.005 0.009
— 0% | 0001 | 0002 | 0.002 0.003 0.004 0.007
— 87.5% 0.001 0.002 | 0002 0.003 0.003 0.005
85% 0.0003 0.001 0.001 0.002 0.003 0.005

2 Atmospheric mass density (dry air): 1127.4 g/m3, 40°C; 10924 g/m3, 50°C; 1059.6

3, 60°C.
ghiiassraﬁosat 14 kft were determined by dividing the ratios at sea level by the factor

0.578.

€ Quarter-scale test #46.

d Air molar density: 39.1 moles/m3, 40°C; 37.9 moles/m3, 50°C; 36.7 moles/m3, 60°C.
Molar densities were determined from the average molecular weight of air (~28.84 g/mole)

and the mass densities of air at the various temperatures.

€ Fuel mole fractions at 14 kft were determined by dividing the fractions at sea level by the

factor 0.578.
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