DOCKETNO. SA-516

EXHIBITNO. 20F

NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C.

EXPLOSION OF AVIATION KEROSENE (JET A) VAPORS (22 pages)

Explosion of Aviation Kerosene (Jet A) Vapors

I

1

J. E. Shepherd Graduate Aeronautical Laboratories California Institute of Technology Pasadena, CA 91125 **^f**

October 7, 1997

Sponsored by the National Transportation Safety Board under Order NTSB12-97-SP-0127

Caltech Research Program

0 Motivated by **TWA** 800 crash investigation

- Present Jet **A** data base inadequate
- Issues:
	- $-$ Chemical composition of fuel vapors vs liquid
		- * Effect of temperature *(T)*
		- $*$ Effect of fuel amount (M/V)
	- How does flammability depend on ignition energy?
	- Laminar and turbulent flame speeds?
	- Combustion within multi-compartment, vented tanks?

Scope of Presentation

Results of basic studies on Jet A

- Chemical composition
- vapor pressure

- Ignition energy and flammability
- Flame speed
- Explosion development

Chemical Composition I.

Kerosene is a mixture of many species.

Gas-Chromatograph Mass Spectrometer studies at CIT.

- *0* Chemical composition is the key to understanding combustion
- New Studies needed for quantification
	- Cl-C8 equivalance, headspace GC at University of Nevada, Reno (Woodrow)
	- Detailed speciation at Desert Research Insitute, Reno (Sagebiel)

Vapor and liquid composition are very different, depend on both temperature and mass loading.

Chemical Composition I1

Results of UNR/DRI studies

- *0* **Mean molar mass of vapor 120 to 140 depends on fuel origin, handling** & **weathering**
- **H/C ratio** of **1.8** in **vapor**
- Over 160 species in vapor, up to C=12.
- *0* **Depletion of light ends observed for small mass loading**
- **Light ends enhanced at higher temperatures**

Significance of Vapor Pressure *Pa*

- 0 Liquid evaporation creates flammable vapor-air mixtures
- **0 Pc** determines fuel-air mixture fraction

mole: $X = \frac{P_{\sigma}(T_{fuel})}{P_{air}}$ mass: $f = \frac{P_{\sigma}(T_{fuel})}{P_{air}} \frac{W_{fuel}}{W_{air}}$

Flammability limits

0 Determines peak pressure caused by combustion

$$
\Delta P_{max} = \frac{W_{fuel}}{W_{air}} \frac{q}{c_v T_1} P_{\sigma}(T_{fuel})
$$

Vapor Pressure Measurements

Issues:

- 0 dissolved air. (degassing)
- multicomponent (stirring)
- batch dependent
- Reid method inadequate
- 0 existing correlations unreliable
- New measurements needed

Vapor Pressure Results

Raw data, simple mixture model:

Comparison with published "data":

Issues:

- wide range of C_nH_m in Jet A
- preferential evaporation of "light ends"
- \bullet dependence of P_{σ} , composition on M/V

Simple model:

use *8* components from **UNR** measurements

- mixture vapor pressure

$$
P_{\sigma} = \sum x_i \gamma_i P_{\sigma,i}
$$

- activity coefficients γ_i estimated ≈ 1 .
- **Requires validation**

Flammability and Explosion

- Flammability depends on many factors
	- Ignition source (energy, temperature)
	- Fuel state (vapor vs mist, mass loading)
	- Turbulence
	- Temperature
	- Pressure

Standard approaches:

*⁰*Flash point test (ASTM D56) Jet A: 40 to 60 **"C** LAX Jet A, 46 to 48°C

10 to 15 **"C** above explosion limits. Not representative of actual explosion behavior.

Vessel studies.

Previous work used fixed energy (16-25 J), large mass loading $(100 \text{ to } 120 \text{ kg/m}^3)$

Not representative of many ignition sources, and empty fuel tank conditions.

Previous Studies on Flammability

- **•** L. J. Nestor 1967 "Investigation of Turbine...", Report DS-67-7, Naval Air Propulsion Test Center.
- *0* E. E. Ott 1970 Effects of Fuel Slosh. . . **'I** AFAPL-TR-70-65.
- *⁰*T. C. Kosvic et al. 1971 "Analysis of Aircraft Fuel.. . **'I I** AFAPL-TR-71-7.

Ignition Energy

Propane-Air mixtures, 300 K, 1 bar

- *0* Minimum of 0.25 mJ occurs for rich mixtures
- Strong dependence on concentration
- Ignition energy very high (100 J) near LFL
- Not previously measured for JET **A** vapor
- thermal sources require separate consideration

 $\sim \frac{1}{3} \frac{4}{\pi}$

CIT Ignition Testing

Emphasizes:

- fuel mass loading *M/V*
- spray injection vs stagnant pools
- 0 ignition energy
- 0 jet ignition vs sparks

Ignition vessel:

- 1.84 liter volume
- 0 video schlieren
- 0 spark ignition source
- \bullet $P(t)$, $T(t)$
	- -1 mJ to 100 J
	- **3.3** mm gap

Jet A Flammability

Explosion Development

Issues

- **peak pressure**
- **burn time**
- **flame speed**
- **quenching behavior**
- **turbulent flame speed**
- **multi-compartment burns**

0 **Parameters:**

- **mass loading** *M/V*
- **fuel temperature** *^T*
- **ambient pressure** *^P*
- **ignition source, fans, partitiions, etc.**

HYJET Facility

 \cdot

- Effect of fuel loading and state
- *0* 1180 liter vessel
- Stagnant puddle of fuel (1 gal) in 4 cases
- fan on in one case
- spray injection in one case

Summary I.

- vapor composition very different than bulk liquid
- vapor pressure alone not useful without vapor composition
- multicomponent fuels do not have unique vapor pressure
- mass loading *M/V* affects composition
- flash point is not a useful characterization of explosion hazard

Summary 11.

- MIE a strong function of composition
- .25 mJ not characteristic of near limit fuels
- \bullet MIE of Jet A is 100 J at 35 $^{\circ}$ C
- \bullet MIE of Jet A is < 1 mJ at 55°C
- mass loading *M/V* effect mild for MIE 'and peak pressure
- $\Delta P_{max} = 4$ bar at 40 to 55°C *(P_o* = .585) bar) for $M/V \geq 3$ kg/m³

Acknowledgements

- 0 Merritt Birky & Vern Ellingstad (NTSB)
- *0* Julian Lee (CIT)
- Chris Krok (CIT)
- 0 Jim Woodrow (UNR)
- John Sagebiel (DRI)