Docket No. SA-534

Exhibit No. 2-ED

NATIONAL TRANSPORTATION SAFETY BOARD

Washington, D.C.

San Bruno Gas Transmission Line Rupture Investigation CPUC Data Request 069

(60 Pages)

Nicholson Matthew

From: Chhatre Ravindra **Sent:** Wednesday, February 23, 2011 12:02 PM **To:** Nicholson Matthew **Subject:** FW: **Attachments:** SanBrunoGT-LineRuptureInvestigation_DR_CPUC_069-Q01.pdf; SanBrunoGT

LineRuptureInvestigation_DR_CPUC_069-Q01Atch01.pdf; SanBrunoGT-LineRuptureInvestigation_DR_CPUC_069-Q01Atch02.pdf; SanBrunoGT-LineRuptureInvestigation_DR_CPUC_069-Q01Atch03.pdf

-----Original Message----From: Shori, Sunil __Sent: Wednesday, February 16, 2011 2:52 PM To: Chhatre Ravindra Cc: Stepanian, Raffy; Robertson, Michael; Berdge, Patrick S.; Lee, Dennis M.; Cauguiran, Aimee Subject:

Ravi:

The attachments to this e-mail were received in response to Question 1 of CPUC Data Request 069. I believe NTSB may have already received Attachments 1 and 2; however, I don't believe earlier NTSB responses included the response provided by Attachment 3.

In addition, I wanted to suggest you to review, if you haven't already had a chance to do so, NTSB_021-001, pages 33-35. These show a leak on a girth weld due to a possible girth weld failure. This should be an item to follow-up on during the hearing.

I would like to discuss these, and the hearing process, with you further. We have not yet provided these attachments to other party members, so please let me know how we should proceed. Please call me after you have had a chance to review the attachments.

1

Thanks, Ravi.

Sunil Shori

PACIFIC GAS AND ELECTRIC COMPANY San Bruno GT Line Rupture Investigation Data Response

PG&E Data Request No.:	CPUC_069-01						
PG&E File Name:	SanBrunoGT-LineRuptureInvestigation_DR_CPUC_069-Q01						
Request Date:	January 10, 2011	Requester DR No.:					
Date Sent:	January 26, 2011	Requesting Party:	CPUC (CPSD)				
		Requester:	George Carter				

QUESTION 1

Request procurement documents/purchase specifications for 31 inch nominal steel/iron seam welded pipe/tubing purchased by PG&E from the beginning of 1945 to the end of 1959.

On January 11, 2011, PG&E clarified with Mr. Carter that the request is for procurement documents/purchase specifications for 30 inch nominal pipe, not 31 inch nominal pipe.

ANSWER 1

Please see the following attachments:

• **CPUC_069-Q01Atch01**: September 16, 1948, Appendix A: Specification for 30" O.D., Gas Line Pipe for Pacific Gas and Electric Company.

This attachment contains information related to the specifications, chemical properties and tests, physical properties and tests, dimensions and tolerances, workmanship and finish, and inspection and marking requirements for 30" steel pipe.

• **CPUC_069-Q01Atch02**: July 19, 1949, Final Report of the inspection of 30 inch pipe by Moody-Engineering Company at Consolidated Western Steel Co's. plant in Maywood, on Order No. 7R 66858.

This attachment contains the final report by Moody Engineering Company, covering the supervision of manufacture and their inspection, in accordance with Inspection Order No. 7R-81743, of pipe shipped during the interval from March 11 to April 22, 1949. PG&E's order placed with the manufacturing company, Consolidated Western Steel Corporation, covered 100,000 feet of Black Electric Welded Steel Pipe, 30" O.D. x .375" wall x 31' 2" length. The report covers details about the pipe manufacture, chemical and physical properties of steel, internal hydraulic expansion operation, hydrostatic pressure test, end finish of pipe, inspection, length range, rejections, shipment, and the following conclusion: the pipe was inspected, was in accordance with PG&E's order and specifications, and was accepted for shipment subject to PG&E's shipping instructions.

• **CPUC_069-Q01Atch03**: December 12, 1962, PG&E internal memo to Division Gas Superintendents regarding the history of pipe purchases.

This attachment contains guidance on identifying unknown pipe, as required by General Order 112. Tabulation and notes regarding pipe purchased in the early 1920's, late 1920's, 1930's, between 1940-1947, and between 1948 and the date of the memo (1962), was provided for the Division Gas Superintendents use. Superintendents were instructed to resolve any doubt of the identity of any unknown pipe materials in favor of lower strength materials or contact the Gas System Design office for more positive identification.

September 16, 1948 FGE-6

APPENDIX A SPECIFICATION FOR 30" O. D. GAS LINE PIPE FOR PACIFIC GAS & ELECTRIC COMPANY

SECTION I

GENERAL

This specification applies to 30° O. D. pipe to be used for the purpose of conveying gas.

The pipe shall be fabricated from steel made by the Open Hearth process.

Longitudinal seems shall be joined by electric fusion welding.

SECTION II

CHEMICAL PROPERTIES AND TESTS

1. Ledle Anelveis:

A ladle analysis of each heat of steel shall be reported to the purchaser. Only those heats conforming to the following chemical composition shall be used in the nanufacture of pipe under this specification.

Carbon	.30% max.
Manganese	1,25% max.
Phosphorus	.045% max,
Sulphur	.05% max.

2. Check Analysia:

A check analysis of one plate from each heat of steel shall be reported to the purchaser. Samples for check analysis shall be taken in accordance with standard mill practice.

If the check analysis varies from the requirements for Ladle Analysis by more than the permissible limits set forth below, additional analysis from the heat may be made. The composition, based on the average of all the separate determinations made, may vary from that specified for Ladle Analysis to the following extent:

•••2e=

Over max. limit, percent

Carbon.04Manganese.04Phosphorus.01Sulphur.01

SECTION III

PHYSICAL PROPERTIES AND TESTS

1. Physical Properties:

The finished pipe shall conform to the following physical properties:

In pipe of 1/2" nominal wall thickness, Tranverse yield strength		
of plate material, win, p.s.i.	46000	
Transverse ultimate		
strength, min. p.s.i.	65000	
Transverse elongation in 2" of		
plate material, min., per cent	22	
In pipe of 7/16" nominal wall thickness, Transverse yield strength		
of plato material, min., p.s.i.	48000	
Transverse ultimate		
strongth, min.,p.s.1.	65000	
Transverse elongation in 2" of	00	
prace maceriar, min., per conc	22	
In pipe of 3/8" nowinal wall thickness, Transverse yield strength		
of plate material, min.,p.s.i.	52000	
Transverse ultimats		
strongth, min., p.s.i.	72000	
Transverse elongation in 2" of		
n_{1}	22	

m3es

The yield strength is defined as the stress required to produce a total elongation under load of 0.5 per cent of the gauge length on the test specimen as determined by multiplying dividers or extensester.

2. Hydrostatic Pressure Tests:

Each length of pipe approximately 31'-1" long (Maywood) or 31'-7" long (South San Francisco) including jointers, shall be tested to a hydrostatic pressure which will produce a stress of 90% of the specified minimum transverse yield strength, which pressure shall be maintained for not less than ten seconds. This pressure shall be determined by the formula:

where

P . hydrostatic test pressure, p.s.1.

t 📰 thickness of wall, inches

D _ outside diameter, inches

f _ allowable fiber stress, p.s.1.

For the following diameters and thicknesses, this test pressure is as follows:

<u>0, D</u> ,	<u>Wall Thickness</u>	Test Pressure. D. S. 1.
30"	1/2"	1380
30"	7/16"	1260
	570	July IV

While under pressure, the pipe length shall be struck a blow with a two-pound hanner, or its equivalent, near both ends of the weld.

After the hanmer test, the pressure shall be reduced to not less than 450 p.s.i. and the longitudinal welded seam inspected for sweats or leaks.

All hydrostatic tests may be conducted with 2" rubber seals inside the pipe ends.

3. Tensile Tests:

All tensile tests shall be made at room temperature.

All tensile test specimens shall be 1" wide within a 2" gauge length and may be pressed flat prior to machining and testing.

Tensile tests shall be made on one length of pipe of each thickness from each heat of steel, as follows:

rs 4,63

One transverse tensile test across the weld, with the weld in the center of the specimen (weld reinforcement not removed), for determination of ultimate strength.

One transverse tensile test 90 degrees from the weld, for determination of yield strength, ultimate strength, and elongation.

The results of these tests shall at least equal the applicable physical properties specified in Section III, Paragreph 1, and shall be reported to the purchaser.

4. Rotosts:

If the results of any tensile test of a length of pipe representing any thickness from any heat of steel do not conform with the requirements of Section III, Faragraph 1, two retests of that test shall be made on the same length of pipe, If both of these retests meet the requirements, the material of that thickness and heat shall be considered acceptable. If either retest fails, additional tests shall be made of lengths of pipe, selected at random from that thickness and heat, until the required results have been obtained from tests of three successive lengths of pipe, whereupon the tested thickness and heat, except those lengths which previously have failed, shall be considered acceptable.

Individual pipe lengths which have failed in the above tests may be further retested and shall be acceptable if the required results are obtained from two successive tests.

If the elongation of any tensile test specimen is less than that specified and any part of the fracture is outside of the middle third of the gauge length, a retest shall be allowed.

If any specimen fails because of flaws resulting from preparation of the specimen, it may be discarded and another specimen substituted.

SECTION IV

DIMENSIONS AND TOLERANCES

1. Dimensions:

The finished pipe sections shall have the following dimensions, within the tolerances specified below:

<u>O.D.</u>	<u>Wall Thickness</u>	Maywood	So, San Francisco
30 ⁿ 30 ⁿ	1/2" 7/16" 3/8"	311-1" 311-1" 311-1"	311-711 311-711 311-711

es Gas

2. Circumference Telerancer

The outside circumference of the pipe, for a distance of 8^{n} from each end, shall not vary from the circumference calculated from the specified outside diameter by more than minus $3/32^{n}$ or plus $9/32^{n}$.

3. Mall Thickness Tolerance:

The wall thickness at any point shall not be less than ninety per cent of the specified thickness for the $3/8^{\circ}$ wall pipe and 95% of the specified thickness for the $7/16^{\circ}$ and $1/2^{\circ}$ wall pipe.

16 32

4. Longth Tolerance:

Ninety-five per cent of the pipe sections shipped shall be between $30^{\circ}-6^{\circ}$ and $31^{\circ}-10^{\circ}$ in length, and no section will be acceptable which is less than $27^{\circ}-0^{\circ}$ in length. Jointers (two or more pieces joined by welding) shall be acceptable to a maximum of five per cent of the order. No jointer shall contain pipe lengths measuring less than $5^{\circ}-0^{\circ}$.

SECTION V

WORKMANSHIP AND FINISH

1. Dofects:

The finished pipe shall be free from injurious defects, both in plate and in weld. When the depth of defect reduces the wall thickness to less than 90 per cent of the specified wall thickness, such defect shall be considered injurious.

Repair of injurious defects by welding shall be permitted, provided the depth of the defect does not exceed 33-1/3 per cent of the specified wall thickness (except in the case of sweats or leaks in the weld), and provided the length of the defect is not greater than a length equivalent to one diameter of the pipe.

The repairing of sweats or leaks in the welds shall be permitted to the full thickness of the pipe.

Repairs shall be made by chipping and welding. The workmanship involved in the repair is subject to approval of the purchaser's inspector.

Hydrostatic retest of pipe which has been repaired in this manner may be required by the purchaser's inspector.

2. End Finish:

The ends of the sections of pipe shall be beveled to an angle of 30 degrees, plus 5 degrees, minus zero and with a width of flat at the end

000 Tan

of the pipe of 1/16", plus or minus 1/32". It shall be understood that the angle is to be measured from a line drawn perpendicular to the axis of the pipe.

The bavals shall be reasonably free from burrs,

The plane of the ends of the pipe shall be within .060" of perpendicular to the axis of the pipe at the ends, as measured across the pipe. by means of a square.

3. Surface Treatments

All surfaces of the pipe shall be free from loose mill scale; but no surface treatment, such as blasting or pickling, shall be required.

The inside and outside weld reinforcement need not be removed.

SECTION VI

INSPECTION AND MARKING

1. Inspection:

While work on this contract is in progress, the purchasor's inspector, as designated by or under the contract, shall have free entry at all times to all parts of the manufacturer's plant engaged in the manufacture of pipe under this contract. The manufacturer shall afford the inspector, free of charge, all reasonable facilities for inspection of the pipe and shall permit him to witness all tests. The manufacturer of the pipe shall not be obligated, hewever, to delay any of its operations because of the absence of the inspector.

2. Markings

Each section of the pipe to be shipped shall be marked by painting on the inside surface near both ends the measured length and the specified thickness of the section.

PACIFIC GAS AND ELECTRIC COMPANY

Bureau of Tests and Inspection

August 3, 1949

MR. R. S. FULLER:

Attention: Mr. R. D. Smith

I am enclosing herewith a final report of the inspection of 30 inch pipe by Moody-Engineering Company at Consolidated Western Steel Co's. plant in Maywood, on our Order No. 7R 66858.

I am sure you, and possibly Mr. J. A. Love, would like to look this over before returning it for our file.

W. N. LINDBLAD

WNL: MLW Enclosure CC: JAL

PΥ

.

• •

MOODY ENGINEERING COMPANY

HIGHLAND BUILDING PITTSBURGH 6, PA.

July 19, 1949

Pacific Gas & Electric Co. 4245 Hollis Street Emeryville'8, California

Attention: Mr. W. N. Lindblad Chief of Bureau of Tests & Inspection

> Inspection Order 7R-81743 Purchase Order 7R-66858 Consolidated Western Steel Corp. 30"_0.D. x 3/8" Wall Line Pipe

Gentlemen:

We wish to submit herewith our report, covering the supervision of manufacture and our inspection, in accordance with your Inspection Order No. 7R-81743, of:

3,222 pieces - 100,001.63 feet - 18.939 miles of 30" 0.D. x 3/8" wall "Unionmelt" Electric Fusion Weld Steel Line Pipe;

supplied on your Purchase Order 7R-66858, placed with the Consolidated Western Steel Corporation, and shipped via auto truck to your coating and wrapping plant in Montebello, California, as designated in your shipping instructions issued to the manufacturer. Shipment of this pipe was made during the interval from March 11 to April 22, 1949.

Your order as placed with the manufacturer covered:

100,000 feet of Black Electric Welded Steel Pipe, 30" O.D. x .375" wall x 31' 2" length, to be fabricated in accordance with the P.G. & E. Specifications for pipe dated June 21, 1948.

Pise -2-

The pipe supplied for this order was fabricated at the Maywood, Galifornia plant of the Consolidated Western Steel Corporation, at which plant our inspection of the pipe was conducted during its manufacture. This order was scheduled for production in conjunction with several other orders for the same size and quality of pipe, and therefore, the plates used in the manufacture of this pipe involved a greater number of heats of steel than would normally be required for an order for this quantity. The required results of the ladle analyses, check chemical analyses, and tension tests of all of the heats of steel for the 3/8" wall pipe are included in this report.

The major portion of the steel plates from which the pipe was made were supplied through the Columbia Steel Company, Los Angeles, California by the Geneva Steel Company, and rolled at their plant in Geneva, Utah. The balance of the plates were supplied by the Kaiser Company, Inc., and rolled at their plant in Fontana, California.

DETAILS OF PIPE MANUFACTURE:

The flat plates for fabrication into pipe enter the production line on a flat charge table. They pass under end squaring shears where the ends of the plates are cut square with the longitudinal edges.

As the plates leave the end shearing operation, they are passed between two planers, set parallel and back-to-back, where the longitudinal edges of each plate are simultaneously planed parallel to each other, and with a slight bevel of about five degrees. This bevel is just sufficient to insure definite closure contact of the inner edges when formed into a cylinder, which will tend to prevent "burn-through" as the outside longitudinal weld is made. The longitudinal edges of the plate are also chamfered at the outer corner to form a guide groove for the flexible weld head attachment of the Berkley Welding Units. This flexible weld head has been arranged to prevent off seam welds, and to centralize the weld properly over the long seam of each avlinder. The plates are finished planed to a width of 91-5/8", plus or minus 1/32", for this 30" 0.D. x .375" wall pipe.

Following the planer operation, the plates pass through a set of edge break, or crimping rolls, and then to the pyramid rolls where they are formed into cylinders with the longitudinal edges aligned for the outside welding operation. The cylinders are then progressed through the Berkley Welding Units, where the longitudinal seam is automatically welded on the outside by the "Unionmelt" Electric Fusion method. A similar "Unionmelt" weld is also made along this seam on the inside by the Inside Welding Units. Each of these welds is regulated to penetrate to a minimum of 2/3 of the plate thickness from each side, thereby resulting in an overlap, or tie, of these two welds in the middle third of the wall thickness of the cylinder. As now arranged, the Berkley Welding Units will not complete a sound solid weld to the very end of each longitudinal seam of each cylinder. It is characteristic of these units to allow the weld to crack about two to three inches at the leading end of the cylinder, and about four to eight inches at the trailing end of the weld. This condition is no doubt a result of the "spring-back" of the plate as the ends of the cylinders leave the retaining guides of the cage at the welding zone, and before the weld metal has had time to congeal sufficiently to restrain the uncontrolled stresses caused by the "spring-back" of the plate. The manufacturer does not cut any crop from the ends of the cylinders, therefore, it is necessary to repair, and complete each end of the longitudinal automatic weld before the cylinders pass to the inside long seam welders.

Lincoln Semi-Automatic squirt welders, which make a submerged arc weld, were used to complete the longitudinal weld at each end of the cylinder. Each end of each outside automatic weld was carefully cleaned by chipping before the Lincoln squirt weld was made to complete the outside long weld. These end welds were made against an inside flux back-up arrangement held in position in the pipe by an air pressure jack, or ram, which permitted the end welds to be regulated to give complete wall penetration.

Each outside end weld was back chipped on the inside of the seam to remove any chance of flux entrapment or pockets before this section of the inside was covered with a similar Lincoln Semi-Automatic weld at each end of the inside seam. Each of these end welds was started on a square steel tab placed at the end of the seam, and this tab was left attached to the cylinder for a starting area for the inside automatic weld.

The cylinders, with the end tabs attached, are progressed to the inside welding operation. The welding heads of the Inside Welding Units are suspended at the free end of a box girder arm of sufficient length to allow the head to extend through the a cylinder as it is conveyed endwise on a carriage for this welding operation. The cylinder supports of the carriage are adjustable, so that the operator may vary the position of the inside weld to cover, or follow, the inner side of the previously made outside weld, which is used as a guide for locating the inside "Unionmelt" weld. At the completion of the inside weld, the travel of the supporting carriage is reversed to free the weld unit arm from the inside of the cylinder.

The welded cylinders then pass over a series of inspection and repair skids, where at this stage of manufacture, a shop inspection is made of the inside and outside of the cylinders

Page -4-

with especial attention being given to the condition of each of the welds. All defects discovered during this inspection are required to be eliminated by chipping before repairs are permitted. If not excessive, repairs are made by hand welding, otherwise the repair weld is made with a "Unionmelt" unit. Every effort is made to have all repairs completed before the cylinders are subjected to the expanding operation. It is standard practice to pre-heat all areas to be repaired to about 450 degrees before repair welds are made.

Each cylinder as formed and welded was smaller in diameter than the specified O.D. of the finished pipe; therefore, all cylinders passed by the shop inspection for further processing are conveyed to the End Belling Unit, and each end expanded mechanically to approximately the finished O.D. of the pipe. Each piece is then subjected to an internal hydrostatic pressure sufficient to stress the steel beyond its yield point, and increase the diameter until the outer surface of the cylinder is in direct contact with the inner surface of the retaining die of the expander unit, which is cylindrical, and bored to the proper diameter to produce pipe of the specified O.D.

The wall thickness of the pipe is not materially reduced by the expanding operation, since the length of the cylinders is shortened to compensate for the increase in diameter. The 0.D. of the cylinders as formed and welded range from 29-37/64"to 29-39/64" for the finished 30" 0.D. pipe.

Comparative tensile tests have been made on numerous heats of steel from which pipe has been manufactured by this process, and it has been determined that the yield strength of the steel has been increased by about 12,000 to 20,000 lbs per square inch by the internal expanding, or cold working operation. It is also established that this increase in yield strength is accomplished without the steel being transformed into a serious brittle condition if the chemistry of the plate as rolled is suitable for fabrication under this method of pipe manufacture.

The specified hydrostatic pressure test and hammer test are applied to each length of pipe directly following the expanding operation, and with the same equipment, but with the retaining dies released and open so that the pipe is not supported or restricted in any manner by the die section.

The balance of operations required in finishing the pipe as adapted by this manufacturer are similar to the conventional methods followed by other pipe manufacturers.

CHEMICAL AND PHYSICAL PROPERTIES OF STEEL:

Ladle and Check Chemical Analyses have been made on each heat of steel involved in the supply of pipe for this order.

Page -5-

<u>.</u>

Tension tests were also conducted on specimens cut from one length of finished pipe made from a plate selected from each heat of steel. One transverse tensile test was made on a specimen cut from the finished pipe across the weld, with the weld in the center of the specimen, to determine the ultimate strength of the steel. The weld re-inforcement metal was not removed for this test. Another transverse tensile test was made on a specimen cut from the same pipe, but 90 degrees from the weld, to determine the yield strength, ultimate strength, and percentage of elongation of the steel of the finished pipe after expansion.

The results of ladle and check chemical analyses made on the heats of steel from which the plates have been rolled for the manufacture of this pipe are as follows:

HEAT SYMBOL	HEAT NUMBER	ANALYSIS	C	PER Mn	CEN	T A G S	E Si	
AGK	21490	Ladle Check	.26 .26	.91 .94	.018 .017	.033 .021	.07	
AGL	21491	Ladle Check	•26 •27	•97 1•03	.013 .015	.035 .018	.07	
AGT	61713	Ladle Check	•25 •27	•91 •87	.012 .017	.031 .022	•04	
AGV	71733	Ladle Che ck	.25 .29	1.04 1.04	.018 .013	•023 •037	•04	
АНО	41549	Ladle Check	•27 •28	1.09 .93	.020 .014	.032 .035	•07 _	
AHP	41550	Ladle Check	。26 。27	1.00 •91	.015 .013	•036 •037	°08 –	
AHQ	61734	Ladle Check	.24 .27	•93 1•21	.013 .013	.025 .023	•06	
AHX	91068 ¹¹¹	Ladle Check	•27 •26	1.06 1.06	.015 .020	.036 .028	•08 -	
АНҮ	11085	Ladle Check	.26 .27	•97 •96	.012 .015	.034 .037	•07	
AHZ	11097	Ladle Check	•25 •27	1.03 1.01	.014 .017	.030 .023	.10 _	
AIK	91038	Ladle Check	•29 •32	1.03 1.04	.013 .016	.029 .026	•08 -	
AIL	51572	Ladl e Che ck	•26 •24	1.05 1.00	.017 .016	.033 .032	•08	

rage -6-

HEAT SYMBOL	HEAT NUMBER	ANALYSIS	· C	PER Mn	CEN P	T A G S	E Si
AIP	21511	Ladle Check	.26 .24	•96 •90	.016 .017	.035 .023	•08 -
AJA	81456	Ladle Check	.24 .22	•91 •94	.014 .015	•028 •026	•04 -
AJB	81458	Ladle Check	.26 .26	1.07 1.16	.012 .016	.027 .023	•08 -
AJC	21510	Ladle Check	.24 .26	.99 1.01	.010 .014	•039 •032	.10 -
AJD	41566	Ladle Check	•27 •27	•99 1•04	.010 .016	•030 •040	•06
AJE	41567	Ladle Che c k	.26 .22	.91 .85	.022 .015	.042 .023	•08 -
AJH	61746	Ladle Check	.24 .23	•95 1.00	.012 .017	.023 .023	•06 -
AJI	81457	Ladle Check	.26 .27	1.02 1.06	.022 .018	.027 .029	.05
AJJ	31494	Ladle Check	.26 .24	1.01 1.04	.032 .017	.043 .031	•09
AJK	81472	Ladle Check	。24 。22	.91 1.00	.016 .015	.030 .023	•09 _
AJL	31493	Ladle Check	.26 .25	•99 1 _• 04	.016 .014	•032: •037	.10 -
AJM	61747	Ladle Check	.26 .26	•94 1.00	.010 .016	.030 .027	•05 -
AJN	21500	Ladle Check	.24 .25	•87 •92	.012 .018	.036 .025	•07
AJO	31495	Ladle Check	.26 .23	•93 1 _• 05	.017 .017	.038 .030	.10 -
AJP	81475	Ladle Check	.25 .20	.88 .87	.013 .014	.041 .043	•08 ,-
AJQ	21509	Ladle Check	.25 .25	•95 •87	.032 .021	.029 .026	•07 -
AJS -	61749	Ladle Check	.26 .28	•92 1.00	.011 .018	.032 .028	.07
AJT	11339	Ladle Check	,26 ,26	1.13 1.19	.035 .018	.025 .032	<u>.</u> 07

ĩ

Page -7-

. R

HEAT SYMBOL	HEAT NUMBER	ANALYSIS	C P	ERC Mn	ENT P	AGE S	Si
AJU	21573	Ladle Check	.26 .27	1.01 1.00	.019 .015	•045 •035	.05 -
AJV	31553	Ladle Check	•26 •28	1.00 1.01	.019 .014	•030 •037	•07
AJW	11350	Ladle Check	.27 .29	1.17 1.12	.010 .013	•034 •037	•06 _
AJX	91301	Ladle Check	28 32	1.12 1.14	.025 .013	.037 .049	.09 -
AJY	1556	Ladle Check	.28 .29	1.00 1.05	.013 .014	.024 .023	
AJZ	91308	Ladle Check	•25 •30	1.13 1.17	.024 .015	•035 •040	.09
AKF	61776	Ladle Check	.27 .25	1.08 1.01	.017 .011	•035 •035	• <u>0</u> 8
AKM	21549	Ladle Check	•25 •25	•99 •95	.016 .012	.031 ,032	. 06
АКР	61785	Ladl e Check	.24 .22	.91 .92	.023 .016	•032 •032	•07 _
ALM	41615	Ladle Check	•25 •25	1.09 1.05	.013 .014	•037 •040	•09
ALO	91309	Ladle Check	.25 .29	1.09 1.12	.024 .016	.026 .032	.10 -
	71875	Ladle Check	.27 .27	1.09 1.15	.010 .012	.022 .026	•06 -
ALY	31509	Ladle Check	•26 •24	•99 1•08	.043 .018	•036 •026	.10 -
ALZ	91316	Ladle Check	.27 .27	1.07 1.06	.022 .012	•026 •032	•08 -
AMA	11370	Ladle Check	.25 .27	1.06 •92	.016 .015	.027 .026	•07 -
AMB	91310	Ladle Check	25 29	1.03 .98	.033 .015	.028 .029	•04 -
AMC	81537	Ladle Check	.26 .26	•97 •95	.034 .013	.028 .029	.06
		, *					

))

÷

Page -8-

HEAT' SYMBOL	HEAT	ANALYSTS	a	PER	CEN	TAG	E Q4
AMD	41619	Ladle Check	.25 .24	1.09 .92	.021 .015	.035 .029	.07
AME	41618	Ladle Check	.25 .25	.88 .88	.010 .015	025 026	•06 -
AMG	81534	Ladl e Che ck	•26 •29	1.05 1.04	.025 .014	035 035	.10
AMI	81535	Ladle Check	.27 .28	1.08 1.05	.015 .012	•032 •023	•04 -
AMJ	31557	Ladle Che ck	.27 .28	1:01 •98	.016 .015	029 032	•04
AMR	31559	Ladle Check	.28 .23	.91 .95	.015 .013	028 032	•09
AMS	21577	Ladl e Check	.25 .23	.99 1.08	:017 :014	。036 。032	•05+
AMT	51646	Ladl e Check	.25 .25	1.03 .98	.022 .014	.045 .035	.10
AMU	41617	Ladle Check	24 24	•94 •93	.022 .014	:038 .029	.10
AMV	11373	Ladle Check	25 25	1.04 1.06	.030 .017	•024 •026	• <u>0</u> 9
MMA	11372	Ladle Check	.28 .29	1.04 1.08	.010 .017	:022 .026	•06 -
AMX	81533	Ladle Check	.25 .27	1.02 1.09	.019 .015	•030 •029	•05 -
AMY	11.376	Ladle Check	•27 •28	1.06 1.07	015 015	.022 .029	.10 _
AMZ	91314	Ladle Check	.30 .29	1:09 1.23	.039 .017	030 023	•06 -
ANL	51660	Ladl e Che c k	.25 .29	•97 1 _• 00	₀017 ₀014	€040 •040	• <u>0</u> 4
ANO	71904	Ladle Check	.28 .29	.93 1.00	.017 .013	.028 .029	•07

Page -9-

HEAT SYMBOL	HEAT NUMBER	ANALYSIS	<u> </u>	PER <u>Mn</u>	CEN	TAG: S	E <u>Si</u>
ANX	91344	Ladle Check	.26 .24	1.03 .99	.010 .012	.024 .032	.07
ANY	51678	Ladle Check	•24 •26	₀98 ₀96	.020 .012	.036 .032	°02 –
AOB	21579	Ladle Check	.26 .27	1.00 1,12	.018 .017	.022 .023	.08 -
AOC	31556	Ladle Check	.27 .28	1.13 1.28	.019 .018	•030 •026	•07 =
AOD	71877	Ladle Check	•25 •24	1.01 1.07	.010 .015	.023 .029	•07 -
AOE	81538	Ladle Check	•25 •25	1.07 1.00	.013 .017	.027 .026	•05
AOH	31558	Ladle Check	.24 .23	.88 •99	.039 .018	032 026	•06
AOI	41576	Ladle Check	.27 .28	1,08 1,19	.039 .018	•030 •026	•06 -
AOJ	51649	Ladle Check	.26 .27	•93 •97	.025 .016	.032: .032	•05 •
AOP	61797	Ladle Check	.27 .27	∘97 1∙04	.023 .017	.035 .026	•07 -
VOA	41616	Ladle Check	.27 .26	•97 •96	.023 .017	.035 .037	•07 -
AOW	11374	Ladle Check	.26 .31	1.07 1.05	.017 .018	028 032	•05
AOX	21527	Ladle Check	•25 •24	1₀09 1₀17	.024 013	,030 029	.09 -
AOY	41633	Ladle Check	.25 .27	1,05 .87	010 015	034 029	.10
APE	21594	Ladle Check	.26 .23	•95 •99	,018 .015	.029 .024	•06 -
АРК	51668	Ladle Check	.26 .28	1.03 1.07	.017 .014	.035 .032	.09 -
APP	31582	Ladle Check	.26 .25	1.01 1.10	.015 .014	.033 .026	.07 -

:

Page -10-

. 108

HEAT SYMBOL	HEAT NUMBER 91351	<u>ANALYSIS</u> Ladle	<u> </u>	PER <u>Mn</u> 1.08	CEN P .010	T A G 	E <u>Si</u> .08
	/2//2	Check	•25	1.02	.016	.023	-
APS	11369	Ladle Che ck	•24 •24	1.01 •99	.013 .017	.029 .029	•07 -
APT	91349	Ladl e Che ck	。25 。22	1.02 1.00	•013 •020	.026 .023	•04 -
APU	81577	Ladle Che c k	.26 .27	1.04 .99	.018 .016	.025 .032	。06 一
A₽ V	91362	Ladle Check	•25 •30	•93 1.07	.010 .017	.031 .037	.04
APW	81568	Ladle Check	.25 ,29	1.09 1.10	.011 ,014	.032 .037	.08
APX	71909	Ladle Check	.28 28	•98 •99	.019 .014	.032 .026	.07
APY	91372	Ladle Check	.25 .25	.93 .93	.014 .015	.026 .02 3	.07
APZ	91371	Ladle Che ck	.27 .25	1.04 1.03	.015 .015	.028 ,026	•06 _
AQB	11386	Ladle Check	.26 .27	1.00 .98	.014 .016	.019 .026	.05
AQF	91335	Ladle Check	.27 ,26	1.04 1.04	.014 .012	.025 .029	.08 -
AQG	81555	Ladle Check	.26 .24	•97 •98	.015 .013	•034 •026	.06 -
AQM	81513	Ladle Check	•25 •24	1.09 1.01	.022 .013	.031 .032	•06 -
AQP	11416	Ladle Check	.26 .29	1.03 .95	.023 .015	.025 026	•07 -
AQU	81586	Ladle - Check	•26 •26	•99 •92	.016 .012	.031 .029	•04 -
AQX	31614	Ladle Check	.26 .23	•97 •87	.010 .013	•028 •032	•06 -
ARA	31609	Ladle Check	.26 .25	1.07 1.08	.011 .014	•027 •026	•07 _

Page -11-

HEAT SYMBOL	HE AT NUMBER	ANALYSIS	C	PER Mn	C E N P	TAG S	E Si
ARB	91365	Ladle Check	•24 •24	.92 •94	.014 .014	.034 .029	•05
ARC	91363	Ladle Check	。27 。27	1.07 1.12	.013 .013	.034 .020	•08 -
ARD	21620	Ladle Check	.27 .25	•97 •95	.015 .014	*030 •026	•07 -
ARE	51677	Ladle Check	.28 .27	•96 •96	.013 .012	.036 .029	•06 -
ARF	11400	Ladle Check	.25 .27	1.02 •99	.018 .013	.022 .032	•08 •
ARK	11397	Ladle Che ck	.26 .27	• 87 •85	.021 .013	.026 .023	•06
ARL	81594	Ladle Check	.25 .25	1.03 1.06	016 014	.028 .029	•09
ARN	71922	Ladle Check	.25 .26	:91 .87	.011 .014	6029 029	.05
ARO	91376	Ladle Check	.25 23	.91 .92	.012 .013	•029 •026	•06 -
ARP	31618	Ladle Che ck	.26 .26	。96 。90	.010 .016	.033 .029	•08 -
ARQ	11428	Ladle Check	.25 .25	1.02 .96	.027 .015	.028 .023	•07
ARR	71934	Ladle Check	27 28	.91 •93	.020 .012	025 026	•04
ARS	91375	Ladle Check	.25 .26	。93 1。06	.021 .017	.025 .032	- - -
ART	31635	Ladle Check	.24 .26	•99 •96	018 017	.034 .035	•08
ARU	61836	Ladle Check	•25 •26	1:00 •96	.017 .017	.034 .035	•04
ARV	11440	Ladle Check	•27 •24	1.07 1.00	.010 .015	•030 •026	•08 -
ARW	41648	Ladle Check	.25 .26	-91 -89	.012 .018	.035 .035	. 09

rage -12-

HEAT	HEAT			PER	CEN	TAG	E
SYMBOL ARX	<u>NUMBER</u> 41651	<u>ANALYSIS</u> Ladle Check	24 26	<u>Mn</u> .92 .90	P .017 .016	S .029 .043	<u></u>
ARY	61851	Ladle Check	.24 .26	•97 •94	.023 .016	•037 •032	•05 -
ARZ	51711	Lad le Check	.24 .25	1.03 1.08	020 015	•034 •029	•04 =
ASA	71920	Ladle Check	.26 .26	₀95 ∙95	.012 .012	.029 .026	•05 -
ASC	21644	Ladle Check	•26 •26	1.06 1.04	.018 .015	•033 •035	•08 -
ASD	71948	Ladle Check	•25 •26	1.07 1.09	.019 .016	•043 •037	•10
ASE	21652	Ladle Check	.26 .25	.85 .89	.018 .018	.028 .029	.07
ASF	71949	Ladle Check	•25 •27	.94 1.07	.010 .018	.029 .035	•07
ASH	31631	Ladl e Che ck	。25 •23	1.02 •94	.022 .018	.041 .032	.10 -
ASN	61858	Ladle Check	•26 •30	1.05 1.07	.010 .017	•034 •037	•08 -
ASO	21659	Ladle Check	.26 .25	1.00 1.02	.025 .015	.031 .035	•09 -
ASQ	11442	Ladle Check	•26 •26	1.04 1.03	.019 .013	.027 .029	•07
ASV.	71953	Ladle Check	.27 .28	₀97 ₀93	.019 .017	.024 .032	•05 -
ASY	31627	Ladle Check	.27 .30	1.01 1.22	.019 .012	.036 .032	•09 -
ATA	21648	Ladle . Check	.28 .31	1.09 1.13	.018 .018	.023 .026	.10
ATB	31625	Ladl e Che ck	•25 •24	•98 •98	.020 .017	.024 .026	80 .
ATC	41654	Ladle Check	。26 •25	•95 •93	.024 .018	•034 •026	•09 -

Pag- -13-

HEAT SYMBOL	HEAT	ANALYSIS		C	PER Mn	CEN P	TAG S	E Si
ATD Ö	41647	Ladle Check		24 26	1.06 1.04	.014 .019	•033 •029	•09
ATE	61838	Ladle Check	ہ ق	27 25	1.08 1.06	.010 .017	.036 .026	•05 •
ATF	91399	Ladle Check	ہ *	25 24	。96 。95	.028 .016	•030 •046	•10 -
ATG	41646	Ladle Check	•	27 20	.91 .92	.022 .014	.034 .032	.10 -
ATH	21639	Ladle Check	•	24 21	1.01 1.02	.010 .017	.029 .029	•07
ATI	31629	Ladle Check	•	27 26	1.01 1.00	.021 .017	•036 •026	•07
AT J	31634	Ladle Check	¢	26 25	.80 .85	.012 .013	•037 •029	•05
ATL	31654	Ladle Check	•	26 25	。95 。95	.011 .015	.031 .023	.10
ATP	91361	Ladle Che ck	0 •	27 29	1.04 1.03	.020 .014	.027 .026	•08 ₩
ATQ	91401	Ladl e Che ck	•	25 25	•98 •95	.018 .016	.029 .026	.10
ATT	41693	Ladle Check	. 0	24 25	1.04 1.07	.017 .013	043 035	•10 -
ATX	21695	Ladle Check	0 •	25 26	1.05 1.08	•022 •013	₀034 ₀029	•04
ATY .	21631	Ladle Check	ې ۵	26 23	•99 •93	.029 .015	•030 •036	•06 -
ATZ	* 91382	Ladle Check	•	27 29	•98 •98	.020 .013	•025 •033	•07 ⊸
AUE	61859	Ladle Check	Q. •	24 26	∘94 ∙97	.020 .016	.033 .029	\$0 ₽ ₩
AUG	31617	Ladle C heck	۵ ۵	28 29	•97 1 _• 00	.018 .020	•032 •035	•05 -
AUO	21662	Ladle Check	0 0:	25 23	.92 .90	.025 .018	•032 •023	•05 -
AUR	61830	Ladle Check	a	26 23	1.04 1.01	.017 .017	.029 .035	•08 -

HEAT. SYMBOL	HEAT NUMBER	ANALYSIS	C	PER Mn	CENS P	TAG: S	E Si
AVE	31684	Ladle Check	•25 •27	•94 •98	.018 .016	.033 .032	.09
AVF	51737	Ladle Check	.24 .26	•87 •90	.019 .017	•039 •037	.07 -
AVH	81608	Ladle Check	.27 .28	1.06 1.11	.020 .012	.031 .035	.10
AVJ	11496	Ladle Che ck	•27 •30	1.02 1.03 ·	.020 .018	.025 .029	•09 -
AVN	21710	Ladle Check	.24 .25	•92 •99	.023 .015	.029 .032	•04
AVO	31695	Ladle Check	.26 .27	.99 1.05	.013 .012	.038 .037	•08
AVP	91449	Ladl e Check	•26 •26	1.07 1.06	.025 .015	.035 .029	.10
AVS	41716	Ladle Check	。24 。27	•94 •98*	.022 .014 (₀038 ₀039	.10
AWA	21682	Ladle Check	。25 。28	•95 °1.00	•022 •015	•030 •036	•08 -
AWB	61879	Ladle Check	•27 •28	1.04 1.00	•037 •013	.042 .039	.10
AWC	71988	Ladle Check	.26 .28	1.04 1.01	.045 .017	.039 .033	•06 -
AWS	41721	Ladl e Check	.25 .26	•95 1.08	.016 .015	.038 .035	•07 -
AWW	61917 G	Ladle Check	•26 •25	1.03 1.02	.021 .017	.036 .029	•09 -
AWX	× 31702	Ladle Check	.25 .29	1.04 1.07	.019 .015	•038 •036	.10
AWZ	11479	Ladle Check	.25 .25	.95 .91	•015 •016	.026 .029-	•04 -
AXE	61919	Ladle Che ck	•27 •27	1.12 1.14	.019 .017*	.040 .039	•07 -
AXQ	61939	Ladle Check	•22 •22	1.09 1.12	.027 .014	•040 •046	•09 -

HEAT SYMBOL	HEAT	ANALYSIS	C	PER <u>Mn</u>	CEN P	TAG: S	E .
AXR.	21740	Ladle Check	•24 •26	•95 •94	.018 .014	•035 •030	•04
AYA	61922	Ladle Check	•25 •26	1.05 1.03	.035 .016	•040 •035	•08 =
AYB	72035	Ladle Check	。25 。25	1.07 .97	.013 .015	•032 •035	.10 _
AYC	41738	Ladle Check	.25 .27	.97 1.01	.017 .012	•039 •042	•08 -
AYD	61918	Ladle Check	.27 .25	1.06 1.01	.026 .015	.042 .035	•08 -
АЧК	21742	Ladle Che ck	.25 .29	.93 .91	.022 .012	•033 •039	•09
AYS	11541	Ladle Check	.25 .25	•96 •95	.015 .015	.033 .027	•08 -
AYT	72059	Ladl e Che ck	•25 •25	1.08 1.08	.018 .015	.040 .035	•07
AYU	31736	Ladle . Check	.26 .30	1.07 1.10	.012 .015	•039 •036	.07
AYZ	41758	Ladle Check	.25 .30	1.05 1.07	.024 .016	•040 •026	•09
AZA	81678	Ladle Check	.26 .27	1.08 1.01	.015 .014	•039 •029	.09 -
AZC	81660	Ladle Check	•24 •27	1.05 1.04	.017 .016	.038 .033	•08
AZD	41756	Ladle Check	•27 •28	1.08 1.11	.017 .016	•035 •035	.10
AZE	91486	Ladle Check	.26 .30	1.03 1.01	.021 .014	.035 .036	.10 -
AZF	72060	Ladle Check	•24 •26	•95 •97	.014 .012	•038 •029	•05
AZG	21743	Ladle Check	.25 .29	.95 1.02	014 014	.035 .033	•07
AZH	41774	Ladle Check	.26 .28	1.02 1.02	.016 .015	.033 .029	.13

\$

: ₹

HEAT SYMBOL AZI	HEAT NUMBER 11553	<u>ANALYSIS</u> Ladle Check	<u> </u>	P E R <u>Mn</u> .85 .92	C E N P .015 .015	T A G S •030 •033	E <u>Si</u> •04
AZJ	72086	Ladle Check	。24 。29	1.03 •98	.011 .016	.040 .036	.13
AZX	72071	Ladle Check	.26 .27	•94 •96	.018 .017	.033 .030	•04 -
BAA	70095	Ladle Check	.25 .27	1.01 1.08	.012 .012	.034 .036	•06 _
BAB	52948	Ladle Check	.22 .26	•94 •98	.014 .017	•032 •023	-
BAC	70093	Ladle Check	.25 .26	.89 .98	.017 .014	.031. .029	
BAD	52947	Ladle Check	.24 .26	.91 .96	.010 .014	.029 .039	•03 -
BAP	31765	Ladle Check	.26 .27	1.03 1.09	.010 .015	.040 .039	•07
BAS	21760	Ladle Che ck	.22 .28	.96 1.07	.010 .013	₀038 ₀046	•08 _
BAY	11569	Ladle Check	.26 .29	1.03 1.13	.022	•037 •036	•09
BBC	61965	Ladle Check	.27 .25	1.04 。9\$.012 .013	•030 •026	•07
BBH	41801	Ladle Check	.26 .27	1.14 1.17	.025 .014	.041 .039	.10 -
BBJ	91535	Ladle Check	.25 .26	1.03 1.03	.023 .019	•033 •030	•06 -
BBM	71882	Ladle Check	.24 .28	.98 1.00	•013 •016	.030 .039	.10
BBN	91536	Ladle Check	.24 .25	.98 1.04	.022 .015	.030 .029	•07
BBO	41802	Ladle Check	.24 .29	1.02 1.11	.020 .015	•039 •035	•07
BBP	71991	Ladle Check	.25 .28	•98 •99	.012 .015	•032 •033	•06 -

HEAT SYMBOL	HEAT	ANALYSIS	_C_	PER <u>Mn</u>	GEN	TAG	E _ <u>Si</u>
BBQ	31783	Ladle Check	.27 .28	•91 •99	.018 .014	•028 •039	. 06
BBU	41827	Ladle Check	.25 .25	1.00 1.04	.017 .014	038 038	•07 -
BBY	81701	Ladle Check	.26 .28	.85 .91	.017 .015	•036 •033	•06 -
BBZ	91532	Ladle Check	•25 •25	1.01 1.05	.018 .017	•040 •036	.10
BCA	11576	Ladle Che ck	.26 .26	1.02 1.09	.018 .015	•035 •033	•08 -
BCB	31775	Ladl e Che ck	.24 .28	1.01 .95	.022 .016	•037 •035	•07
BCC	8169 9	Ladle Che ck	.25 .26	1.00 1.05	.010 .014	•039 •039	•06 •
BCD ·	81592	Ladle Check	.26 .25	•92 •96	.012 .015	•030 •033	•09 -
BCE	31774	Ladle Check	.28 .26	1.00 •99	.012 .014	•037 •039	.07
BCF	21786	Ladle Che ck	•26 •32	1.06 .98	.013 .015	•036 •039	.09 -
BDD	21758	Ladle Check	.24 .24	1.03 1.00	.016 .015	•038 •033	•08 -
KME	70188	Ladle Check	.25 .29	1.04 .97	.019 .015	•027 •033	-
KMF	, 23311. 	Ladle Check	,26 ,29	•95 1.04	019 012	.025 ,029	-
KMK	143 174	Ladle Check	.22 .23	.89 1.03	,020 ,013	028 033	,
KML	62613	Ladle Check	.25 .26	.92 1.00	,015 ,016	,024 ,036	T T
KMN	23312	Ladl e Che ck	,24 ,22	.91 1.03	,013 ,014	025 033	-
KMO	70192	Ladle Che ck	,24 ,24	.95 1.09	.023 .015	.023 .036	-

1.2

۰5

HEAT SYMBOL KMP	HEAT <u>NUMBER</u> 70191	<u>ANALYSIS</u> Ladle Check		0 •25 •24	PER <u>Mn</u> .96 1.05	C E N P .020 .013	T A G S .026 .029	E <u>Si</u> -	
KMQ	5301 7	Ladle Check		.26 .30	1.01 1.14	.020 .015	•030 •030	 5-04	
KMR	23303	Ladle Check		.25 .27	.95 1.01	.018 .013	.026 .029	<u>معد</u> بــــــــــــــــــــــــــــــــــــ	
KMS	43166	Ladle Check		.24 .25	•92 •98	•020 •015	•030 •029	-	
KNF	13192	Ladle Check		•25 •27	•85 1.05	.013 .014	•028 •036	-	
KNG	70218	Ladle Check		.25 .30	•98 1•13	.020 .014	.031 .027	••• <u>2</u>	
KNH	53044	Ladle Check	•	25 .28	•97 1.07	.021 .015	•045 •036		
KNI	70217	Ladle Check		.25 .28	•94 1.02	.027 .013	•035 •027		
KNJ	62653	Ladle Check		.26 .30	.88 1.00	.015 .014	•030 •036	1928 2019	
KNK	62636	Ladle Check		•27 •30	.94 1.11	.015 .015	.027 .024	4000 900	
KNO	70207	Ladle Check		.24 .27	.85 1.07	.016 .015	.024 .033		
KNR.	23327	Ladle Check		•25 •27	•93 •95	.019 .015	•022 •030		
KNT	13191	Ladle Check		.25 .26	•87 •92	.018 .016	•025 •033		
KNU	52948	Ladle Oheck		.22 .27	•94 1.06	.014 .014	.032 .039		
KN V	70093	Ladle Check		.25 .27	.89 1.05	.017 .016	.031 .033		
KNW	13200	Ladle Check		.25 .26	•85 •97	.022 .016	•030 •024	-	
KNX	62637	Ladle Che ck		.25 .28	•93 1.00	.018 .016	•034 •027	•05	

-17

The results of tensile tests made on specimens cut from the finished pipe, selected from each heat of steel used in the manu-facture of this pipe are as follows:

HEAT SYMBOL	HEAT NUMBER	TYPE TEST	YIELD POINT lbs/sq/in	TENSILE STR. lbs/sq/in	ELONG. %_in_2"	LOCATION OF FRACTURE
AGK	21490	TW* TT	66,666	79,892 74,722	31.0	Plate
AGL	21491	TW TT	73,854	84,636 84,366	28.0	Plate -
AGT	61713	TW TT	75,000	82,133 80,851	28.0	Plate -
AG₩	61733	TW TT	69,918	84,324 78,320	32.0	Plate
АНО	41549	TW TT	72,928	87,671 82,872	28.0	Plate
AHP	41550	TW TT'	67,671	80,706 ° 79,452	30.0	Wela
AHQ	61734	TW TT	67,302	81,370 76,294	31.0	Plate -
АНХ	91068	TW T T	71 , 65 7	84,800 82,085	30.0	Plate -
АНҮ	11085	TW T T	72,826	83,333 80,978	30.0	Plate
AHZ	1109 7	TW TT	73,224	85,474 82,513	28.0	Plate
AIK	910 38	TW	72,237	89,189 84,097	30.0	Plate -
	51572	TW TT	70,509	87,061 80,965	30.0	Plate
AIP	21511	TW TT	 74 , 456	82,972 78,260	28.0	Plate -
AJA	81456	TW TT	62,864	79,365 72,148	30.0	Plate -
AJB	81458	TW TT	69,189	80,540 75,945	33.0	Plate
AJC	21510	TW TT	72,752	85,714 83,6 51	28.0	Weld
Note:	(*) TW TT	- Tran - Tran	sverse test a sverse test 9	cross weld. O degrees from	n weld	

÷

Page -20-

l CO	HEAT SYMBOL	HEAT. NUMBER	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. <u>lbs/sq/in</u>	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
	AJD	41566	TŴ TT	75,766	84,122 83,286	27.0	Plate -
	AJE	41567	TW TT	69,589	83,561 80,547	25 . 0	Plate -
	AJH	61746	TW TT	67,663	79,729 77,808	31.0	Plate
	AJI	81457	TW TT	74,659	86,486 83,923	30.0	Plate -
	AJJ	31494	TW TT:	74,520	83,333 83,013	27.0	Weld -
	AJK	81472	TW TT	61,968	83,466 76,861	30.0	Plate
;	AJL	31493	TW TT	66,576	81,989 76,550	30.0	Blate
	MLA	61747	TW TT	75,956	86,225 85,792	26.0	Plate
	AJN	-21500	TW TT	68,918	82,210 78,378	28.0	Plate -
	AJO	31495	TW TT	66,756	80,540 74,262	30.0	Plate
	AJP	81475	TW TT	68,817	84,964 76,881	30.0	Plate
	AJQ	21509	TW	70,194	81,147 77,994	28.0	Plate
	AJS	6174 9	TW TT	71,273	85,597 83,468	31.0	Plate -
	AJT:	11339	TW TT	76,756	89,518 88,648	28.0	Plate -
	JU	21573	TW TT	72,654	86,522 84,986	28.0	Plate -
	AJV	31553	TW TT:	79,770	84,239 80,054	31.0	Plate

;

- 5,1 - 5,1

rage -21-

r.

HEAT SYMBOL	HEAT NUMBER	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. 1bs/sq/in	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
AJW	11350	TŴ TT	73,614	77,866 86,015	28.0	Weld -
AJX	9130 1	TW TT	80,310	90,961 91,450	27.0	Weld -
AJY	1556	TW TT	61,428	88,115 88,571	28.0	Weld
AJZ	91308	TW TT	70,588	87,466 84,224	30.0	Plate -
АКГ	61776	TW TT	67,741	84,450 76,075	30.0	Plate
AKM	21549	TW TT	72,628	84,010 83,197	30.0	Plate
АКР	61785	TW TT	68,170	83,733 73,740	30.0	Plate
ALM	41615	TW TT	75,338	88,980 82,655	28.0	Plate
ALO	91309	TW TT	71,390	85,522 78,074	31.0	Plate
ALV	71875	TW TT	73,829	86,065 85,675	30 . 0	Plate
ALY ·	31509	TW TT	74,796	87,601 83,468	30.0	Plate -
ALZ	91316	TW TT	77,358	87,602 87,602	28.0	Plate -
AMA	1137 0	TŴ TT	59 , 681	84,718 80,371	30.0	Plate -
AMB	91310	TW TT	64,705	87,061 84,760	28.0	Weld -
AMC	81537	TW TT	74,462	83,914 84,408	28.0	Wæld -
AMD	41619	TW TT	67,904	84,880 77,718	32.0	Plate
AME	41618	TW TT	64,498	78,706 74,796	32.0	Plate
AMG	81534	TW TT	68,206	86,648 82,880	30.0	Plate

/age -22-

HEÁT SYMBOL	HEAT NUMBER	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. lbs/sg/in	ELONG. <u>% in 2"</u>	LOCATION OF FRACTURE
AMI	81535	TW: TT	79, 508	85,792 86,885	28.0	Plate
AMJ	31557	TW TT	67,671	84,782 78,082	32.0	Plate
AMR	31559	TW TT	73,297	84,283 82,561	30.0	Plate -
AMS	21577	TW. TT.	63,492	81,940 84,126	27.0	Plate -
AMT	51646	TW TT	74,603	84,224 81,216	28.0	Plate -
AMU	41617	TW TT	68,253	79,947 76,985	30.0	Weld
AMV	11373	TW TT	72,580	85,215 80,107	30.0	Weld
AMW	11372	TW TT:	65,053	85,135 83,870	26.0	Plate
AMX	81533	TW TT	75,200	82,446 84,533	30.0	Weld
АМҮ	11376	TW TT	75,405	87,062 85,135	30.0	Plate -
AMZ	91314	TW TT	76,566	95,121 86,920	30,0	Plate -
ANL	51660	TW TT	59,568	86,178 80,323	32.0	Weld
ANO	71904	TŇ TT	61,273	84,533 80,371	30.0	Plate -
ANX	91344	TW TT	63,926	85 ,365 83 , 023	30.0	Weld -
ANY	51678	TW TT	60,638	80,697 77,925	30.0	Plate -
AOB	21579	TW TT	74,005	86,253 84,084	30.0	Weld
DOA	31556	TW TT	73,458	90,348 87,400	30.0	Plate -

F _e -23-

e, e

	HEAT SYMBOL	HEAT	TYPE YI TEST 1	ELD POINT bs/sq/in	TENSILE STR. <u>lbs/sq/in</u>	ELONG. <u>% in 2"</u>	LOCATION OF FRACTURE
	AOD	71877 🌤	TW TT	70,731	84,905 78,590	<u>.</u> 30 . 0	Plate -
	AOE	81538	TW TT	72,460	85,638 81,283	30.0	Plate -
	AOH	31558	TW TT	69,272	88,891 77,358	32.0	Plate -
	AOI	41576	TW TT	80,810	92,432 91,891	25.0	Plate -
	AOJ	51649	TW TT	70,026	82,446 79,840	28.0	Plate
	AOP	61797	TW TT	66,481	87,052 85,041	25.0	Weld
	AOV	41616	TW TT	70,410	85,520 .78,904	30 . 0	Plate
•	AOW	11374	TW TT	77,628	86,178 86,522	28.0	Plate
	XOA	21527	TW TT:	66,402	87,608 83,862	29.0	Plate
	AOY	41633	TW TT	67,925	80,965 78,975	29.0	Plate -
	APE	21594	TW TT	72,432	87,643 79,459	30.0	Plate -
	APK	51668	TW TT	61,185	86,827 79,515	32.0	Plate -
	APP	31582	'TW TT	62.077	82,198 77,922	32.0	Plate -
	APR:	91351	• TV TT	59, 733	83,110 79,200	32.0	Weld -
	APS	11369	TW TT	63,925	83,733 77,188	31.0	Plate -
	APT	91349	TW TT:	61,866	80,428 75,733	32.0	Weld
	APU	81577	TW TT	66,843	85,066 84,085	31.0	Weld -

HEAT SYMBOL	HEAT NUMBER	TYPE YI TEST <u>1</u>	ELD POINT bs/sq/in	TENSILE STR. <u>lbs/sq/in</u>	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
AP¥	91362	TW TT	57,908	83,606 79,088	30.0	Plate -
APW	81568	TW TT	62,880	87,052 78,947	32.0	Weld -
APX	71909	TW TT	58,666	83,957 82,133	32.0	Plate
APY	91372	TW TT	62,972	83,018 80,270	32.0	Plate -
APZ	91371	TW TT	66,310	85,752 84,491		Weld
AQB	11386	TW TT	60,962	86,956 79,145	30.0	Plate.
AQF	91335	TW TT	63,934	87,704 83,333	31.0	Plate
AQG	81555	TW TT	67,540	86,807 79,842	27.0	Plate
AQM	81513	TW TT	64,595	84,700 81,621	33.0	Plate
AQP	11416	TW TT	60,752	80,547 77,150	31.0	Plate
AQU	81586	TW TT	64,960	83,606 81,401	30.0	Weld -
AQX	31614	TW TT	62,735	82,384 82,841	30.0	Weld -
ARA	31609	TW TT	66,133	85,597 80,533	30.0	Plate -
ARB	913 65	TW TT	61,765	80,913 72,995	32.0	Plate
ARC	91363	TW TT	66,219	88,978 85,790	25.0	Plate
ARD	21620	TW TT	61,702	80,053 76,861	32.0	Weld
ARE	51677	TW TT	66,666	85,444 79,570	32.0	Plate

	,	•					
(1	HEAT SYMBOL	HEAT NUMBER	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. 1bs/sq/in	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
	ARF	11400	TW TT	66,295	88,705 85,236	30.0	Plate
	ARK	11397	TW TT:	61,021	80,592 81,182	30.0	Plate
	ARL	81594	TW TT	63,492	84,800 82,540	32.0	Plate -
	ARN	71922	TW TT	63 , 538	83,018 80,160	30.0	Plate -
	ARO	91376	TW TT	60,790	82,352 77,105	30.0	Plate
	ARP	31618	TW TT	61,968	81,300 78,723	32.0	Plate
;	ARQ	11428	TW TT	63,636	79,076 78,610	31.0	Weld
	ARR	71934	TW TT	62,303	83,246 81,152	31.0	Plate
	ARS	91375	TW TT	63,517	83,155 78,215	31.0	Plate
	ART	31635	TW TT	64,462	83,287 80,165	25.0	Plate
	ARU	61836	TW TT	61,064	82,825 76,190	26.0	Plate
	ARV	11440	TW TT	63,114	85,792 81,420	27.0	Plate
	ARW	4164 8	TW TT	58,953	83,380 78,237	30.0	Plate
	ARX	4165 1	TW TT	58,402	85,277 77,961	30.0	Plate -
	ARY	61851	TW TT	61,021	83 783 79 , 838	31.0	Plate
	ARZ	51711	TW TT	63,487	85,753 82,288	30.0	Plate -
	ASA	71920	TW TT	59,510	84,468 76,358	32.0	Plate -

 $\simeq 3.2$

.

Pag- -26-

HEAT SYMBOL ASC	HEAT NUMBER 21644	TYPE TEST TW TT	YIELD POINT <u>lbs/sq/in</u> 66,578	TENSILE STR. <u>lbs/sq/in</u> 83,516 78,779	ELONG. <u>% in 2</u> " 29.0	LOCATION OF <u>FRACTURE</u> Plate
ASD	71948	TW TT	63,588	81,720 77,045	32.0	Plate
ASE	21652	TW TT	60,326	83,197 76,630	27.0	Plate
ASF	71949	TW TT	56,806	82,894 74,345	33.0	Plate -
ASH	31631	TW TT	66,486	82,320 79,730	30.0	Plate
ASN	61858	TW TT	56 , 335	83,277 77,088	31.0	Plate
ASO	21659	ŤW TT	61,232	77,348 83,957	28.0	Weld
ASQ	Á1442	TW TT	65,517	86,216 80,371	28.0	Plate [°]
ASV	71953	TW TT	66,666	86,792 85,937	31.0	Plate
ASY	31627	TW TT	67,904	92,432 92,307	26.0	Weld
АТА	21648	TW TT	68,450	89,893 87,027	28 <u>.</u> 0	Plate -
ATB	31625	TW TT	63,760	85,135 79,019	26.0	Plate -
ATC	4165 4	tw Tt	67,374	87,131 85,411	25.0	Plate -
ATD	41647	TW TT	62,972	87,533 87,02 7	30.0	Plate -
ATE	61838	TW TT:	63,517	89,066 84,514	29.0	Plate -
ATF	91399	TW TT	62,601	87,637 81,842	31.0	Plate
ATG	41646	TW TT	60,857	85,215 80,160	30.0	Plate -

HEAT SYMBOL	HEAT WA	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. 10s/sq/in	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE	i
ATH	21639	TW TT	65,425	83,520 78,723	<u> </u>	Plate -	
ATI	31629	TW TT	59 , 836	83,513 78,688	34.0	Plate -	
ATJ	31634	TW TT	61,600	82,887 78,668	31. 0	pla te	
ATL	31654	TW TT	62.021	80,601 77,049	32.0	Plate -	
ATP	91361	TW TT	58 , 445	83,888 78,552		Weld	
ATQ	9140 <u>1</u>	TW TT	69,633	88,251 87,958	- 29 . 0	Weld	
ATT	41693	TW TT	59,730	88,767 81,621	29.0	Weld	
ATX	21695	TW TT	60,870	84,426 82,336	30.0	Weld -	
ATY	21631	TW TT	56 , 486	83,611 76,216	31.0	Plate -	
ATZ	91382	TW TT	60,158	86,178 83,377	31.0	Weld -	
AUE	61859	TW TT	59,259	85,638 78,511	32.0	Plate	
AUG	31617	TW TT	60,317	85,676 83,068	28.0	Weld -	
AUO	2166 2	TŴ TE.	58,225	85,751 80,156	30.0	Plate	
AUR	61830	T¥ TT	62,765	83,554 82,978	29.0	Weld	
AVE	31684	TW TI	62,903	89,256 86,560	26.0	Weld	
AVE	51737	TW TT	53,278	77,030 73,49 7	34.0	Plate	
AVH	81608	TW TT	61,096	89,890 84,073	31.0	Weld	

Fage -28-

HEAT SYMBOL	HEAT NUMBER	TYPE YI <u>TEST 1</u>	ELD POINT bs/sq/in	TENSILE STR. <u>lbs/sq/in</u> .	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
AVJ	11496	TW TT	62,235	90,217 82,978	28.0	Plate -
AVN	21710	TW TT	56,720	79,670 76,344	33.0	Plate -
AVO	31695	TW TT	59 , 140	84,595 79,838	32.0	Weld
AVP	914 4 9	TW TT	60,107	91,712 81,401	30.0	Plate -
AVS	41716	TW TT	62,942	83,520 79,019	28.0	Plate -
AWA	21682	TW TT	59 , 466	83,740 81,866	30.0	Weld
AWB	61879	TW TT	59 , 630	85,145 78,627	30.0	Plate
AWC	71988	TW TT	63,115	86,885 81,693	29 . 0	Weld -
AWS	41721	TW TT	58,870	86,850 80,913	30.0	Weld
AWW	6191 7	TW TT	63,440	79,255 86,290	28.0	Weld -
AWX	31702	TW TT	60,270	89,645 81,891	30.0	Weld -
AWZ	11479	TW TT	63,779	83,689 82,939	29.0	Plate -
AXE	6191 9	TW TT	58,839	87,500 79,947	32 . 0	Weld
AXQ	6193 9	TW TT	57,142	81,671 76,190	34.0	Weld -
AXR	21740	TW TT	60,000	82,596 81,095	28.0	Plate -
АҮА	61922	TW TT	61,942	86,968 82,415	30.0	Plate
AYB,	72035	TW TT	60,547	86,660 81,917	30.0	Plate -

HEAT SYMBOL	HEAT NUMBER	WALL SIZE	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. 1bs/sq/in	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
AYC	41738	TW TT	55,790	81,697 80,000	<u>-</u> 30 . 0	Weld
AYD	61918	TW TT	62,534	75,561 84,848	28.0	Weld
AYK	21742	TW TT-	57,452	87,362 80,758	32 . 0	Plate -
AYS	11541	TW TT	54,768	82,336 75,476	33.0	Plate -
АҮТ	72059	TW TT:	56 , 951	81,671 77,807	31.0	Weld
AYU	31736	TW TT	63,611	87,297 90,835	28.0	Plate -
AYZ	41758	TW TT	64,750	84,210 86,422	31.0	Weld
AZA	81670	TW TT	59,416	87,967 82,758	25.0	Plate
AZC	81660	TW TT	55,497	86,898 77,225	32:0	Plate -
AZD	41756	TW TT	58,445	85,405 83,914	28.0	Weld
AZE	91486	TW TT	60,762	87,710 82,288	30.0	Plate -
AZF	72060	TW TŢ	55,795	84,254 74,932	32.0	Plate
AZG	21743	TW TT	62,041	81,216 82,198	 30≩0	Weld
AZH	41774	TW TT	63,215	90,476 83,106	30.0	Plate -
AZI	11553	TW. TT	59,250	85,175 79,892	31.0	Weld
AZJ	72086	TW TT	64,041	88,980 84,073	29.0	Weld
AZX	72071	TW TT.	59,890	87,123 81,593	24.0	Plate -
BAA	70095	TW TT	60,215	86,178 80,376	- 29 . 0	Plate

Page 🖕 🔎 🛶

HEAT SYMBOL	HEAT NUMBER	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. <u>lbs/sq/in</u>	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
BAB	52948 🗄	TW TT	64,921	84,905 83,769	26.0	Weld -
BAC	70093	TW TT	60,309	88,533 82,216	28.0	Weld
BAD	52947	TW TT	58,157	91,364 81,052	29.0	Plate -
BAP	31765	TW TT	54,301	82,479 73,655	33.0	Plate -
BAS	21760	TW TT	59,668	83,471 77,624	26.0	Weld -
BAY	11569	TW TT	61,702	84,759 86,170	28.0	Plate -
BBC	61965	TW TT	58,713	84,594 82,841	29.0	Weld
BBH	41801	TW TT	61,066	88,739 83,466	28.0	Plate -
BBJ	91535	TW TT	61,333	84,718 82,400	29.0	Plate -
BBM	71882	TW TT	64,032	83,557 80,653	32.0	Weld
BBN	91536	TW TT	61,578	82,841 81,052	31.0	Weld -
BBO	41802	TW TT	61,141	85,286 82,250	30.0	Plate -
BBP	71991.	TW. TT	55,764	81,550 75,871	30.0	Plate -
BBQ	31783	TW TT	55,882	85,294 81,016	30.0	Plate -
BBU	41827	TW TT	63,072	86,991 80,323	25.0	Plate
BBY	81701	TW TT	57,692	80,494 78,571	 30 . 0	Weld
BB Z	91532	TW TT	59,065	83,333 81,083	30:0	Plate

HEAT SYMBOL	HEAT	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. <u>lbs/sq/in</u>	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
BCA	11576	TW TT	66,666	86,956 81,029	<u>-</u> 30 . 0	Plate
BCB	31775	TW TT	64,379	82,933 82,321	30.0	Plate -
BCC	81699	TW TT	56,873	84,196 78,975	30. 0	Plate -
BCD	81592	TW TT	65,405	87,771 85,135	27.0	Plate -
BCE	31774	TW T T	60,055	86,027 81,542	30.0	Plate
BCF	21786 -	TW TT:	58,904	84,972 84,657	27.0	Plate
BDD	21758	TW TT	60,589	85,215 80,965	26.0	Weld
KME	70188	TW TT	61,038	89;545 83,806	30.0	Plate
KMF	23311	TW TT	72,797	92,572 88,082	24.0	Plate -
KMF	23311	TW TT	60,677	90,245 89,843	30.0	Plate -
KMK	43174	TW TT	59,466	86,216 80,000	30.0	Plate
KML	6261 3	TW DT	<u></u>	86,702 84,061	<u> </u>	Weld
KMN	2331 2	ŤŴ ŤĨ	61,111	85,945 81,481	30 . 0	Weld
KMO	70192	TW TŤ	65,425	90,190 86,170	29.0	Plate -
KMP	70191	TW TT	60,206	86,807 80,878	31.0	Weld -
KMQ	5301 7	TW TT	56,417	80,687 78,342	30.0	Plạte -
KMR	23303	TW TT	60,800	88,767 82,133	30.0	Plate -

.

• •

Page -32-

		9 m **				
HEAT SYMBOL	HEAT NUMBER	TYPE TEST	YIELD POINT <u>lbs/sq/in</u>	TENSILE STR. <u>lbs/sq/in</u>	ELONG. <u>% in 2</u> "	LOCATION OF FRACTURE
KMS	43166	TW TT	66,321	89,572 83,678	23.0*	Plate (*Broke near gage mark.)
KNF	13192	TW TT	55,216	81,770 80,152	29.0	Weld -
KNG	70218	TW TT:	55,801	87,988 86,740	29.0	Plate -
KNH	53044	TW TT	61,325	86,376 87,016	29.0	Plate
KNI	70217	TW TT	59 , 139	82,655 83,064	30.0	Weld
KNJ	62653	TW TT'	64,190	95,238 93,103	30 . Ő	Plate
KNK	62636	TW TT	61 , 455	91,644 92,183	27.0	Wel d
KNO	70207	TW TT	57,534	98,439 80,821	30.0	Plate -
KNR	23327	TW TT	56,315	85,378 81,578	33.0	Weld
KNT	13191	TW TT	58,981	86,898 83,378	30.0	Plate
KNU	52948	TW TT	57,600	87,837 80,000	30.0	Plate
KNV	70093	TW TL	56,010	85,479 82,513	32.0	Plate -
KNW	13200	TW TT	59,836	85,635 82,513	28 . 0 [°]	Plate -
KNX	62 637	TW TT	58 , 485	84,840 80,939	31.0	Weld

. ge -33-

The results of the chemical analyses and tensile tests meet with the requirements of your specifications, dated June 21, 1948, issued to cover the manufacture of this pipe.

With regard to the transverse tensile tests made on the pipe with the weld in the middle of the specimen, in some cases the location of the fracture is recorded as being in the weld. The weld re-inforcement metal is not removed from the specimen for this test; therefore, these breaks recorded as in the weld are in reality in the weld zone at the edge of the weld metal. The most critical areas of this pipe appears to be in the plate metal about 1/2" to 3/4" either side of the longitudinal weld. If it were practical to stress relieve the metal at these locations after inside welding, and before expanding the pipe, the physical properties of the metal might be considerably improved.

INTERNAL HYDRAULIC EXPANSION OPERATION:

The expansion of this pipe from the as-rolled and welded diameter to the specified finished pipe diameter is a very critical operation. This is especially true relative to the metal in and adjacent to the weld zone. The most critical areas appear to be in the repaired places in the longitudinal weld, and usually at the end repairs. In some instances, these critical areas are not sufficiently strong or ductile to withstand the strain of the expanding stress, and they rupture under the internal expanding pressure or test pressure conditions. In most cases, the rupture indicates a defect, or weak structure in the weld section, which appears to be the starting point of the break.

It is very seldom that a break starts in the plate, and in such cases there have been nicks or scratches in the plate to reduce its effective thickness, thereby reducing its strength.

The ratio of failures to the total number of lengths of pipe expanded in the production of pipe for this order is as follows:

Total Number Expanded - - - - - - - - - 3259 pieces Number of Failures - - - - - - 29 pieces Percentage of Failures - - - - - 0.88 percent

The ruptured portion of the pipe is in most cases cut off, and the balance of the section is used to make up jointers, All jointers are subjected to the expanding and test conditions after the girth weld has been completed and chipped flush on the outside.

Page -34-

HYDROSTATIC PRESSURE TEST:

2-2-

Each Tength of pipe was subjected to an internal hydrostatic pressure test in the equipment utilized for expanding the pipe to the finished diameter. At the completion of the expanding operation, the pressure inside the pipe was lowered to the specified test pressure of 1,170 lbs per square inch, and maintained for at least ten seconds while the retaining dies were open. At this time, the hammer test was applied to each length of pipe at each end near the weld while the pipe was subjected to the full test pressure.

If the pipe withstood the expanding and test pressures satisfactorily, the pressure was further reduced to about 400 to 500 lbs per square inch, and an inspector walked along the pipe to examine the weld for pinhole or sweat leaks. All lengths considered to be satisfactory under test conditions were passed for end finishing and final inspection.

END FINISH OF PIPE:

Each end of each length of pipe was beveled to an angle of 30 degrees to the vertical axis of the pipe, and finished with a 1/16" vertical face, plus or minus 1/32".

The inside weld re-inforcement metal was chipped flush with the inside surface of the pipe for a distance of approximately 6 inches from each end.

INSPECTION:

A careful supervision of all shop inspection and hydrostatic pressure testing was maintained during the operation of the plant. A general observance of all plant proceedings and operations was also maintained while the pipe was being produced for this order. Particular attention was given the weld procedure, any changes or developments made by the shop to improve their methods of satisfactorily completing this vitally important part of the fabrication of the pipe.

Each length of finished pipe was carefully inspected for manufacturing, steel or surface defects. Inspectors passed through the inside of each piece of pipe for its entire length in making their final inspection. Especial attention was given to the examination of the longitudinal welds, both inside and outside for defects characteristic of the "Unionmelt" type of fusion weld. The inside and outside surfaces of each length was thoroughly examined to insure freedom from seams, scabs, pits, or other steel defects which might have been present in the steel at the time the plate was rolled.

The ends of the pipe were carefully examined for satisfactory bevel and finish. The thickness of the wall of the pipe was checked with "No-go" gauges to be certain that all sections were in excess of the minimum tolerance permitted by the specifications. The ends of the pipe were also examined for evidence of

Pase -35-

of laminations in the plate which would cause trouble in the field, and impair the strength or service of the pipe.

The squareness of the ends was checked at frequent intervals to be certain that the ends of the pipe were finished at 90 degrees to the longitudinal axis of the pipe, and to insure true alignment of the sections in the field for welding.

The O.D. of the pipe was checked by measurement with an O.D. tape at very frequent intervals to be certain that the size of the pipe was maintained within satisfactory limits for mating and field assembly. The O.D. of the pipe covered by this report was held within the limits of the specifications of:

30-3/32" Maximum O.D. 29-31/32" Minimum O.D.

The use of a ring gauge in checking the size and roundness of the ends has proven impractical, since the ends of the pipe are about 1/4" to 3/8" out of round. Pipe of this wall thickness does not retain the shape of the bore of the retaining die of the expander unit. The ovate condition of the ends is not excessive, and the use of an internal line-up clamp facilitates the ease and speed of assembly, as it rounds out the matching ends of the pipe for tacking or stringer bead welding in field alignment.

LENGTH RANGE:

The length range of the pipe supplied on this order varies as follows:

Maximum	Length			-	-	-	-		-	-	-	-	31.28	feet
Minimum	Length	-	-		-		-	-			-	-	28,06	feet
Average	Length	-	-	-	-	-	-	-	-	-		-	31.037	feet

REJECTIONS:

As a result of our inspection, a number of serious defects were discovered in some lengths of pipe offered for application to your order. These defective pieces were permanently rejected, and not permitted to be repaired for shipment. A list of these lengths, showing the cause for rejection, follows:

No. Pieces	Cause of Rejection
3	Excessive repairs to longitudinal weld.
5	Unsatisfactory repairs.
3	Numerous deep pits and scabs.
2	Poor repairs to inside weld.
3	Offset longitudinal seam.
2	Damaged and scratched, outside surface.
<u> </u>	Large 0.D.
19	Total -

In addition to the above permanent rejections, a number of lengths of pipe were found with minor defects, which were temporarily rejected. These defects were repaired to our satisfaction, the lengths re-tested as required, and accepted for application to this order on subsequent inspection. A list of these temporary rejections, and the method of repair, follows:

 $(-2)^{-1}$

Number	Cause of Rejection and Method of Repair
2	Dented - balled or pressed out.
5	Scabs, inside surface - ground out.
7	Scabs, inside surface - chipped and welded.
11 '	Scabs, outside surface - ground out.
4	Scabs, outside surface - chipped and welded.
3	Pits, inside surface - chipped and welded.
6	Pits, outside surface - chipped and welded.
9	Undercut welds, inside weld - chipped and welded.
12	Undercut welds, outside weld - chipped and welded.
21	Pinholes in weld - chipped and welded.
17	Crack in weld, inside weld - chipped and welded.
9	Cracks in weld, inside weld - ends cut off.
7	Cracks in weld, outside weld - chipped and welded.
16	Damaged ends - ends cut off.
47	Unsatisfactory bevel - re-beveled.
22,	Offset longitudinal seam at ends - cut off.
19	Unsatisfactory repairs to weld - end cut off.
4	Off seam welds - chipped flush and re-welded.
21	Thin wall from grinding - ends cut off.
<u>2</u> 244	Small O.D re-expanded. Total

. "ge -37-

SHIPMENT:

Each length of pipe accepted for application to this order was stamped with our acceptance mark "ME" near the longitudinal weld on the outside surface at one end. A shipment serial number was assigned to each piece, and painted on the inner surface of each end, together with the length, the O.D., and the wall thickness. The wall thickness was indicated by the number 12 (12/32"). The pipe was shipped free of coating of any kind, and the beveled ends were not covered.

Shipment of the pipe was made by motor truck from the Maywood, California plant of the manufacturer to your coating and wrapping plant in Montebello, California, as follows:

SUMMARY OF SHIPMENTS Purchase Order 7R-66858 Consolidated Western Steel Corporation

Date of <u>Shipment</u>	Shipment <u>Number</u>	Trucks	Pieces	Footage
Shipment March 11 March 12 March 14 March 15 March 16 March 18 March 21 March 21 March 22 March 23 March 23 March 24 March 25 March 24 March 25 March 30 March 31 April 7 April 7 April 12 April 12 April 13 April 15 April 18 April 19 April 20 April 21	Number 1- 19 20- 33 34- 65 66- 83 84-153 154-218 219-231 232-237 238-242 243 244 245 245 246 247-258 259-295 296-299 300-306 307-375 376-394 395-403 404-408 409-469 470-539 540	$ \frac{\text{Trucks}}{19} 14 32 18 70 65 13 6 5 1 1 1 1 12 37 4 7 69 19 9 5 61 70 1 $	$\begin{array}{c} \underline{Pieces} \\ 114 \\ 84 \\ 192 \\ 108 \\ 420 \\ 390 \\ 78 \\ 36 \\ 6 \\ 6 \\ 4 \\ 72 \\ 222 \\ 42 \\ 414 \\ 114 \\ 54 \\ 20 \\ 363 \\ 420 \\ 2 \end{array}$	Footage 3,544.67 2,609.00 5,962.40 3,347.21 13,045.46 12,066.83 2,409.78 1,121.27 927.87 185.04 186.77 185.93 120.35 2,236.84 6,905.29 746.33 1,302.93 12,879.69 3,543.24 1,681.71 621.02 11,253.69 13,024.87 62.29
April 22	541 Totals	<u>,</u> 上 5&1	<u>⊥</u> 3222	100.001.63
	2-0 0 0 0 0 0	- T- C		

Page -38-

CONCLUSION:

The 30" O.D. x 3/8" wall "Unionmelt" Electric Welded Steel Line Pipe covered by this report has been carefully inspected by us, and having found it to be in accordance with your order, and your specifications (6-21-48), as noted herein, it was accepted for shipment subject to your shipping instructions.

jcv

Gas System Design 028.6 x 522 x 463.1

History of Pipe Purchases

December 12, 1962

SMITH

DIVISION GAS SUPERINTENDENTS:

In following the requirements of General Order 112, it sometimes becomes necessary to identify unknown pipe material.

In order to give some guidance, the attached tabulation and notes are prepared for your use. Any doubt as to the identity of unknown pipe materials should be resolved in favor of lower strength materials or should be referred to this office for more positive identification.

WERoss;ha Attach, cc:EFSiblev KBAnderson MHChandler

Early 1920's

All pipe purchased during this period was either lap weld or butt weld pipe. The Longitudinal Joint Factor equals .80 in lap weld and .60 in butt weld pipe. The yield strength of this pipe may be taken as 28,000 psi.

Means of identifying this pipe are difficult. They both resemble seamless pipe. However, close examination of lap weld pipe should show continuous tool markings along the longitudinal seam weld. This marking was made by a wheel pressing against the pipe in order to join the skelp to-

gether when forming.

Butt weld pipe shows no characteristic markings. The pipe is formed by drawing the heated skelp through a "welding bell" in a continuous motion. The edges of the skelp are fused together as it passes through the welding bell. The only positive way to identify butt welded pipe from seamless is to bend the pipe to expose any longitudinal joint.

In exposed pipe, it is sometimes possible to identify butt welded pipe by a thin line of corrosion which will usually appear along the longitudinal butt joint first before appearing elsewhere on the pipe. The butt weld pipe was purchased in sizes 3/4" through 4" and the lap weld in sizes of 6" and larger.

Late 1920's

In the late 1920's, say 1927 to 1929, single submerged arc welded pipe was manufactured and was bought extensively for the system. It was especially bought for large transmission lines and facilitated the transport of natural gas into metropolitan areas.

Transmission mains such as Mains 100, 101, 105, 107, Stanpac, 109, 132 contain single submerged arc welded pipe. If no seam weld can be found, the pipe is seamless. The 30" section of Main 132 is double submerged arc welded. The single submerged arc welded pipe has a longitudinal joint factor of .80 and a minimum specified yield of 33,000 psi.

Smaller diameter pipe was still purchased as lap or butt welded pipe.

The point to remember is that any pipe purchased during the 20's and 30's, up to 1940, that has a weld on the longitudinal seam is to be considered as single submerged arc welded pipe.

Beginning about 1930, seamless pipe was purchased in various sizes. However, some butt welded 3/4" through 4" pipe was also purchased during this period. Seamless was mainly purchased in sizes of 3/4" up to 16". Most of the pipe purchased during this period was seamless. Single submerged arc welded and seamless pipe was purchased in the larger sizes. The seamless pipe has a joint factor of 1.0 and minimum yields of 30,000 for grade "A" and 35,000 for grade "B". Any pipe having a weld on it purchased during this period is single submerged arc welded pipe and could have yield strengths from 33,000 up to 39,000 psi.

1940 - 1947

<u>1930's</u>

About 1947, double submerged expanded arc welded pipe over 18" in diameter was developed and we started to use it in limited quantities. This pipe is readily identified with a weld on the inside as well as on the outside. This pipe has a joint factor of 1 and yields up to 52,000 psi.

Resistance welded pipe with a joint efficiency of 1 was also used largely in 12", 16" and 18" diameter.

In any of the sizes, if a weld is apparent (adding weld metal), we should assume it is single submerged arc weld pipe since substantial quantities were purchased during this period. Any questions as to proper identity should be referred to this office.

Except for 1940-41 period, most of the pipe purchased in the smaller sizes is likely to be butt welded, as seamless became unobtainable during the war years.

Other pipe purchased was as before, butt weld, single submerged arc weld and seamless. Generally in sizes where it was available, seamless pipe was purchased over lap or butt weld.

In about 1941, we started to purchase electric resistance weld pipe (where no metal is added to make the longitudinal joint as opposed to submerged arc welded pipe where metal is added). This pipe was available in 4" sizes up to 18" and had joint efficiencies of 1 and yields up to 39,000 psi. However, extensive use was not made of the larger sizes until after 1945.

<u>1948 to Date</u>

1948 is the date which ended the purchase of single submerged aro welded pipe. All pipe purchased from this period is about as follows:

3/4" through 4" - butt weld pipe. Yield at 28,000 psi; longitudinal joint factor equals .60. (Relatively small quantities of butt weld were purchased in 4" size as compared to the quantities of electric resistance weld pipe.)

4" on up to and including 18" can be either electric resistance weld or seamless with joint efficiencies of 1.0 and yields from 35,000 psi up to 52,000 psi.

20" on up to 36" - double submerged arc weld, expanded type pipe or seamless up to 24" all with joint factors of 1.0 and yields of up to 52,000 psi.

WERoss:ha

NTSB_021-001, pages 33-35

PRAE	Pacific Electric	Gas and c Compa	i ny			,								62-4060(Rev 3/08) Gas T&D
Leal	k Su	rvey,	Repa	air, In	spect	ion a	nd G ■ /∧	as Qı IITIAL	arterly LEAK	lncide	ent Rep	oort (Form	• "A")	Utility Standard S4110
		.1. 61	Y	R - Series	- SFX					USA Ticke	et#		Valid Date]
Leak Number 09 - 30255 - 1 Date Reported 11 - 16 - 2009			5 - 1		Time	e Renorfe	d 14.30) (24 hr	Time)		mbor 11778			
			2009		Poer		No 45.50) (24 hr	Time)	Pound 1				
	Resp	onse Da	ate 1	1 - 16 - 2	2009	CAL.			- #		1646/	SAD D	vvan to vvan (vnair Ordar # [
Morato	orium E:	xpire Da	ate	~ •		OAF	- Kech		I#]		SAF RE		41220221
Descri	intion o	Addres f Readir	123 10 1 0 Ca	tion [,] Ove	ission ar main l	oetween	1236	ка & 1230 М	lission Rd				July: South St	an Francisco
R	EPOR	TED BY	Cal	ll In ot Survey		Aobile Su Other Em	urvey iptoyee	ь	SI	JRFACE C	OVER LEA	K: () Concrete Asphalt	Unsu	rfaced
DDM	641 E3		IGS	Orada /b)	2% or Less (c) or Suspect Copper (s)	Down Grade Via Vent			TIME (24 bs Time)	OPERATOR	UNIT SERIAL NUMBER	LC	CATION REMARKS	s revious)
РРМ 0	%LEL	%GAS	Inst (a)	Grace (b)	H	(Teshlo)	ت 11 - 1	DATE 6 - 2009	(24 nr 11mə)		(Last 4 Digits	,, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		25		24				6 - 2000	16:45	TAGN	1 1122	1A/s	iting for sample	
		2.0		27				0 - 2009	10,45				aning ive sample	
ļ	<u> </u>										<u> </u>			
						,								
22% or A - W F - Oi J - Le Li Record Norma Yea	r less rea fall to wa n facility is eak withir eak Loo ded Loo ally Cath r Inst:	Ison code II and trav in extrem n scope of cation M hodically	Is require veling, B - ely poor o f work by lap Wa lap Wa y Protec 948	ed if leak is Next to, a condition, (others, N II Map: II Map: Sted () TP	s graded as t or under l 3 - At least Grade 3 d Yes () N Line # [i 1, 2+, or puilding, C second a owngrade 7 7 10 CF 132	2: - Odor a ustomer of e is not al Pla Pla Pla Pla	and next to call out, H - lowed, S - MAF t <u>A14</u> t <u>A14</u> 2706 N	public gathe Leak is repo Leak is suspi PPING I Bloc NOF NOF NIE Post	ring location, Inted as 0% (ected to be of DATA Federal I ck MOP (TP of (All syste 42 99	, D - In foreig Gas Visual, on a copper s Land () Y 026 only) () () () () () () () () () () () () ()	n structure, E - Aud ervice. es No S R'qrc 0 1 400 0 1 375 1 nal Job # (TP or	lible and/or visible YSTEM PRES I for Grade 1, 2, 2+ 1 .P (<=10.5 [*] wc) C HP (<=60psig) hly) <u>GM98015</u> an Year of Main	SURE (MAOP) Downgrades to Grade) SHP (<=25psig) TP (>60psig)
FO	r Leax	s on se	ervices:		Main Co	mecleo	i lo sei		Cast Iron () Plastic	Steel	Installatio	in real of Main	1940
		a ang kapanang taning s	el ander son ander son ger		ala anta anna an	An the Antone Artho	Vanishi ali Sulati da	- Pli	PE DAT	ГА 🚥	en elettario e i entetti allativele			
LEAK	SOUR	CE					L	EAK CA	USE				LINE MATE	RIAL
🔿 Bel	l Joint			O Plast	ic Tee Ca	р	Ç) Atmosph	ieric Corrosio	on	O Plastic	Embrittlement	Copper	unhà lun -
O Boo	dy of Pip	e		○ Othe	r Welds		C	Cast from	h Fracture		O Vandal	sm re Fire	Cast/Ducti	ight fron Ie Iron
🔿 Cla	mp			🔿 Regi	ulator		C) Damage	by Electrica	Facility	O Vehicle		Aldyl A (Ta	in or Gray)
	p			🔿 Rise	r		č) Damage	by Heavy R	ains/Flood		ct Operation	O PE2406 (Y	'ellow or Orange)
	capsulati	ion		() Тар	Connectio	n	С) Damage	by Earth Mo	ovement	C Equipm	ent Malfunction	O PE2406/27	708 (Yellow)
⊖ Fitt	ing			🔿 SS F	itting in Pl	astic Syst	tem C) Damage	by 3rd Party	r		isly Damaged	PE3408 (B PE4710 /P	nack) Slack)
⊖ Fu	sion Join	nt		🔿 Valv	е		C) External) Internal (Corrosion			ing ailure	Other Plas	tic
🌑 Gir	th Weld			🔿 Unki	าดพภ		C) Stress C	orrosion Cra	icking		VI) VI)	Other	
🔿 Log	gitudinal	Weld		⊖ Othe	۱۲ <u> </u>		č) Material	Failure	÷	Other_			
O Mechanical Joint O Plastic Crack Failure						Distribution	n Main							
		Line	e Size [30				_			_		Gathering	
	Line Al	bove Gr	ound ()Yes	N o	Internal	Liner ()Yes 🌘) No	Line Inser	rted 🔿 Ye	es 🌒 No	Single Ser	vice
High /T	Conse	equence	Area	Yes ()No I	EFV Inst	talled () Yes()No E	EFV Opera	ated () Ye	es 🔿 No	O Branch Se	rvice
Incid	ent Re	port #	11 31			Material	Probl	em Rend	ort#				Transmiss	ion
moru		poir #		material r robietti ivepoit #							Service			

Previously Printed: 01 February 2010

Date Printed: 30 September 2010

Repair Location Main		REPAIR	DATA (1) 🛲	an a	
Yes () No Pipeline Er	ngineer Consulted	Repair Remarks Ins'd 3) in sleeve, 625 wt x60		a construction of the state of
Repaired By: Archer. Ver	n Re	pair Date 02 - 02 - 20	10 Repair Time	06:00	Pipe-to-Soil (mV) 1300
Panair Codo:			••••••••••••••••••••••••••••••••••••••		(External Corrosion Only)
		air Eitting 🕜 Replace Value	< 2 inch O Scan an	d/or Tana	
Bell Joint Clamn	Replace Dist Ma	in < 100 ft O Replace Valve	> or = 2 inch () Tee Fusi	ed over Defect	
Ci Repair Sleeve	Replace Dist Ma	in > or = 100Ω Replace Plast	in Tee Can		
BI Permabond	Deactivated Entry	re Service O Tighten Cap/P	iolt O Patch W	'eld	
Deactivate TP Main	Deactivated Part	tial Service O Aldvl Electrof	sion Overcap () Direct De	eposition Weld	
Replace TP Main	Replace Entire \$	Service () Skinner Clam	o () Welded	Sleeve/Can	○ Other
 Deactivate Dist Main (1 foot or more) 	Replace Partial	Service OSS Clamp w/A	Anode O Welded	Save-A-Valve	~ <u> </u>
SIZED INSTALLED:	REPLACED W	ITH: O STEEL O PE4710 (Black)	 PE2406/2708 (Yellow) TR418 	O PE100	Copper Entirely Replaced
Field Reviewed By	McCorkle, Dennis	Date 02 - 03 - 20	10 Post Repair Che	eck 🔘 Yes 🌑	No Date
Mapping Reviewed By	Armas, Fernando	Date 02 - 04 - 20	10 Posting Require	ed 🔿 Yes 🌒	No
de para esta arrende en a trada e presenta en a trada esta tradicio versa esta de trada trada de actividades d	elesten an weather the program of the analysis of the second second second second second second second second s	GENERAL IN	SPECTION DATA	en dela la particular de como de como	n an
DATE: 02 - 02 - 2010		AN ID: (JKL5) Lusk, Joe	Line Use:	 Distribution M Gathering 	ain O Service O Single Service Transmission O Branch Service
INE MATERIAL	SOIL TYPE	For TP Only	SURFACE OVER PIPE		
Steel/Wrought Iron	Clay	SOIL RESIST (Ohm-cm) 🔿 Concrete	co\/	
) Copper		0 - 1,000	Asphalt	000	
Aldyl-A (Tan or Grey)		○ 1,000 - 2,000	Soil (Previously Unsur Soil (Previously Unsur	faced)	
) PE2406 (Yellow or Orannge)	O Wet	O 2,000 - 5,000	O Other	PA\	
) PE2406/2708 (Yellow)) PE3408 (Black)	Exposed Facility	5,000 - 10,000		– NEAR	PUBLIC ASSEMBLY () Yes No
) PE4710 (Black)	O Other	() > 10,000			Line Size 30.00
- Ng ang kananan dalamin kachangka mining galang apakanan mer		METALLIC P	PIPE CONDITION -		
COATING TYPE () Bare/No	one 🔿 Paint	🔿 Single Wrap	 Somastic 	Tar	COATING CONDITION
🔿 Ероху	🔿 Tape	🔿 Double Wrap	 Plastic Coated (Other	
CIRCUMFERENTIAL	0	Q 444.00 300-01			🔴 Good 🔿 Poor
WELD CONDITION (Visual)	O:stat	Q Jaunites or externa	(See	Numbered Doc	umen <u>t D-20</u> or <u>D-22)</u>
LONG SEAM O DSAW		AO Smith 🔿 Spiral 🛛 🔿 SS	AW 🔿 SMLS 🔿 L	AP 🔿 Flast	1
		EVTEDN			
			for TP) (Inches)		•
	Light O Heavy	MALL THIORNESS (Reg	(Inches) = 0.37	WALL TH	IICKNESS MEASURED 🔍 Yes 🔘 N
	Light O Heavy			G	RAPHITIZED (Cast Iron) Ves 🔿 No
	Light () Heavy f	MAX GOUGE DEPTH (Req	tor IP) (Inches)	;	
	ioht 🔿 Heavy	INTERNA	L INSPECTION		
	Light O Heavy	MAX, PIT DEPTH (Req.	for TP) (Inches))	
	-	PLASTIC P			
	s⊖No MANUF	ACTURE DATE			
PIPE MANUFACTURER (I	LOCATED ON PIP	E)	<u> </u>	LOC	
GOUGING() Yes UND () No	ER STRESS/BENT	· () Yes DISCOLORIN () №	G TO GRAY () Yes () No		No HARD OBJECTS No
STIMATE GOUGE DEPTH	>50% O Accep	BEAD APPEARANCE (SI table O Unacceptable	EE <u>NUMBERED DOCUN</u>	<u>MENT D-2</u> 1)	
		GAS QUARTERLY	INCIDENT REPO	RT	
DAMAGING PARTY		ADDRESS			CITY
Damaging Party Working for	or PG&E () Yes ()No Phone	() -		Zip Code
# INJUREDEmployees o	OthersO	image \$# Cust. Int	errupted o # Cust.	Hours 0 F	
# FATAL Employees 0	Others 0	Media () Yes () No (Media	Type TV Radio	Newspape	r Name/Channel:
		_	O		O O

LOCATION SKETCH

REQUIRED for new or returned to service segments of main and/or service:	(if any fittings are used, then text and/or sketch must show location)	WELDED BY	
TESTED AT PSIG for O Hours O Minutes TEST In accordance with A-34 BY DATE TEST QUALIFIES PIPE FOR PSIG MAOP	TYPE OF PLASTIC MATERIAL INSTALLED Manufacturer Name (Polypipe, US Poly, Performance, or KWH) Manufacturer Name (Polypipe, US Poly, Performance, or KWH)		WELDING INSPECTED PER PG&E NUMBERED DOCUMENT D-40 BY <u>Archer, Vern</u> Date: 02-01-2010 INSPECTOR
COMMENTS			

Sketch is required for all repairs (or directions as to where to find the sketch is req	uired, if sketch is located on another record).
· · · · · · · · · · · · · · · · · · ·	