Density Altitude Calculator

- using dew point -

To use the calculator, just click the type of units that you will be entering, then enter the elevation, temperature, altimeter setting and dew point... then click the calculate button.

Density Altitude Calculator					
Elevation	• feet		○ meters	4920	
Air Temperature	• deg F		○ deg C	71	
Altimeter Setting	• inches Hg		O hPa	29.82	
Dew Point	• deg F		○ deg C	35	
Calculate Reset					
Density Altitude	7015	feet		2138	meters
Absolute Pressure	24.884 inch		es Hg	842.67	hPa
Air Density	0.062 lb/ft3		3	0.993	kg/m3
Relative Density	81.03 %		81.03	%	
Estimated AWOS	6900) feet		2103	meters
Copyright 1998-2015, Richard Shelquist					

Additional Information:

Example calculations:

Example 1: at 5050 feet elevation, 95 deg F air temp, 29.45 inches-Hg barometric pressure and a dew point of 67 deg F, the Density Altitude is calculated as 9252 feet.

Example 2: at 1540 meters elevation, 35 deg C air temp, 997 hPa barometric pressure and a dew point of 19 deg C, the Density Altitude is calculated as 2821 meters.

The metric unit hPa (hectoPascal) is identical to the pressure unit called mb (milliBar).

Air density is affected by the air pressure, temperature and humidity. The density of the air is reduced by decreased air pressure, increased temperatures and increased moisture. A reduction in air density reduces engine horsepower, reduces aerodynamic lift and reduces drag.