

## **Continental Motors, Inc.**

## **Component Examination Report**

**Fuel Nozzle and Manifold Flow Test** 

| Examiner          | Signature     | Date       |
|-------------------|---------------|------------|
| Nicole L. Charnon | Course Course | 09/21/2012 |

| Date       | Component Examination Report       | Page   |
|------------|------------------------------------|--------|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 2 of 8 |

On August 29<sup>th</sup>, 2012, testing was conducted to determine if the inadvertent installation of two O-rings on the fuel nozzles of a naturally aspirated IO-550-N would affect the operation of the fuel manifold system. The first test used fuel nozzle set P/N 657068A1, which is equivalent to the older style nozzles used on IO-550-N engines. Each nozzle was flow tested individually three times with two O-rings installed, as well as tested three times with one O-ring installed. This test involved placing 11 pounds per square inch gauge (psig) of solvent through the nozzles to determine the flow of the nozzle in pounds per hour (pph). The same requirements used during normal manufacture testing were utilized during these flow tests. All nozzles were within normal parameters regardless of O-ring configuration. Refer to Appendix A for specific observations.





Figure 1: Individual nozzle flow test.

The nozzles were then installed with a fuel manifold valve P/N 646433-5A7 using manufactured test fuel lines. This test uses several different specific flow rates in pph to determine the metered fuel pressure in psig. Test #1 used fuel nozzles with two O-rings installed. Test #2 used fuel nozzles with one O-ring installed. The same requirements used during normal manufacture testing were utilized during these flow tests. Both tests indicated that regardless of O-ring configuration fuel pressure was within normal parameters; refer to Appendix B for test printout.

| Date       | Component Examination Report       | Page   |
|------------|------------------------------------|--------|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 3 of 8 |

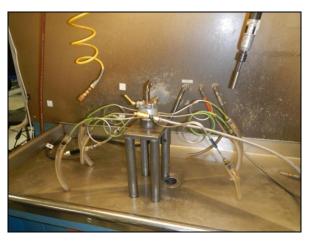





Figure 2: Two O-ring fuel manifold and nozzle flow test.






Figure 3: One O-ring fuel manifold and nozzle flow test.

In summary, the placing of two O-rings on the nozzles did not result in a significant difference in flow during bench testing (both at the individual nozzle level and the manifold level). Theoretically, if one nozzle out of a set had two O-rings installed and the others only had one, it is possible that the cylinder with the double O-ring could have a mixture that differed from the others. However, further operational testing would be required to substantiate the theory and to determine how different the mixture would be in the individual cylinders.

See Appendix A and B of this report for more detailed information regarding the flow test findings.

| Date       | Component Examination Report       | Page   |
|------------|------------------------------------|--------|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 4 of 8 |

## Appendix A

Individual Nozzle and Manifold Valve Flow Tests

| Date       | Component Examination Report       | Page   |
|------------|------------------------------------|--------|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 5 of 8 |

646433-5A7 Manifold Valve Large Test Lines Nozzle set 657068A1

Experiment: Compare the flow differences between a nozzle with one and two O-Rings, both at the nozzle and manifold level

Nozzles: Tested at 11 PSIG, Flow in PPH shown

Test 1 configured per engineering requirements (1-O-ring) (2-O-rings)

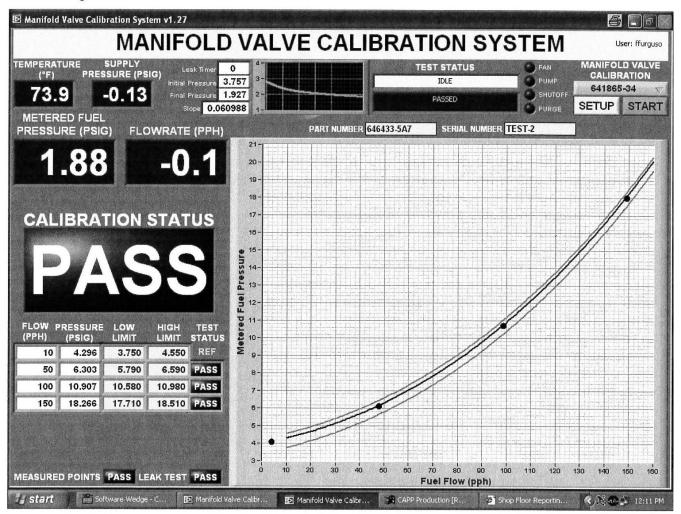
Flowed three times

| •           | •      | •      |        | •       |        |        |        |         |        |           |       |
|-------------|--------|--------|--------|---------|--------|--------|--------|---------|--------|-----------|-------|
| lowed three | times  |        | _      |         |        |        | _      |         |        | Requireme | nt    |
| marking     | 1      | 2      | 3      | Average | 1      | 2      | 3      | Average | Delta  | Low       | High  |
| 1234        | 23.913 | 23.908 | 23.904 | 23.908  | 23.889 | 23.881 | 23.872 | 23.881  | 0.028  | 23.90     | 24.10 |
| 2234        | 24.026 | 24.014 | 24.031 | 24.024  | 24.052 | 24.048 | 24.055 | 24.052  | -0.028 | 23.90     | 24.10 |
| 3239        | 24.515 | 24.514 | 24.503 | 24.511  | 24.474 | 24.470 | 24.463 | 24.469  | 0.042  | 24.43     | 24.63 |
| 4239        | 24.553 | 24.496 | 24.496 | 24.515  | 24.542 | 24.526 | 24.538 | 24.535  | -0.020 | 24.43     | 24.63 |
| 5239        | 24.589 | 24.591 | 24.580 | 24.587  | 24.568 | 24.567 | 24.572 | 24.569  | 0.018  | 24.43     | 24.63 |
| 6231        | 23.799 | 23.794 | 23.786 | 23.793  | 23.778 | 23.784 | 23.767 | 23.776  | 0.017  | 23.63     | 23.83 |

Manifold Valve

| Flow (PPH) | Pressure (PSIG) |           | Requirement | nt    |  |
|------------|-----------------|-----------|-------------|-------|--|
|            | 1-O-Ring        | 2-O-Rings | Min         | Max   |  |
| 10         | 4.296           | 4.294     | 3.75        | 4.55  |  |
| 50         | 6.303           | 6.299     | 5.79        | 6.59  |  |
| 100        | 10.907          | 10.883    | 10.58       | 10.98 |  |
| 150        | 18.266          | 18.236    | 17.71       | 18.51 |  |

| Date       | Component Examination Report       | Page   |  |  |  |
|------------|------------------------------------|--------|--|--|--|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 6 of 8 |  |  |  |
| 1          |                                    |        |  |  |  |
| Annandia D |                                    |        |  |  |  |

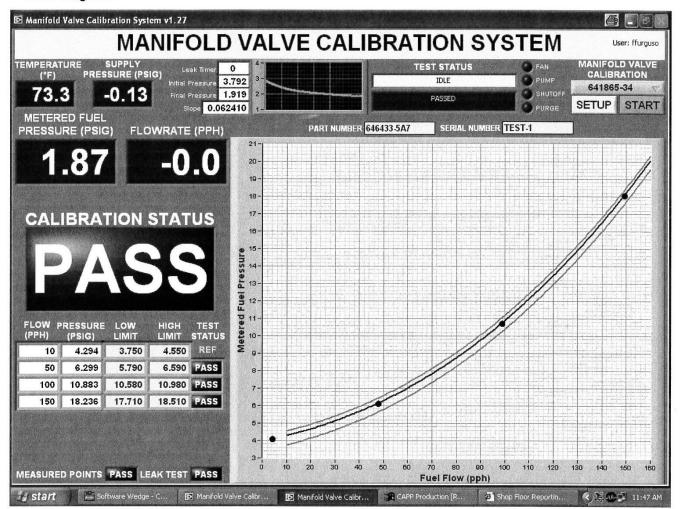

## Appendix B

Manifold Valve Flow Test

| Date       | Component Examination Report       | Page   |
|------------|------------------------------------|--------|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 7 of 8 |

Print at: Wednesday, August 29, 2012 12:11:35 PM

Host: MOBMFPC267 User: ffurguson




O-RING TEST

| Date       | Component Examination Report       | Page   |
|------------|------------------------------------|--------|
| 09/20/2012 | Fuel Nozzle and Manifold Flow Test | 8 of 8 |

Print at: Wednesday, August 29, 2012 11:47:47 AM

Host: MOBMFPC267 User: ffurguson



2- O-RING TEST