NATIONAL TRANSPORTATION SAFETY BOARD

Office of Research and Engineering Washington, D.C. 20594

May 1, 2015

CXO Runway 1 Examination Test Plan

by John O'Callaghan

A. ACCIDENT

Location: Conroe, TX (Lone Star Executive Airport (CXO)) Date: September 19, 2014 Time: 08:47 Central Daylight Time (CDT) (13:47 Universal Coordinated Time (UTC))¹ Aircraft: Embraer EMB-505, N322QS

NTSB#: CEN14FA505

B. PARTICIPANTS

NTSB:

John O'Callaghan National Resource Specialist – Aircraft Performance Vehicle Performance Division, RE-60 490 L'Enfant Plaza E., S.W., Washington, D.C. 20594

Kevin Renze Senior Aerospace Engineer Vehicle Performance Division, RE-60 490 L'Enfant Plaza E., S.W., Washington, D.C. 20594

Craig Hatch Aerospace Engineer / Air Safety Investigator Office of Aviation Safety, Central Regional Office 4760 Oakland Street, Suite 500 Denver, CO 80239

CXO Airport: Scott Smith Airport Manager Lone Star Executive Airport 10260 Carl Pickering Memorial Dr.,Conroe, TX 77303

¹ Local time at Conroe on the day of the accident was Central Daylight Time (CDT). CDT = UTC - 5 hours. Times in this *Test Plan* are in CDT unless otherwise noted.

IAH Airport:	James Knott Staff Analyst – Training Bush Intercontinental Airport (IAH) 2800 N Terminal Rd, Houston, TX 77032
FAA:	James Moore Houston Flight Standards District Office Principal Maintenance Inspector 12650 N. Featherwood, Suite 230, Houston, Texas 77034
Embraer:	Daniel Satoshi Marimoto Air Safety Engineer Embraer Air Safety Department 276 SW 34th St., Ft. Lauderdale, FL 33315 – USA
NetJets:	R. Brian Clark Director, Safety Management System NetJets® Aviation, Inc. 4111 Bridgeway Avenue, Columbus, OH 43219
NJASAP:	CA Bob Ferguson Safety Committee/ Industry Affairs NetJets Association of Shared Aircraft Pilots (NJASAP) 630 Morrison Road, Suite 110, Gahanna, Ohio 43230

C. HISTORY OF FLIGHT

On September 19, 2014, about 08:47 central daylight time, an Embraer EMB-505 airplane, N322QS, encountered soft terrain and mud after over running the runway while landing at the Lone Star Executive Airport (CXO), Conroe, Texas. Neither of the airline transport rated pilots on board were injured. The airplane was substantially damaged. The airplane was operated by Net Jets as a 14 Code of Federal Regulations Part 91 positioning flight. Instrument meteorological conditions prevailed for the flight, which was operated on an instrument flight rules flight plan. The flight originated from the Nashville International Airport (BNA), Nashville, Tennessee, at 07:10.

According to the air traffic controller who witnessed the accident, the pilots flew the area navigation (RNAV) runway 1 approach and broke out of the clouds at the minimums for the approach. The controller stated the airplane touched down just past the 1,000 foot marker on the runway and did not appear to decelerate as it continued down the runway. The airplane traveled off the departure end of the runway and continued about 400 feet through soft/muddy terrain before coming to rest half way down a ditch. The controller stated there was moderate to heavy rain at the time of the accident.

The role of the Aircraft Performance Specialist in the investigation is to determine and analyze the motion of the airplane and the physical forces that produce that motion. In particular, the Specialist attempts to define the airplane's position and orientation during the relevant portion of the flight, and determine the airplane's response to control inputs, external disturbances, ground forces, and other factors that could affect its trajectory. The data used to determine and analyze the airplane motion includes but is not limited to the following:

- Wreckage location and condition.
- Ground scars / markings.
- Airport Surveillance Radar (ASR) data.
- Flight Data Recorder (FDR) data.
- Cockpit Voice Recorder (CVR) information.
- Runway macrotexture, cross-slope, and friction measurement information.
- Weather information.
- Airplane thrust and aerodynamic performance information.
- Output from computer programs and simulations that calculate aircraft performance.

This *Test Plan* describes the objectives of and methods for an examination of runway 1 at CXO, including the data to be gathered, the equipment required, and the test procedures.

D. DETAILS OF THE TEST

I. Test Objectives

The objectives of the test are to:

- 1. Measure the runway 1 macrotexture depth at 40 locations, as defined below.
- 2. Measure the runway 1 cross-slope at those same 40 locations.
- 3. Measure the runway friction along the length of runway 1 using the NAC DFT trailer provided and operated by IAH personnel, at 4 different speeds and at 4 different distances from the runway centerline, as defined below.
- 4. Use the measured DFT data to compute the wet runway braking coefficient as a function of ground speed for the EMB-505 airplane, using a method developed by NASA Langley (see Appendix B).
- 5. Use the measured macrotexture and cross-slope data to compute the expected water depth on the runway as a function of rainfall rate, per a drainage model developed by the Texas Transportation Institute (TTI).²
- 6. Examine the runway 1 edges for vegetation or other obstructions that would prevent proper water drainage from the runway.

II. Test Location and Date

The test is scheduled for Tuesday, May 5, 2015, on runway 1 at CXO. The street address of CXO is:

Lone Star Executive Airport 10260 Carl Pickering Memorial Dr.,Conroe, TX 77303

² B. Gallaway, R. Schiller, Jr., and J. Rose, *The Effects of Rainfall Intensity, Pavement Cross Slope, Surface Texture, and Drainage Length on Pavement Water Depths.* Texas Transportation Institute (TTI) Research Report 138-5, May 1971.

The test team should meet at the CXO airport offices at 8:00 CDT to brief the test plan for the day.

If weather forecasts preclude testing on that day, the test will be postponed.

III. Test Equipment

- Geo7x survey GPS
- Measuring wheel for measuring off runway distances
- 250 ft. tape measure
- Chalkte
- Level (3 ft. or 6 ft.)
- Digital inclinometer
- ELAtextur macrotexture scanner
- Newbert Aero Corporation Dynamic Friction Tester (NAC DFT) Continuous Friction Measurement Equipment (CFME) trailer and truck
- Data log macrotexture and cross slope measurements
- Run matrix and log NAC DFT measurements
- Video / still camera (e.g., iPhone)

IV. Safety Equipment

- VHF radio for ATC Tower communications, for each of two teams (described below), operated by CXO personnel
- Visibility vest
- Whistle for signaling personnel on the runway

V. Test Teams

The tests will be conducted by two teams, working independently:

- The "DFT team": operates the DFT CFME truck and trailer.
- The "Macrotexture" team: conducts the macrotexture and cross-slope measurements at discrete points on the runway; examines runway edge.

For simplicity and safety reasons, only one team will be working on the runway at a time. The DFT team will do its work first, so as to release the DFT vehicle as soon as possible. The sequence of runs and test points for each team is prioritized as shown in Appendix C.

VI. Runway 1-19 closure and coordination with the ATC Tower

Runway 1-19 will be NOTAM'd "closed" prior to the test, and will remain closed during the duration of the test. The CXO person assigned to each test team will monitor the VHF radio and communicate as required with the ATC tower and the other team, and advise when the team should clear runway 1 and / or remain clear of the 250 ft. safety zone on either side of the centerline of intersecting runway 14-32.³ Any presence of the teams inside the safety zone must be coordinated with the ATC tower through the CXO team member.

While the Macrotexture team is on the runway, the CXO team member will be in possession of a whistle. If this person determines that the team must clear the runway immediately, he will blow three blasts on the whistle. Upon hearing the whistle, team members will exit the runway immediately. If he blows one long blast, the team will assemble at his location.

VII. Test Procedure: NAC DFT friction runs

- 1. Set up the DFT per IAH's normal operating procedures / checklists.
- 2. Measure and record the friction tire's inflation pressure at the start of the day, at water refills, and at the end of the day. Adjust inflation pressure as necessary to maintain a constant value throughout the tests.
- 3. Conduct friction test runs in one direction only: starting from the threshold of runway 1, and testing towards the threshold of runway 19. Drive back to the runway 1 threshold to start a new run.
- 4. Conduct runs at the matrix of speeds and runway "y" coordinates shown in the "CFME runs" sheet of the "KXCO_RWY1_measurements.xls" *Excel* spreadsheet. Number the runs consecutively, and note the run number in the appropriate cell of the matrix. Note the time of the start of the run, and any other identifying information, in the "Run Log" section of the spreadsheet, so that the data recorded by the DFT can be associated with the correct run number later.

The "PLANNED" matrix shows the suggested order of runs, sequenced so as to obtain the high-priority runs first. Note that runs 13, 14, 19, & 20 are repeat runs. Log the actual conduct of the runs in the "ACTUAL" matrix.

The runway coordinates originate at the threshold of runway 1 on the centerline. The +x coordinate runs down the runway towards the threshold of runway 19. The +y coordinate runs towards the right edge of the runway. Note that the test y coordinates are not centered about the centerline, but are biased toward the left side of the runway. This is to reflect the actual track of N322QS as evidenced by the skid marks left by the airplane.

Set up the Geo7x to record a "generic line" feature during each run, logging GPS coordinates at regular time intervals. These coordinates can then be later used to compare the actual track of the DFT to the planned track.

³ Runway 14-32 intersects runway 1-19 about 4170 ft. from the runway 1 threshold (see diagram in Appendix A).

In addition to the driver, the DFT tow vehicle can accommodate 4 observers. One of these should be the CXO team member to handle communications with the tower. A second, at least, should be present to take notes and fill out the run log.

VIII. Test Procedure: Macrotexture and cross-slope measurements

- 1. In advance of the test, create waypoints in the Geo7x device locating the x runway coordinate of measurement points, as shown in the "Macrotexture" sheet of the "KXCO_RWY1_measurements.xls" *Excel* spreadsheet.
- 2. Navigate to the measurement x coordinate using the Geo7x, and double-check with measuring wheel. Then, use the tape measure to find the correct y coordinates (see Appendix D). Note that the test y coordinates are not centered about the centerline, but are biased toward the left side of the runway. This is to reflect the actual track of N322QS as evidenced by the skid marks left by the airplane.
- 3. Mark and label the measurement point with chalk. See the spreadsheet for the point names (the names are constructed from the x and y coordinates of the point).
- 4. Using the ELAtextur scanner, measure the macrotexture three times, on and around the marked point. Record all three measurements in the appropriate cells in the spreadsheet. (Note the gray cells in the spreadsheets are for calculations that will be performed after the data is collected).
- 5. Using the level and digital inclinometer, measure and record the runway cross slope in the spreadsheet. Positive slope is for the centerline higher than the runway edge. Negative slope is for the centerline lower than the runway edge.
- 6. Photograph both the left and right runway edges to document vegetation or other obstructions that might cause runway drainage problems.
- 7. Repeat until all 40 points have been measured and recorded. See Appendix D for the suggested order of x-runway coordinate stations to test, so as to maximize coverage of the runway in the minimum amount of time (in the case that testing gets interrupted).
- 8. If the CXO team member determines that the team should clear the runway, he will blow 3 short blasts on the whistle. Upon hearing the whistle, the team will immediately clear the runway. If he blows one long blast, the team will assemble at his location.

IX. Other information

Appendix A contains an airport diagram and other useful information for CXO.

Appendix B contains the NASA Langley method for relating CFME measurements to airplane braking coefficients on a wet runway.

Appendix C contains printouts of the "Macrotexture" and "CFME runs" sheets in the "KXCO_RWY1_measurements.xls" *Excel* spreadsheet.

Appendix D contains details of proposed procedures for locating the measurement points on the runway.

Appendix A: KCXO Airport Diagram and Other Information

SC-5, 13 NOV 2014 to 11 DEC 2014

14149

SC-5, 13 NOV 2014 to 11 DEC 2014

Airport Details for KCXO - ACTIVE Chart Date: 09/23/2010 LONE STAR EXECUTIVE HOUSTON AL #: 5573

State:	TEXAS		Magnetic Variation/Year:	E05/2000	Weather Statio	on: YES	
Country:	United State	es	Site Nbr:	24072.1	Control Tower	: NO	
Category:	AERODRO	ME ONLY	Data Source:	405 NGS			
FAR Part 139:	NO		Owner:	NTL	Use:	CIVIL	
					Military Type:		
Coordinates			Office		Local Auto Wea	ather	
Latitutde:	N 30° 21' 0	8.5000"	Flight Inspection:	OKC	Weather Source	: ASOS	
Longitude:	W 095° 24'	52 3000"	Procedure Development	120	Type:	3	
Field Elevation:	244.9	02.0000	Region Code:	SW	Frequency:	0	
Ellipsoid Elevation:	154.5 E		Service Area:	ONTI	Service A:	N	
			Service Area.		Service A.	IN	
Horizontal Datum:	NAD83			MID			
Vertical Datum:	NAVD88		International:	NO			
CONTACTS							
ALTIMETERS							
		Field Alt Sou	rco	Latitude		onaitude	Operational Timing
			<u>N 20</u>	° 21' 09 5000"	W 00	5° 24' 52 2000"	
		ASOS	N 30	° 02' 42 6000"	W 09.	5° 22' 10 0000"	
R NU	KDWH	A303	N 30	03 42.0000	VV U9:	5 33 10.0000	FULL-TIME
ALTIMETER COM	MENTS						
RUNWAYS							
01 (A) 19 (A) 01	(P) 19 (P) 14 (A)	32 (A) 14 (P) 32	2 (P)				
RUNWAY DETAIL							
Landing Strip							
Chart Date: 02/06/	2014		Publicatio	on Status: A			Pseudo Rwy:
Surface: ASPH	GOOD		Wid	lth: 99			Physical Length: 5000
Dura North and 04	7			Dury Number 40	7		
Rwy Number: 01		KOYOOA		Rwy Number: 19		KOVO40	
Use Category: RUN	WAY ONLY	KCXO01		Use Category: RUNV	VAY ONLY	KCX019	
Chart Date: 09/20/20	12 Pub. Status: A	VGSI Lights		Chart Date: 09/20/20	12 Pub. Status: A	VGSI Lights	
Data Source: 405 03	3/03/2009 NGS	VGSI Lights Type:	PAPI-2L	Data Source: 405 03	3/03/2009 NGS	VGSI Lights Type:	PAPI-2L
Markings: NPI-G		Owner:	STATE	Markings: NPI-G		Owner [.]	STATE
Thursday		Pilot Cntl Freq:		Threaded		Pilot Cntl Freq:	
Inreshold		Th Cross Ht:	19.1	Inresnoid		Th Cross Ht:	18.6
Latitude:	N 30° 20' 44.2700"	High Angle:		Latitude:	N 30° 21° 31.5500°	High Angle:	40.0
Longitude:	W 095° 25' 10.1600"			Longitude:	W 095° 24' 53.3100"	Flight Angle.	
Elevation:	229.6	Com. Date.	0.45	Elevation:	228.8	Com. Date.	0.00
Ellipsoid Elev:	139.3 S	Com. Angle:	3.15	Ellipsoid Elev:	138.5 E	Com. Angle:	3.00
Ellipsoid Elev Model	WGS84	DWB Elev:		Ellipsoid Elev Model:	WGS84	DWB Elev:	
Horz. Datum:	NAD83	DWB Thres:		Horz. Datum:	NAD83	DWB Thres:	
Vert. Datum:	NAVD88	Ref Pt Lat:	N 30° 20' 51.4400"	Vert. Datum:	NAVD88	Ref Pt Lat:	N 30° 21' 24.2900"
		Ref Pt Long:	W 095° 25' 07.5600"			Ref Pt Long:	W 095° 24' 55.8500"
Displaced Thresho	d	Ref Pt Elev:	236.8	Displaced Threshol	d	Ref Pt Elev:	237.4
Latitude:		Ref Pt Thres:	762	Latitude:		Ref Pt Thres:	763
Lonaitude:		Height Group:		Longitude:		Height Group:	
Elevation:		Lights		Elevation:		Lights	
Ellipsoid Elev		Config Len Owner	Mil Type Com Dt Pilot Cntrl	Ellipsoid Elev:		Config Len Owner M	fil Type Com Dt Pilot Cntrl
Ellipsoid Elev.		MIRI STATE		Ellipsoid Elev Model:		MIRI STATE	
			-			UNITE OTITE	
Horz. Datum.				Horz. Datum.			
Vert. Datum:				Vert. Datum:			
Landing Length:	5000			Landing Length:	5000		
FI RWY Length:	5000			FI RWY Length:	5000		
FLRWY Height	228.8			FLRWY Height	229.6		
Tdz Elevation:	236.6			Tdz Elevation:	236.6		
True Rearing	17 17			True Bearing	107.18		
The Dealing.	17.17			The Dealing.	131.10		
Ft Disp Th:				Ft Disp Th:			
Gradient:	0.0%			Gradient:	0.0%		
RVRTouchdown:				RVRTouchdown:			
MidPoint:				MidPoint:			
Rollout:				Rollout:			
Rail:	NO			Rail:	NO		
OIS Data Source:	ANAI PV/ 03/03/2000	NGS SURVEY		OIS Data Source:	- ANAL PV 03/03/2000	NGS SURVEY	
	,				,	1.30_00NVL1	
ASSUL. Fac				ASSUC. Fac.			
			٨	2			

RUNWAY 01 COMMENTS

RUNWAY 19 COMMENTS

RUNWAY DETAIL

Landing Strip						
Chart Date: 03/05/2015		Publicatio	n Status: P			Pseudo Rwy:
Surface: ASPH GOOD		Wid	th: 99			Physical Length: 5000
Rwy Number: 01	Koyood		Rwy Number: 19		Kovoto	
Use Category: RUNWAY ONLY	KCXO01		Use Category: RUNV	VAY ONLY	KCXO19	
Chart Date: 03/05/2015 Pub. Status: F	VGSI Lights		Chart Date: 03/05/20	15 Pub. Status: P	VGSI Lights	
Data Source: THIRD_PARTY 06/26/2011	VGSI Lights Type:	PAPI-2L	Data Source: THIRD	_PARTY 06/26/2011	VGSI Lights Type:	PAPI-2L
Markings: NPI-G	Owner:	STATE	Markings: NPI-G		Owner:	STATE
Threshold	Pilot Cntl Freq:		Threshold		Pilot Cntl Freq:	
Latitude: N 30° 20' 44.2266"	Th Cross Ht:	49.4	Latitude:	N 30° 21' 31.5059"	Th Cross Ht:	48.6
Longitude: W 095° 25' 10.1247"	High Angle:		Longitude:	W 095° 24' 53.2773"	High Angle:	
Elevation: 229.6	Com. Date:	03/21/2012	Elevation:	228.7	Com. Date:	03/21/2012
Ellipsoid Elev: 139.3 S	Com. Angle:	3.15	Ellipsoid Elev:	138.5 S	Com. Angle:	3.00
Ellipsoid Elev Model: NAVD88	DWB Elev:		Ellipsoid Elev Model:	NAVD88	DWB Elev:	
Horz. Datum: NAD83	DWB Thres:		Horz. Datum:	NAD83	DWB Thres:	
Vert. Datum: NAVD88	Ref Pt Lat:	N 30° 20' 51.4400"	Vert. Datum:	NAVD88	Ref Pt Lat:	N 30° 21' 24.2900"
	Ref Pt Long:	W 095° 25' 07.5500"			Ref Pt Long:	W 095° 24' 55.8500"
Displaced Threshold	Ref Pt Elev:	236.8	Displaced Threshol	d	Ref Pt Elev:	237.4
Latitude:	Ref Pt Thres:	762	Latitude:		Ref Pt Thres:	763
Longitude:	Height Group:		Longitude:		Height Group:	
Elevation:	Lights		Elevation:		Lights	
Ellipsoid Elev:	Config Len Owner M	<u>lil Type Com Dt</u> <u>Pilot Cntrl</u>	Ellipsoid Elev:		Config Len Owner M	<u>lil Type Com Dt</u> <u>Pilot Cntrl</u>
Ellipsoid Elev Model:	MIRL STATE		Ellipsoid Elev Model:		MIRL STATE	
Horz. Datum: UNKNOWN			Horz. Datum:	UNKNOWN		
Vert. Datum: UNKNOWN			Vert. Datum:	UNKNOWN		
Landing Length: 5000			Landing Length:	5000		
FI RWY Length: 5000			FI RWY Length:	5000		
FI RWY Height: 228.7			FI RWY Height:	229.6		
Tdz Elevation: 236.7			Tdz Elevation:	236.7		
True Bearing: 17.16			True Bearing:	197.17		
Ft Disp Th:			Ft Disp Th:			
Gradient: 0.0%			Gradient:	0.0%		
RVRTouchdown:			RVRTouchdown:			
MidPoint:			MidPoint:			
Rollout:			Rollout:			
Rail: NO			Rail:	NO		
OIS Data Source: VG 06/26/2011 THIF	RD_PARTY		OIS Data Source:	VG 06/26/2011 THIR	D_PARTY	
Assoc. Fac.:			Assoc. Fac.:			

RUNWAY LANDING STRIP COMMENTS

RUNWAY 01 COMMENTS

RUNWAY 19 COMMENTS

RUNWAY DETAIL

Landing Strip			
Chart Date: 02/06/2	2014 Publicati	on Status: A	Pseudo Rwy:
Surface: CONC G	GOOD Wid	th: 150	Physical Length: 7501
Rwy Number: 14 Use Category: RUNW Chart Date: 07/29/20 Data Source: 405 03 Markings: PIR-G] VAY ONLY KCXO14 10 Pub. Status: A /01/1991 NGS	Rwy Number: 32 KCXO32 Use Category: RUNWAY ONLY KCXO32 Chart Date: 07/29/2010 Pub. Status: A Data Source: 405 03/03/2009 NGS Markings: NPI-G Value Value	
Threshold		Threshold	
Latitude:	N 30° 21' 33.4734"	Latitude: N 30° 20' 44.5408"	
Longitude:	W 095° 25' 03.9041"	Longitude: W 095° 24' 25.1018"	
Elevation:	230.1	Elevation: 241.3	
Ellipsoid Elev:	139.9 S	Ellipsoid Elev: 151.0 S	
Ellipsoid Elev Model:	WGS84	Ellipsoid Elev Model: WGS84	
Horz. Datum:	NAD83	Horz. Datum: NAD83	
Vert. Datum:	NAVD88	Vert. Datum: NAVD88	

Rpt Date: 20:00:36 08/15/2014 Rpt User: dso

• • • • • •		VGSI Lights					Lights	5		
		VGSI Lights Type	: PAPI-2L				Config	<u>Len</u>	Owner Mil Type Com Dt	Pilot Cntrl
		Owner:	STATE				MIRL		STATE	122.950
		Pilot Cntl Freq:					REIL		STATE	122.950
		Th Cross Ht:	31.0							
		High Angle:								
		Com. Date:								
		Com. Angle:	3.00							
		DWB Elev:								
		DWB Thres:								
		Ref Pt Lat:								
		Ref Pt Long:					-			
Displaced Thresho	ld	Ref Pt Elev:			Displaced Thresho	old				
Latitude:	N 30° 21' 28.6715"	Ref Pt Thres:			Latitude:					
Longitude:	W 095° 25' 00.0957"	Height Group:			Longitude:					
Elevation:	230.6	Lights			Elevation:					
Ellipsoid Elev:	140.4 S	Config Len Owne	er Mil Type Com Dt	Pilot Cntrl	Ellipsoid Elev:					
Ellipsoid Elev Model	: WGS84	MALSR STAT	re F	122.950	Ellipsoid Elev Mode	l:				
Horz. Datum:	NAD83	MIRL STA	IE	122.950	Horz. Datum:					
Vert. Datum:	NAVD88				Vert. Datum:					
Landing Length:	5411				Landing Length:	6000				
FI RWY Length:	5411				FI RWY Length:	5411				
FI RWY Height:	241.3				FI RWY Height:	230.6				
Tdz Elevation:	242.8				Tdz Elevation:	244.9				
True Bearing:	145.48				True Bearing:	325.49				
Ft Disp Th:	589				Ft Disp Th:					
Gradient:	0.2%				Gradient:	-0.2%				
RVRTouchdown:					RVRTouchdown:					
MidPoint:					MidPoint:					
Rollout:					Rollout:					
Rail:	YES				Rail:	NO				
OIS Data Source:	PIR 03/01/1991 NG	S_SURVEY			OIS Data Source:	ANALPV 03/03/2009	NGS_S	SURVE	Υ	
Assoc. Fac.:	CXO ILS (A)				Assoc. Fac.:					

RUNWAY LANDING STRIP COMMENTS

RUNWAY 14 COMMENTS

RUNWAY 32 COMMENTS

RUNWAY DETAIL

Landing Strip									
Chart Date: 03/05/2015		Publi	catior	N Status: P				Pse	udo Rwy:
Surface: CONC GOOD			Width	: 150				Physical Len	gth: 7501
Rwy Number: 14			[Rwy Number: 32]				
Use Category: RUNWAY ONLY	KCXO14		`	Use Category: RUNV	VAY ONLY	KCXC	032		
Chart Date: 03/05/2015 Pub. Status:	P VGSI Lights			Chart Date: 03/05/20	15 Pub. Status: F	VGS	I Lights		
Data Source: THIRD_PARTY 06/26/2011	VGSI Lights Type:	PAPI-4L		Data Source: THIRD	PARTY 06/26/2011	VGS	I Lights Type	e: PAPI-2L	
Markings: PIR-G	Owner:	STATE		Markings: NPI-G		Own	ier:	STATE	
Threshold	Pilot Cntl Freq:	122.950		Threshold		Pilot	Cntl Freq:	122.950	
Latitude: N 30° 21' 45.7165"	Th Cross Ht:	47.0		Latitude:	N 30° 20' 44.5408"	Th C	Cross Ht:	50.0	
Longitude: W 095° 25' 13.6157'	High Angle:			Longitude:	W 095° 24' 25.1015"	High	Angle:		
Elevation: 234.1	Com. Date:			Elevation:	241.3	Com	n. Date:		
Ellipsoid Elev: 143.8 S	Com. Angle:	3.00		Ellipsoid Elev:	151.0 S	Com	1. Angle:	3.00	
Ellipsoid Elev Model: NAVD88	DWB Elev:			Ellipsoid Elev Model:	NAVD88	DW	3 Elev:		
Horz. Datum: NAD83	DWB Thres:			Horz. Datum:	NAD83	DW	3 Thres:		
Vert. Datum: NAVD88	Ref Pt Lat:	N 30° 21' 38.0500"		Vert. Datum:	NAVD88	Ref	Pt Lat:	N 30° 20' 51	.8100"
D'allo al Thurshall	Ref Pt Long:	W 095° 25' 07.5400"	1	D		Ref	Pt Long:	W 095° 24' 3	80.8700"
Displaced Infeshold	Ref Pt Elev:	231.8		Displaced Infeshol	a	Ref	Pt Elev:	245.0	
	Ref Pt Thres:	941				Ret	Pt Thres:	892	
	Height Group:		_	Longitude:		Heig	Int Group:		
				Elevation.		Light			Dilat Oatal
Ellipsold Elev.	MIDI STATE	122 Q		Ellipsoid Elev.			Len Owne		122 050
	MALSE STATE	122.9	50			MIRI	STA	TE	122.950
Vert Datum: NAVD88		122.00		Vert Datum:			0.77		122.000
Londing Longth: 7501			l	Londing Longth:	7501				
EL DW/X Longth: 7501				ELDW/X Longth:	7501				
ELDW/V Height: 241.3				FIRWT Lengui.	234.1				
Tdz Elevation: 242.0				Tdz Elovation:	204.1				
				Tue Bearing:	325 / 8				
Ft Disn Th			Α4	Ft Disn Th	020.70				
Gradient 0.1%				Gradient:	-0.1%				

RUNWAY LANDING STRIP COMMENTS

RUNWAY 14 COMMENTS

RUNWAY 32 COMMENTS

MidPoint: Rollout: Rail: NO OIS Data Source: VG 06/26/2011 THIRD_PARTY Assoc. Fac.:

COMMENT	S					
Topic		Priority	Date	Remark		
SURVEY		1	11/05/1999	NGS 405 SURVEY DATED 04/18/98		
ADDITIONAL	_FLIGHT_DATA	1	06/26/2000	ASOS. 936-760-4237		
NFDD		3	02/25/2004	PER NFDD #049 DATED 03/12/04, ARPT NAME CHANGED STAR EXECUTIVE, CITY FROM CONROE TO HOUSTON	FROM LONE S	STAR RGNL TO LONE
LIGHTS		5	06/05/2006	RWY 14/32 TO CHANGE RWY 14 VASI TO PAPI PER NFDD	#080 DATED	04/26/06
SURVEY		5	06/27/2007	ALTERNATE ALTIMETER SOURCE, KDWH, ADDED PER A	VN-120	
OWNER		2	10/15/2007	LIGHTS OWNED BY MONTGOMERY COUNTY		
GENERAL		7	10/16/2007	RWY 01/19 BEING EXTENDED ON NORTH END. DATA PR NFDD #217 DATED 11/08/07	OVIDED BY L	OCAL SURVEY.
				RWY 19 PAPI DATA PROVIDED BY PROJECT MGR, 11/05/	07	
				RWY 01 PAPI DATA TO CHANGE ANGLE & MODIFY DATA PROJECT MGR, 10/15/07	FORWARDE	D BY TX ADO FROM
				TDZE USED IN LIEU OF UNKNOWN RRP ELEVATION		
NFDD		9	12/09/2008	TCH IS A CALCULATED VALUE PER NFDD # 238 DATED 12/10/08 RWY 32 4 BOX VASI DE	LETED.	
SIAPS						
Nav Ident	<u>Nav Type</u>	Description		FAS	Amendm	ent Type
		RNAV (GPS)) RWY 32	329 / TREE / N30°20'43.08" / W095°24'14.66" 409 / TOWER / N30°17'30.60" / W095°21'41.30"	1	CIVIL
СХО	ILS	ILS OR LOC	RWY 14	379 / TREE / N30°22'36.00" / W095°26'19.00"	2B	CIVIL
		RNAV (GPS)) RWY 14	325 / TREE / N30°21'38.48" / W095°25'20.28" 553 / TOWER / N30°25'50.00" / W095°26'20.00"	ORG	CIVIL
		RNAV (GPS)) RWY 19	374 / TREE / N30°22'12.18" / W095°24'17.43" 409 / TREE / N30°23'24 40" / W095°24'42.08"	ORG	CIVIL
		RNAV (GPS)	RWY 1	A5 395 / TOWER / N30 25 24.40 / W095 24 42.06	ORG	CIVII
схо	ILS	NDB RWY 14	4	480 / TANK / N30°23'34.00" / W095°28'30.00"	2B	CIVIL

Rpt Date: 20:00:36 08/15/2014 Rpt User: dso

A6

ASSOCIATED MONITORS

ASSOCIATED DGPS

Nearby radio navigation aids

VOR radial/distance	VOR name	Freq	Var
<u>IAH</u> r346/24.0	HUMBLE VORTAC	116.60	05E
<u>TNV</u> r075/33.6	NAVASOTA VORTAC	115.90	08E

Airport Services

Fuel available: 100LL JET-A Parking: hangars and tiedowns Airframe service: MAJOR Powerplant service: MAJOR Bottled oxygen: HIGH/LOW Bulk oxygen: NONE

Runway Information

Runway 14/32

Dimensions: 6000 x 150 ft. / 1829 x 46 m Surface: concrete, in good condition Weight bearing capacity: Single wheel: 60.0 Double wheel: 100.0 Runway edge lights: medium intensity **RUNWAY 14** Latitude: 30-21.557890N Longitude: 095-25.065068W Elevation: 230.1 ft. Gradient: 0.3% Traffic pattern: left Runway heading: 140 magnetic, 145 true Displaced threshold: 589 ft. Markings: precision, in good condition Visual slope indicator: 2-light PAPI on left (3.00 degrees glide path) Approach lights: MALSR: 1,400 foot medium intensity approach lighting system with runway alignment indicator lights Runway end identifier lights: Touchdown point: yes, no lights Instrument approach: ILS/DME Obstructions: 10 ft. road, 200 ft. from runway, 40 ft. left of centerline 10 FT ROAD FM THLD TO 200 FT.

Runway 1/19

Dimensions: 5000 x 100 ft. / 1524 x 30 m Surface: concrete, in good condition Weight bearing capacity: Single wheel: 30.0 Double wheel: 75.0 Runway edge lights: medium intensity **RUNWAY 19 RUNWAY1** Latitude: 30-20.737833N 30-21.525833N Longitude: 095-25.169333W 095-24.888500W Elevation: 229.6 ft. 228.8 ft. Gradient: 0.2% 0.2% Traffic pattern: left left Runway heading: 012 magnetic, 017 true 192 magnetic, 197 true TORA:5000 TODA:5000 ASDA:5000 Declared distances: TORA:5000 TODA:5000 ASDA:5000 LDA:5000 LDA:5000 Markings: nonprecision, in good condition nonprecision, in good condition Visual slope indicator:

Photo by Nigel Milligan / Kevin Williams Photo taken 25-Sep-2014

Page 2 of 5

looking west. Do you have a better or more recent aerial photo of Lone Star Executive Airport that you would like to share? If so, please send us your photo.

Sectional chart

Airport distance calculator

nonprecision, in good condition Flying to Lone Star Executive Airport? Find the distance to fly.

From		to KCXO
T CA	LCULATE D	ISTANCE

Sunrise and sur	iset	
	Times for 0	6-0ct-2014
	Local	7

	Local	Zulu
	(UTC-5)	(UTC)
Morning civil twilight	06:55	11:55
Sunrise	07:19	12:19
Sunset	19:00	00:00
Evening civil twilight	19:24	00:24

Current date and time

Zulu (UTC)	06-Oct-2014 11:58:15
Local (UTC-5)	06-Oct-2014 06:58:15

METAR

KCX0 061153Z 00000KT 105M CLR 18/18 A2988 RMK A02 SLP113 T01830178 10189 20167 58001 KDWH 061053Z 00000KT 105M CLR 20/18

19nm S A2987 RMK AO2 SLP114 T02000183

TAF

KCX0 060520Z 0606/0706 00000KT P6SM FEW025 FM061000 15005KT P6SM BKN020 FM061600 17009KT P6SM VCSH SCT030 BKN120 FM061900 17009KT P6SM VCSH SCT040 PROB30 0619/0623 TSRA BKN040CB BKN250

NOTAMs

controlled by AirNay.

Click for the latest NOTAMS NOTAMs are issued by the DoD/FAA and will open in a separate window not

RUNWAY 32

30-20.742347N

241.3 ft.

0.3%

left

no

yes

yes, no lights

slope to clear

9 ft. ant, 400 ft. from runway,

260 ft. left of centerline, 22:1

095-24.418363W

320 magnetic, 325 true

2-light PAPI on left (3.15 degrees glide path) Touchdown point: yes, no lights Obstructions: none 2-light PAPI on left (3.00 degrees glide path)yes, no lights4 ft. tree, 350 ft. from runway, 70 ft. right of centerline, 37:1 slope to clear

Airport Ownership and Management from official FAA records

Ownership: Publicly-owned Owner: MONTGOMERY COUNTY 501 N. THOMPSON ST. CONROE, TX 77301 Phone 936-539-7811 Manager: SCOTT SMITH 10260 CARL PICKERING MEMORIAL CONROE, TX 77303 Phone 936-788-8311

Airport Operational Statistics

Aircraft based on the field: 329Aircraft operations: avg 219/day *Single engine airplanes: 23458% local general aviationMulti engine airplanes: 3639% transient general aviationJet airplanes: 322% militaryHelicopters: 3<1% air taxi</td>Military aircraft: 24* for 12-month period ending 30 July 2011

Additional Remarks

A23 HELICOPTERS USE RIGHT-HAND TRAFFIC.

- EXTENSIVE MILITARY HELICOPTER ACTIVITY ON ARPT.
- AVOID NOISE SENSITIVE AREA 10 MI SW QUADRANT OF ARPT.
- UNMANNED ACFT MAY BE OPERATING IN THE IMMEDIATE AREA DURING DALGT HRS.

Instrument Procedures

NOTE: All procedures below are presented as PDF files. If you need a reader for these files, you should download the free Adobe Reader.

NOT FOR NAVIGATION. Please procure official charts for flight. FAA instrument procedures published for use between 18 September 2014 at 0901Z and 16 October 2014 at 0900Z.

STARs - Standard Terminal Arrivals	
HUDZY TWO	2 pages: [1] [2]
OHIIO TWO	download
RIICE SEVEN	2 pages: [<u>1</u>] [<u>2</u>]
WHAEL ONE	download
IAPs - Instrument Approach Procedures	
ILS OR LOC RWY 14	<u>download</u>
RNAV (GPS) RWY 01	download
RNAV (GPS) RWY 14	<u>download</u>
RNAV (GPS) RWY 19	download
RNAV (GPS) RWY 32	<u>download</u>

KNAV (UIS) KWI 19	
RNAV (GPS) RWY 32	
NDB RWY 14	
NOTE: Special Alternate Minimums app	oly

Departure Procedures

ALEXANDRIA SIX BORRN ONE (RNAV) ****CHANGED**** BOWFN FIVE (RNAV) CRIED FIVE DREMR ONE (RNAV) ****CHANGED**** EL DORADO FOUR GIFFA FIVE INDIE ONE (RNAV) ****CHANGED**** INDUSTRY FIVE JUNCTION SEVEN KARRR TWO (RNAV) ****NEW**** LAKE CHARLES TWO LEONA EIGHT LUFKIN SEVEN

download
download
download
download (12KB)
2 pages: [<u>1</u>] [<u>2</u>]
2 pages: [1] [2]
download
download
2 pages: [1] [2]
download
2 pages: [1] [2]
download
2 pages: [1] [2]
2 nages: [1] [2]
$2 pu_{5} c_{5} \left[\frac{1}{2} \right] \left[\frac{2}{2} \right]$

LURIC ONE (RNAV) **CHANGED**	2 pages: [<u>1</u>] [<u>2</u>]
MMALT ONE (RNAV) **CHANGED**	2 pages: [1] [2]
PALACIOS FIVE	2 pages: [1] [2]
STRYA ONE (RNAV) **CHANGED**	2 pages: [1] [2]
STYCK ONE (RNAV) **CHANGED**	download
WATFO ONE (RNAV) **CHANGED**	<u>download</u>
WYLSN ONE (RNAV) **CHANGED**	2 pages: [1] [2]
NOTE: Special Take-Off Minimums/Departure Procedures apply	download (70KB)

Other nearby airports with instrument procedures:

<u>KDWH</u> - David Wayne Hooks Memorial Airport (19 nm S) <u>6R3</u> - Cleveland Municipal Airport (21 nm E)

KIAH - George Bush Intercontinental/Houston Airport (22 nm S)

KUTS - Huntsville Municipal Airport (25 nm N)

KEYQ - Weiser Air Park (28 nm SW)

Where to Stay: Hotels, Motels, Resorts, B&Bs, Campgrounds

In this space we feature lodging establishments that are convenient to the Lone Star Executive Airport. If your hotel/inn/B&B/resort is near the Lone Star Executive Airport, provides convenient transportation, or is otherwise attractive to pilots, flight crews, and airport users, consider listing it here.

AirNav users who flew into KCXO have stayed at...

v	Miles	Price (\$)
COURTYARD BY MARRIOTT HOUSTON THE WOODLANDS	12.8	110-111
SUPER 8 CONROE	4.1	48-64
BAYMONT INN AND SUITES	5.4	68-93
DAYS INN CONROE	4.9	47-60

Other hotels near Lone Star Executive Airport

•	Miles	Price (\$)
HOLIDAY INN EXPRESS HOTEL & SUITES CONROE INTERSTATE45 NORTH	3.9	116-117
HAMPTON INN & SUITES CONROE INTERSTATE 45 NORTH	3.9	125-135
COMFORT INN CONROE	4.0	89-90
FAIRFIELD INN & SUITES BY MARRIOTT HOUSTON CONROE/WOODLANDS	4.1	109-119
LA QUINTA INN & SUITES CONROE	4.2	95-96
DAYS INN CONROE	4.2	
RAMADA INN- CONROE/THE WOODLANDS	5.5	66-70

Distances are approximate, and may vary depending on the actual route traveled and the location of the travel start on the airport.

Would you like to see your business listed on this page?

If your business provides an interesting product or service to pilots, flight crews, aircraft, or users of the Lone Star Executive Airport, you should consider listing it here. To start the listing process, click on the button below

T ADD YOUR BUSINESS OR SERVICE

Other Pages about Lone Star Executive Airport

www.co.montgomery.tx.us/air
 Page from the Texas Airport Directory (PDF)

🔻 UPDATE, REMOVE OR ADD A LINK 🦯

Copyright © AirNav, LLC. All rights reserved.

Hotels in other cities near Lone Star Executive Airport

0.	2
9 in <u>Conroe</u>	3 in <u>Magnolia</u>
2 in <u>Willis</u>	3 in <u>Cleveland</u>
13 in <u>The</u>	2 in <u>New</u>
Woodlands	Caney
4 in Montgomery	

Privacy Policy Contact

APPENDIX B: Data Reduction Procedures for Using Ground Vehicle Friction Measurements to Calculate Aircraft Tire Friction Performance

> Tom Yager Distinguished Research Associate NASA Langley Research Center

Data Reduction Procedures

For

Using Ground Vehicle Friction Measurements

То

Calculate Aircraft Tire Friction Performance

Tom Yager, NASA Langley Research Center

Basic Data Requirements -

- 1. Accurate and suitable ground vehicle friction measurements must be collected through a speed range (e.g. 10-60 mph) for each wet surface condition evaluated.
- 2. The test tire(s) operating mode and inflation pressure must be properly maintained and documented
- 3. The test tire(s) operating mode should be selected to provide one of three friction boundary conditions: locked-wheel skidding, peak braked rolling, or peak yawed (cornering) rolling
- 4. A characteristic dry friction coefficient, μ_{cd} must be determined experimentally for each ground vehicle test tire operating mode by conducting test runs at very low speed (<3 mph)
- 5. The aircraft main landing gear tire inflation pressure value must be known

Overall Tire Friction Methodology – See figure 1

Data Reduction Procedures -

STEP 1 - Determine best fit curve for aircraft and ground vehicle friction- speed gradient data. Figure 2 provides an example of the friction data range obtained on a wet slurry seal asphalt surface with the NASA instrumental B-737 aircraft and four different ground test vehicles: a diagonal-braked vehicle, a mu-meter, a Saab friction tester, and a BV-11 skiddometer. **STEP 2** – For each test vehicle, calculate the minimum tire dynamic hydroplaning spin down speed using the following equation (see table I)

$$Vp, Knots = 9\sqrt{p}$$
 (1a)

$$Vp, mph = 10.35\sqrt{p} \tag{1b}$$

where Vp, tire dynamic hydroplaning spindown speed

p, tire inflation pressure, psi

<u>NOTE</u>: Experimental data obtained with the mu-meter trailer indicates a Vp value of 45 mph rather than the 33 mph derived from eq. 1b. Use Vp = 45mph for mu-meter calculations.

STEP 3 – Tabulate characteristic dry friction coefficient values obtained experimentally for each ground vehicle test tire (see table I).

STEP 4 – Calculate characteristic dry friction coefficient value for air craft main gear tire using the following equation:

$$\mu_{cd=0.93-0.0011\ p} \tag{2}$$

where, μ_{cd} characteristic dry friction coefficient

p, tire inflation pressure, psi

<u>NOTE:</u> Table I gives these values for both the B-737 and B-727 aircraft together with the pertinent ground vehicle tire friction parameters.

STEP 5 – Select and tabulate an appropriate number (minimum 5) of the friction coefficient and ground speed values to properly define the friction-speed gradient data measured by each ground test vehicle. Determine the ground speed/hydroplaning speed ratio associated with each of the selected friction coefficient values (see table II).

STEP 6 – Determine ground vehicle tire hydroplaning parameter values using the following general relationship:

$$\overline{y} = \frac{\mu_{wet}}{\mu_{cd}} \tag{3}$$

where \overline{y} , tire hydroplaning parameter

 μ_{wet} , Experimental or predicted wet pavement friction coefficient value

μ_{cd} , characteristic dry friction coefficient value

In determining the tire hydroplaning parameter, distinction is made between two types of tire operating modes-non rotating and rotating. For locked-wheel, sliding (non rotating) tire friction data (e.g. DBV), the tire hydroplaning parameter is labeled \overline{y}_L . For braked or yawed rolling (rotating) tire friction data (e.g. BV-11, SFT and Mu-meter), the tire hydroplaning parameter is labeled \overline{y}_R . The relationship between \overline{y}_L and \overline{y}_R , which was empirically derived from NASA track aircraft tire test data, is given in table III. Hence, knowing one tire hydroplaning parameter allows determination of the other (see table III).

STEP 7 – Calculate aircraft tire maximum braking friction coefficient, μ_{max} , values by simply multiplying the \overline{y}_R values determined in STEP 6 by the aircraft tire characteristic dry friction coefficient value determined for eq. 2 in STEP 4 (see table II).

STEP 8 – Determine estimated aircraft tire effective braking coefficient, μ_{eff} , values by use of the following equations:

For
$$\mu \max < 0.7$$
; $\mu_{eff} = 0.2 \,\mu_{\max} + 0.7143 \,\mu_{max \, 2}$ (4a)

For
$$\mu_{max} \ge 0.7$$
; $\mu_{eff} = 0.7 \ \mu_{max}$ (4b)

These relationships between aircraft tire maximum braking and effective braking friction coefficient are based on the assumption that the total aircraft braking system (tires, brakes, hydraulics, gear, and antiskid) efficiency can be generalized by a single curve defined by equations 4 a and b. Values derived for B-737 aircraft are listed in table II.

STEP 9 – Calculate an equivalent aircraft ground speed associated with each μ_{eff} value by multiplying the appropriate ground vehicle speed ratio obtained in STEP 5 by the aircraft tire hydroplaning speed determined in STEP 2 (see table II).

STEP 10 – Compare estimated aircraft tire friction performance to actual measured performance (see figure 3).

Supplemental Data Analysis -

1. Statistical methods should be used to identify data set tolerances and degree of confidence in data correlation.

2. Parameter sensitivity studies should be performed to define effects on data correlation agreement.

Table I, - Compilation of test aircraft and ground vehicle tire friction parameters

TEST	TEST AI	RCRAFT	GROUND TEST VEHICLES						
PARAMETER	B-737	B-727	DIAGONAL	MU- METER	FRICTION	BV-11			
Tire:	Main gean	Madu			IESIER	SKIDDOMETER			
Size Infl. Press. kPa (psi) Tread design	40 x 14 1069 (155) 4-Groove	Main gear 49 x 17 931 (135) 6-Groove	ASTM E524 G78 x 15 165 (24) Smooth	RL-2 4.00 - 8 69 (10) Smooth	RL-2 4.00 - 8 207 (30) Smooth	RL-2 4.00 - 8 207 (30)			
Braking method	Maximum Antiskid	Maximum Antiskid	Locked	None	Constant	Constant			
Friction reading			MIEET	(7.5° yaw)	10% Slip	17% Slip			
Spin-down hydroplaning	^µ EFF	^µ EFF	^μ skid	^μ SIDE	^µ DRAG	^µ DRAG			
Speed, V _p , knots (mph)	(129)	(121)	44.1* (50.8)	39.1 (45)	49.3* (56.7)	49.3*			
Low speed characteristic	0.76*	0.78*	1.20	0 90	1 10	1 10			
° cd				V. 30	1.10	1.10			

* Calculated values using:

• 2

$$(V_p)$$
 spin-down = $3.43\sqrt{p}$
 (V_p) spin-down = $9\sqrt{p}$

 $\mu_{cd} = 0.93 - 1.6 \times 10^{-4} p$

р

for U.S. Customary Units
$$\mu_{cd} = 0.93 - 1.1 \times 10^{-3}$$

where p, tire inflation pressure, kPa (psi)

В2

TEST	FAIRED	SPEE	, VG	Vel	TIRE HYDI PARA	ROPLANING METERS	ESTIMATE	D B-737 AIR	CRAFT BRAKING	ACTUAL
VEHICLE	m	KNOTS	MPH	7Vp	YL.		MMAX	MEFF	VGJ	8-737 A/C
Diagonal	0.77	10	12	0.227	0.642	0.895	0.680	0,466	25.4	P.EFF
Braked	.59	20	23	,454	,492	,742	1564	,340	50.0	A 2/5
Vehicle		30	34	,680	,392	,642	,488	,268	7/2	701
(DSV)	.38	40	46	,907	,317	.564	,429	,217	1016	1270
	.31	50	58	1,134	,258	,495	1376	,176	126.6	
V		60	69	1.361	,200	,412	,3/3	,/33	152.4	
Saab		10	17	202						
Friction	,97	70	16	1203					22.7	
Tactor	,70	20	$\frac{23}{24}$	1406	,581	.845	,642	.4Z3	45,5	.380
(SFT)		20	$\frac{57}{47}$,607	,460	1709	,539	,315	68.Z	1315
	 []	70	76	1811	,350	,600	,456	,240	90.8	,250
		150	$\frac{58}{7a}$	1.014	1255	1491	,373	,174	113,6	
	<u> </u>	60	67	1,217	,188	,39/	,297	1122	136.3	
BV-11		10	17	203					<u> </u>	
Skiddometer	.93	20	77	.40(F-01	Dar		********	22.7	
	.80	30	24	1100	170	,875	1642	.423	45.5	,380
	167	40	46	1607	1778	.727	,553	,329	68.2	,315
	,55	50	58	1014	1.559	1609	,463	1246	90.8	1250
V	.44	60	19	1717	1266	1500	,380	.179	113.6	
	<u></u>		61	1.211	,193	,400	,304	1/27	136.3	
Mu-meter	,88	10	12	,256	873	978	742			
	,83	20	23	,512	.689	977	701	1520	28.1	.430
	,78	30	34	,767	,604	.867	101	1471	5/13	
	,72	40	46	1.0Z3	,544	,800	608	701	85.9	,260
	167	50	58	1.279	,494	,744	,565	1341	1432	
······	162	60	69	1.535	1441	,689	,524	,30/	171.9	

B6

Table III, - Kelationship between notating (YR) and nonrotating (YL) tire hydroplaning parameters.

Y _R YL	\overline{Y}_{R} \overline{Y}_{L}	\overline{Y}_{R} \overline{Y}_{L}	\overline{Y}_{R} \overline{Y}_{L}	\overline{Y}_{R} \overline{Y}_{I}
0.000 0.000	.200 .095	.400 .193	600 250	
•005 •002	•205 •097	405 196	•000 •350 405 acc	•800 •544
•010 •005	•210 •099	410 199	•003 •355	•805 •548
.015 .007	.215 .101	415 202	•010 • 360 615 · 345	•810 •551
•020 •010	•220 •104	•420 •205	•010 •300	•815 •555
• 025 • 012	•225 •106	•425 •208	-625 - 275	•820 •560
•030 •015	•230 •108	•430 •211	•02J •575	•825 •564
•035 •017	•235 •111	•435 •215	•030 •300	•830 •568
•040 •019	•240 •113	•440 •218	-640 390	• • • • • • • • • • • • • • • • • • • •
•045 •021	•245 •116	•445 •221	•645 • 395	• 040 • 576
•050 •024	•250 •118	•450 •225	•650 •600	• 647 • 581
.055 .026	•255· •120	•455 •228	•655 •405	•050 •586
•080 •028	•260 •122.	•460 •232	•660 -610 -	• 855 • 591
•065 •030	•265 •125	•465 •235	•665 -415	• 400 • 597
•070 •033	•270 •127	.470 .239	•670 • 621	•807 •602
•075 •035	•275 •130	•475 •243	-675 -42A	•670 •608
•080 •038	•280 •132	•480 •247	•680 •420	•875 •614
•085 •040	•285 •134	•485 •250	•685 ·437	•880 •620
•090 •043	•290 •137	•490 •254	-690 - 442	•885 •626
•095 •045	•295 •139	•495 •258	-695 -447	•890 •634
•100 •047	•300 •141	•500 •262	•700 •451	•895 •642
•105 •050	•305 •1,44	•505 •266	•705 •456	•900 •650
•110 •052	•310 •146	•510 •270	.710 .461	•903 •659
•117 •054	•315 •148	•515 •274	•715 •466	• 910 • 007
•120 •057	•320 •151	•520 •279	.720 .471	•712 •077
•125 •059	•325 •154	.525 .283	.725 .476	975 600
•130 •062	•330 •156	•530 •287	.730 .481	•7 <u>7</u> 5 •098
• 135 • 064	•335 •158	•535 •292	.735485	035 720
•140 •066	•340 •161	•540 •296	•740 •490	• 755 • 720
150 071	•345 •163	•545 •300	•745 •495	-945 .769
155 072	•350 •166	•550 •305	.750 .500	.950 762
• 160 075	•355 •168	•555 •309	•755 •504	.955 .770
165 079	•360 •170	•560 •314	.760 .509	-960 705
170 -080	•365 •173	•565 •318	•765 •514	965 .815
175 .083	•370 •175	•570 •322	•770 •518	.970 .835
180 .085	• 375 • 178	•575 •327	.775 .523	•975 _850
185 .087	• 380 • 181	•580 •332	•780 •527	980 882
190 .000	• 385 • 184	•585 •336	•785 •531	-985 -910
195 .002	• 3 90 • 187	•590 •340	.790 .535	.990
• • • • • • • • • • • • •	•375 •190	•595 •345	•795 •540	.995 .975
A				1.000 1.000

5.5

NASA

Figure 1, - methodology used to estimate aircraft tire friction performance.

B8

DIETZGEN CORPORATION

NG, 346R-10V2 DIETZGEN GRAPH PAPER 10 X 10 PER HALF INCH

Î

	(1-1	1		1		(] • :			· ! ·		21-11	T.	T: .r:		(m. 677.77)	n dan Et	B	10
														-											
•	<u> </u>													<u> :::-</u>											
				<u></u>		1, 1: 23			¥																
	• • • • • • •																				· · · · · ·	- K		2	
								× ×									-					ž		S.	
	Ê							6														0		\$ \$	
								*		<u>.</u>						Ŷ.							· · · · · ·	×.	
	$\overline{\mathbf{v}}$						· · · · ·	14-5				11			ļ	2			1						
÷.	14							- (2							1	2			\mathbb{K}			· · · · · · · · · · · · · · · · · · ·		<u>¢</u>	
					Ś									1		200	· · · · · · · ·	1						<u> </u>	
														$\frac{1}{1}$		Ž –		1		k					
	<u> </u>				17			\sim]		0		1		3					
				ξ.	25			0						1		<u>}</u>	/	1							
				<u>X</u>	N.						ļ				4	Q									
-				S								4 2	4		4	\leq	h_{1}					10			
				$\langle \cdot \rangle$								-	1			\$	/								
					¥-,							È	1												
	<u>_</u>				4 4										l	31									
]			1	7									
					<u>K</u>									/	Θ								- 1	5 E 5 E	
- <u>1</u>														/											
					2								1	0	/	<u> </u>						E .			
					F							1		, J		Š	2							Ľ,	
	X.											Į.	ζ	5											
	S.		ţ										1			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.									
																1			-i-			8			
	ζ ζ			ļ																					
		<u>.</u>																							
, A	4. 																								
																						ria di la			
	Ś					-		;		15				-											
														- 	32 ; 										
÷,																									
1			 1.,																						
											∏ ¥ 		- 1		Ş	\									
				1											1										
÷.	2																			4 4 4 4 4					
												10		141		말랐는		<u> -:!!</u>							

filler or storing the filler

÷

٢

8

Vs_KNO_S 107 4 N 10 00 10 10 **S** 8A & 125 - 800A Aircraft NG MARY - M. 771 - 107 Knots MEFF S 3 4 0108 016 Z 5 01270 2. 239 0.090 0640 M N 0.455 0.4555 XWAX LA Z 12 0 1997 1997 1997 A(3K)D 0.357 0,153 0.219 6,102 0,263 0,297 0.129 1100 2820 0.309 6.636 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1 1,5 0,527 0.55 0,133 0.285 1-1 1-1 1-1 1-1 17. 0.039 13 ₹3 1232 2 0.520 0/176 0,880 0,704 00 J SFT XORY = 1.10 5 Vor 5608 March RUNWAY SERF. SPEED AVERAGE SURFACE COND, MPH IN DX AN AX 0,50 6.70 0,39 0.65 NASA-Langley Form 10 (AUG 1969) 045 0,51 м б ł Chartered ON MA 60 0 M M M Con ortze 6,04 1/ 50 01 70 40 \geq 20

OWA TOWNA, MNY R/W 30, JJN 31, 2008

B11

B12

Appendix C: "KXCO_RWY1_measurements.xls"

Excel spreadsheet forms

NOTE: Darke	r-shaded points ar	e lower priority	Runway y (ft.)						
Station #	Runway x (ft.)		-35	-20	-5	+5			
		Name	300-35	300-20	300-5	300+5			
		Macro 1 (mm)							
		Macro 2 (mm)							
1	300	Macro 3 (mm)							
		Macro avg. (mm)							
		Slope (deg.)							
		Slope (%)							
		Name	800-35	800-20	800-5	800+5			
		Macro 1 (mm)							
		Macro 2 (mm)							
2	800	Macro 3 (mm)							
		Macro avg. (mm)							
		Slope (deg.)							
		Slope (%)							
		Name	1300-35	1300-20	1300-5	1300+5			
		Macro 1 (mm)							
		Macro 2 (mm)							
3	1300	Macro 3 (mm)							
		Macro avg. (mm)							
		Slope (deg.)							
		Slope (%)							
		Name	1800-35	1800-20	1800-5	1800+5			
		Macro 1 (mm)							
		Macro 2 (mm)							
4	1800	Macro 3 (mm)							
		Macro avg. (mm)							
		Slope (deg.)							
		Slope (%)							
		Name	2300-35	2300-20	2300-5	2300+5			
		Macro 1 (mm)							
		Macro 2 (mm)							
5	2300	Macro 3 (mm)							
		Macro avg. (mm)							
		Slope (deg.)							
		Slope (%)							
		Name	2800-35	2800-20	2800-5	2800+5			
		Macro 1 (mm)							
		Macro 2 (mm)							
6	2800	Macro 3 (mm)							
		Macro avg. (mm)							
		Slope (deg.)							
		Slope (%)							

7	3300	Name	3300-35	3300-20	3300-5	3300+5
		Macro 1 (mm)				
		Macro 2 (mm)				
		Macro 3 (mm)				
		Macro avg. (mm)				
		Slope (deg.)				
		Slope (%)				
		Name	3800-35	3800-20	3800-5	3800+5
		Macro 1 (mm)				
		Macro 2 (mm)				
8	3800	Macro 3 (mm)				
		Macro avg. (mm)				
		Slope (deg.)				
		Slope (%)				
	4300	Name	4300-35	4300-20	4300-5	4300+5
		Macro 1 (mm)				
		Macro 2 (mm)				
9		Macro 3 (mm)				
		Macro avg. (mm)				
		Slope (deg.)				
		Slope (%)				
10	4800	Name	4800-35	4800-20	4800-5	4800+5
		Macro 1 (mm)				
		Macro 2 (mm)				
		Macro 3 (mm)				
		Macro avg. (mm)				
		Slope (deg.)				
		Slope (%)				
		Note: + slope is cen	terline higher	than runway e	dge	

Equipment:

Slip ratio:

Neubert Aero Corp. (NAC) Dynamic Friction Tester (DFT)

12%

Tire inflation pressures:

Time	Pressure (psi)	

*** Run numbers ***

PLANNED	Runway y coordinate (ft.)			
Speed (mph)	-35	-20	-5	+5
60	15	5	9	1 & 13
50	16	6	10 & 19	2
40	17 & 20	7	11	3
30	18	8 & 14	12	4

ACTUAL	Runway y coordinate (ft.)				
Speed (mph)	-35	-20	-5	+5	
60					
50					
40					
30					

Run Log

Run #	Time	Other identifying information
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Appendix D:

Proposed Measurement Point Location Procedures

This Appendix contains proposed methods for efficiently locating the runway measurement points. These are only *proposed* procedures, and are the result of imagining how things might work out on the runway. In reality, the procedures will likely have to be adjusted by trial-and-error based on actual experience, in real-time, so as to achieve the most productive workflow.

Locating the runway measurement points

- 1. At the start of the test, navigate to the runway 35 threshold using the Timble Geo7x device, and verify that the device locates the threshold properly. This provides a "sanity check" on the combination of the coordinates programmed into the device, and the device's actual accuracy.
- 2. Proceed to the first runway x station (x=300 ft.), using *both* the Geo7x and the measuring wheel to locate the x coordinate. Verify agreement.
- 3. Stretch the measuring tape across the runway, with the 40 ft. mark located on the runway centerline, and the 0 mark (start of the tape) on the left side of the runway.
- 4. Using the chalk, mark and label the measurement points as shown in the Table D-1 and in Figure D-1:

Point label x = runway x coordinate	Point y-coordinate	Tape measure mark	
<i>x</i> -35	-35 ft.	5 ft.	
<i>x</i> -20	-20 ft.	20 ft.	
<i>x</i> -5	-5 ft.	35 ft.	
<i>x</i> +5	+5 ft.	45 ft.	

Table D-1. Tape marks corresponding to measurement y-coordinates.

Figure D-1. Illustration of correspondence between tape marks and measurement ycoordinates.

5. After the measurement points are labeled, proceed to the next x-coordinate and locate / label the measurement points there. However, the Macrotexture team members locating the points should always remain within 1000 ft. of the CXO team member who is maintaining contact with the DFT team and airport tower. Further, no team members will venture north of the x=3800 ft. point by themselves, so as to avoid encroaching on the runway 14-32 intersection safety zone. Movement north of x=3800 ft. will be coordinated with the control tower by the CXO team members.

The Macrotexture team will be attentive to whistle blows from their CXO team member. If this individual blows three short blasts on the whistle, the team will immediately clear the runway. If he blows one long blast on the whistle, the team will assemble at his location.

6. In order to obtain maximum coverage of the runway in the minimum amount of time (in case testing gets interrupted for whatever reason), the Macrotexture team should take macrotexture and cross-slope measurements at x-coordinate stations in the following order: Stations 1, 3, 5, 7, 9, 10, 8, 6, 4, 2. Note that Station 9 is within the runway 14-32 intersection safety zone, and may be tested "out of order" if a lull in airport traffic makes testing that point opportune. However, locating and labeling the measurement points can proceed in the numeric order of stations, since this activity should take less time than the macrotexture and cross-slope measurements.

Testing within the runway 14-32 intersection safety zone

Procedures for testing within the 14-32 intersection safety zone will be briefed by CXO personnel on the morning of the test. Note that the DFT team will likely need clearance from the tower before each of their test runs.