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In the course of the USAir 427 accident investigation, much emphasis has been
placed on understanding the encounter with a Delta 727 wake and the
subsequent response of the flight crew. As part of this investigation, a

| significant effort has been undertaken to understand wake behavior and wake

i effects on the 737 flight characteristics, as well as to understand specifically

| how the Delta 727 wake affected USAIir 427. Initial estimates of USAir 427

' lateral and directional control positions that accounted for the wake effects were
. presented at the NTSB all party meeting in Seattle in May 1995. Since that time
' the modelling techniques have been refined and validated using data from the

- 727/737 wake encounter flight test accomplished by the parties in September
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Introduction

In the course of the USAir 427 accident investigation, much emphasis has been placed on
undesstanding the, encounter with, a Ielta, 727 wake, and, the, subsequent response of the
flight crew. As a part of this investigation, a significant effort has been undertaken to
understand wake behavior and wake effects on 737 flight characteristics, as well as to
understand specifically how the Delta 727 wake affected USAir 427. Initial estimates of
USAir 427’s lateral and directional control positions that accounted for wake effects were
presented at the National Transportation Safety Board (NTSB) all-parties meeting in
Seattle in May, 1995. Since that time the modeling techniques have been refined and
validated using data from the 727 / 737 Wake Encounter Flight Test accomplished by the
parties of the investigation in September 1995. This document presents the results of the
analysis that followed that testing and provides a final estimate of the lateral and
directional control positions for USAir 427.

Flight Kinematics Analysis Process

References 1 and 2 describe the work accomplished previously by the USAir 427
Performance Group towards the end of deriving as much information as possible about
the accident from the Flight Data Recorder (FDR), including wake encounter effects and
estimates for the unrecorded lateral and directional control surface positions. The work
documented here is a continuation of the work described in these references using a
flight-test-validated modeling of airplane response to a wake. A chronology of the entire
FDR analysis history for the USAir 427 accident is presented in Appendix A.

Figure | presents an overview of the process used to derive the unrecorded lateral and
directional control positions as a function of time. Starting with the basic 11 parameters
recorded on the FDR, the data set was expanded by deriving angular rates and
accelerations from the Euler angles and integrating the linear accelerations to determine a
flight trajectory. Comparisons of derived data and measured speed and altitude data were
performed to achieve a final converged solution, from which angle-of-attack and sideslip
angle were derived. This process is described in detail in Reference 1.

The next step was to determine the total aerodynamic forces and moments which acted on
the aircraft to result in the recorded trajectory; these were obtained from Newton’s second
law as applied to the derived and measured angular and linear accelerations. Next, the
aerodynamic forces arising from known or derived effects (such as those due to angle-of-
attack, sideslip, elevator position, throttle position, etc.) were computed using the 737-
300 engineering simulator database. These effects were then subtracted from the total,
leaving behind the sum of all unknown aerodynamic effects. These include the effects of
wake turbulence, lateral and directional control surface deflections, FDR processing
errors, possible structural damage and deficiencies in the simulator aerodynamics math
model.



The magnitude of any FDR processing errors was shown to be very small at the IRU
platform testing undertaken by the Performance Group in February of 1995 at the
Honeywell facility in Clearwater, FL. Furthermore, the 737-300 engineering simulator
aerodypamic math maedel is a provem, valid modek of the atreraft with a very small
magritude of error iy the-acrodynamic data throughout the normal flight envelope; as
demonstrated in Reference 3. Furthermore, this model was updated to an even higher
degree of accuracy following flight testing performed in conjunction with the wake
encounter testing. This work is described in a later section.

Thus, as noted in Reference 2, once the possibility of structural damage was eliminated
only the effects of wake turbulence and the lateral and directional control surface
positions were of a magnitude significant for further consideration.

Wake Encounter Derivation Process

Upon identifying the total effect of wake turbulence and lateral and directional control
positions, it was postulated that if the wake effects could be independently determined
and removed, the remaining unknown forces and moments would represent the
unrecorded control positions. These wake effects would be calculated using a wake
model developed by the Performance Group. A detailed description of this model is
provided in Appendix B.

The method developed by the Performance Group to determine the wake encounter
scenario for USAir 427 was based upon the understanding that wake-induced lift and
pitch characteristics are closely coupled to wake-induced roll and yaw effects. Since the
major inputs to the longitudinal axis (angle-of-attack, elevator position, flaps, gear, thrust
and sideslip angle) are known for USAir 427 either by measurement or derivation from
the FDR, their effects could be removed from the total longitudinal forces and moments;
the remaining unknown longitudinal forces and moments are due to the wake and to the
longitudinal effects of the unknown lateral and directional flight controls. Since the latter
effects are small even for maximum lateral and directional control deflections, the
remaining unknown forces and moments can be attributed almost entirely to the wake.

The working principle was to position the wake model relative to the USAir 427 derived
flight path in such a way as to'generate wake-induced lift and pitch signatures which
matched as closely as possible those derived from the FDR data. In this way the
corresponding rolling and yawing moments generated by the wake model would be
representative of the wake-induced rolling and yawing moments which acted on USAir
427. These roll and yaw effects could then be removed from the total lateral and
directional unknowns, and the remaining unknown lateral and directional forces and
moments would then be the contro! effects.
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Review of Previous Work

An initia] attempt to isolate the control positions using the method described above is
documented. in, detail in. Reference Z. An.overview of that analysis is. presented here.

Figures 2, 3 and 4 present the May 1995 version of the derived USAir 427 wake scenario
presented in Reference 2. At the time of this scenario’s development the wake was
assumed to follow a fairly straight, uniform path through space while maintaining an even
separation of the cores. Figure 2 shows the Delta 727 flight path as it descended on a
shallow glideslope, and the USAir 737 as it made a turn onto the heading of the 727 at the
moment of intersecting the wake. From this it is clear that the 737 encountered the 727
wake nearly parallel to the cores. Figure 3 shows the simulator match of lift and pitch
characteristics resulting from this wake encounter, and the corresponding rolling and
yawing moments attributed to the wake.

Figure 4 shows the derived wheel and rudder inputs for this encounter, after the predicted
wake rolling and yawing moments presented in Figure 3 were removed from the total
unknown rolling and yawing moments derived from the FDR. In this case the wheel first
deflects to the left, in the direction of the first roll upset at time 135, and then deflects
back rapidly to the right. At the same time, left rudder deflects rapidly to the blowdown
limit at time 136, holds level, then jumps again to the blowdown limit {(now increased as
a result of hinge moment relief due to sideslip angie) at time 141. Examination of the
flight path in Figure 2 and the coefficients in Figure 3 provides insight into this
anomalous behavior.

First, the rolling moment generated by the wake as placed was not sufficient to entirely
account for the initial left roll response at time 134-135; therefore, some left wheel input
was required. This occurred because in the envisioned encounter the 737 passed
significantly below the right wake core during this time segment. Under the plausible
assumption that the wake was completely responsible for the first roll upset at time 134,
the 737 would have had to pass much closer to the right core to experience the required
level of rolling moment. However, this would have also placed the 737 nearer to the left
core at time 133, because it was assumed that the wake path was fairly straight and
uniform. This would have generated a roll to the right from the left wake core around
time 133 which was not evident on the FDR.

Similarly, the rudder derivation results from the fact that the yawing moment generated
by the wake model during this scenario was a strong, sustained yaw to the right, opposing
the measured direction of heading change. This yaw resulted because, in the scenario, the
737 passed over the right wake core from time 136-142. This location was a direct result
of the assumption that the wake path was fairly straight and uniform.

At this location the theoretical model, which did not at the time account for wing, body or
horizontal tail interference effects, induced a velocity field on the vertical tail which
resulted in a nose-right yaw. However, the FDR data indicates that the 737 was yawing



to the left during this time segment. As a result, a strong left rudder was required in order
to overcome the predicted nose-right wake yaw and match the flight path. As explained
in the following sections, this nose-right yawing moment is not observed in the vicinity of
the: right wake core i actual wake encounters.

Since the time of this initial analysis, a flight test has been accomplished which has
provided much valuable data on wake encounter characteristics. Thus, the analysis has
been refined and repeated, using an updated wake encounter model validated with flight
test data. The results of this analysis are discussed in the following sections.

Overview of 727 / 737 Wake Encounter Flight Test

Because of the heavy reliance on the wake encounter simulation to provide accurate
predictions of wake behavior, it was deemed necessary to validate the wake model with
flight test data and update the model as necessary. The NTSB thus tasked the USAir 427
Performance Group to carry out a flight test in which a 737-300 would be instrumented
and flown into the wake of a 727 to quantitatively measure wake response characteristics.

The test was directed by the Performance Group, led by the NTSB, and involved
participation by the Boeing Company, the Federal Aviation Administration (FAA), USAir
Airlines, the Air Line Pilots Association (ALPA), and the National Aeronautics and
Space Administration (NASA). The test was held at the FAA Technical Center in
Atlantic City, NJ, in late September, 1995. The Performance Group developed and
oversaw the test planning, instrumentation requirements and data reduction. The 737-300
test aircraft was provided by US Air, the wake-generating 727-100 was provided by the
FAA, and the T-33 chase aircraft was provided by Boeing. Pilots from Boeing, the FAA,
USAir and ALPA parsticipated in flying the test maneuvers. NASA provided their OV-10
atmospheric data testbed aircraft to gather atmospheric data and to measure wake
velocities. The 737 also flew a number of lateral-directional maneuvers for basic
simulation validation, about 150 measured wake encounter responses, and an additional
50 wake encounters performed to gather sound signatures on the test Cockpit Voice
Recorder (CVR).

The data were recorded simultaneously on a specialized FDR installed specifically for the
test program and on a standard Boeing Portable Airborne Digital Data System (PADDS),
an onboard data analysis station. Data reduction was performed initially on-site by
downloading the FDR after each flight and processing the data into engineering units.
Preliminary data conditioning, coefficient extraction and plotting were also performed on-
site. Final data reduction was performed in Seattle, WA by Boeing. For the final data
set, parameters from the FDR and PADDS systems were properly time-correlated and
merged into a single coherent data set. Reference 4 provides a final list of the conditions.
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Flight Data Analysis

The primary use of the data from the Wake Encounter Flight Test was to validate and
update, the, 737-300 wakg encounter, simulation model. An update of the basic, flaps. L
lateral-directional characteristics was also performed using the simulation validation
maneuvers flown in Seattle before the wake encounter testing in Atlantic City. The
validation showed that the basic model was very good in the normal flight envelope and
only required some minor adjustments to the modeling of rudder hinge moments and high
sideslip, high angle-of-attack acrodynamics. The changes resulting from these updates
are presented in Appendix C.

Validation of the wake modeling began with the task of performing open loop simulator
wake intercepts in a manner similar to those performed in flight, and then comparing the
characteristics. Figures 5 and 6 present examples of the results. It can be seen that the
wake-induced lift, roll and pitch characteristics were accurately predicted by the model.
However, yawing moment characteristics were not modeled correctly. In the case where
the 737 flew over the wake, the simulation predicted yawing moment responses which are
absent in the flight test data. On the other hand, when the 737 flew just below the wake,
the simulator did predict the yawing moment response measured in flight test, although to
a lesser magnitude.

Additional validation was accomplished by performing closed-loop matches of several
flight test wake encounters. This was done by observing video footage of the wake as it
passed over the test aircraft, and then recreating the encounter in the simulation and
driving the simulator controls with those from flight test. Figure 7 shows an example of
the results. Again the simulator does a satisfactory job of predicting the wake lift, roll
and pitch characteristics, but once again, the predicted yaw responses were not observed
when the aircraft passed over the wake.

Close examination of the video for these and other cases in the flight test revealed that as
the aircraft passed over or directly through the wake, the wake was disrupted by
mterference with the wing, body and horizontal tail, and thus did not produce any yawing
moment. Only when the aircraft’s vertical tail passed cleanly through the wake was a
sharp yaw response recorded in the flight test data.

In addition, analysis was performed in correlating observed wake lift and wake rolling
moment characteristics. Examination of the data showed that the location between the
cores where the maximum lift loss occurs is a function of the airplane’s bank angle; in
other words, the maximum lift loss does not necessarily occur at the midpoint between
the cores. As bank angle increases, the point for maximum lift loss occurs off center.
Understanding this behavior was key in the ensuing wake analysis when attempting to
place the wake to achieve maximum lift loss.
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It was also noted that the maximum lift loss generally occurred at the point where rolling
moment between the wake cores was close to zero. Peak rolling moments were observed
to occur when the aircraft was just inside of each core.

Other effects attributable to wake encounters, such as rapid airspeed fluctuations and fow
level turbulence, were observed in abundance in the flight test data. Airspeed fluctuations
were observed to occur before, during and after the wake encounter, leading to the
understanding that this kind of fluctuation was somewhat random. Low level turbulence
on the order of £0.1 g’s was also noted, mostly when the aircraft was level with or
slightly below the wake cores.

Besides the Crow instability and wake span characteristics described earlier, other wake
characteristics were also noted. Wake core size appeared to be 2-3 ft in radius, though
this may have only been the region where the smoke was concentrating near the center of
the cores. Wake strength was calculated by estimating the velocity profile needed to
generate the lift loss observed when the aircraft was level with and between the cores;
these strength values tended to range from 800 ft* / sec to 1500 ft* / sec. Numerous
examples of vortex breakup and linking were observed as well in the video footage of the
wake encounters.

Wake Encounter Model Updates

As noted above, during wake model validation testing, the yawing moment characteristics
predicted for an airplane flying above or in the wake were not present in flight test. In
flight test significant yawing moments were detected only when the wake core passed
above the fuselage and cleanly impacted the vertical tail. In this case a substantial, short
duration yaw spike was recorded. Figure 8 presents an example of this type of
measurement. In all other cases measured yawing moment was essentially nonexistent.

As aresult, it was necessary to update the simulation of yawing moment induced by the
wake. The strip theory approach for the yawing moment calculations was set aside in
favor of an empirical model based on flight test data. The empirical model was
developed by careful observation of wake yawing moment as a function of vertical tail
position relative to the wake cores (see Appendix B for description). The resulting model
predicts yawing moment much more accurately, as shown in Figures 9 and 10 (which are
repetitions of Figures 5 and 6 with the new tail yawing moment model added).

Furthermore, it became apparent during validation of the wake simulation that placing the
wake relative to the airciaft CG in such a manner as to match lift characteristics made it
nearly impossible to also consistently predict pitching moment characteristics. The cause
of this incompatibility was believed to be the distortion introduced into the wake by the
aircraft flow field. It was observed in flight test that the wake was shifted significantly
when it passed over the wing and body of the airplane. However, the wake as modeled
was still a straight line. The wake could be located relative to the wing to match lift



characteristics, but then the wake’s location was fixed relative to the tail because it was
assumed to be straight. Figure 1} demonstrates this situation.

To rectify this, a provision was made to logate the wake separately for the wing and, the
tail. Using this capability, the analysis strategy was expanded so that the wake would be
located relative to the CG and wing in such a way as to match lift as closely as possible,
and then the resulting wake roll effects would be considered representative of those
experienced by USAir 427. Similarly, the wake would be independently located relative
to the tail in such a way as to match pitching moment as closely as possible, and then the
resulting wake yaw effects would be considered representative of those experienced by
USAir 427. Figure 12 presents how this new model is implemented. The final exercise
would be to “close the loop” by comparing the wake location relative to the CG to the
wake location relative to the tail and determining that any differences are small enough to
be accounted for by flow field distortion.

A final refinement to the model was the addition of the ability to vary the location of the
cores along the wake path to model the Crow instability tendencies of a more mature
wake.

Refinement of May 1995 Wake Encounter Scenario

The flight test and subsequent analysis of the resulting data has led to significant refining

of the analysis. These refinements have led to changes in both the modeling methods and
the analysis assumptions. Thus the analysis was repeated with the validated and updated

simulation.

First, the Cockpit Voice Recorder (CVR) soundings taken during the flight testing
confirmed that the “thump” recorded on the USAir 427 CVR at time 135.2 matched the
noise profile of a wake core hitting the forward fuselage of the aircraft. Thus it was
realized that the wake in the USAir accident scenario must be impacting the body of the
airplane at that time, and that it could not be as far away from the fuselage as the previous
analysis assumed.

Secondly, it became obvious early in the flight testing that the assumption that the wake
would follow a straight and uniform path was inaccurate, especially in the case where the
wake-generating aircraft was in a descent. Large fluctuations in the vertical position of
the cores was noted, sometimes as much as 100 feet over short distances. This
observation supported a hypothesis that the USAir aircraft may have initially passed
beneath one of these fluctuations as the wake was rising, experiencing relatively little
effect from the left wake core. The wake then dropped again in the manner observed in
the testing, resulting in the right wake core impacting the fuselage at time 135.2 and
producing the thump recorded on the CVR.

Figures 13, 14 and 15 present the current best wake scenario derived from the USAir 427
data. Figure 13 presents the wake location relative to the airplane CG in the same format



as Figure 2, showing the relative wake and aircraft trajectories throughout the encounter.
Comparison of Figure 13 to Figure 2 shows the small but significant changes made to the
wake path in order to match /ift chaxacteristics. This is the wake pesition relative to the
wing and forward body, whick results in-most of therlift and rolling moment due to the:
wake.

Likewise, Figure 14 presents the wake location relative to the airplane empennage in the
same format as Figure 2. Comparison of Figure 14 to Figure 2 shows the small but
significant changes made to the wake path in order to match pitch characteristics. This is
the wake position in the vicinity of the aft body, which is primarily responsible for the
pitching and yawing moments due to the wake.

Figure 15 shows the final coefficient matches of lift and pitching moment that result from
this encounter, and the resulting predictions of wake-induced rolling and yawing
moments. Before presenting the manner in which these predicted coefficients affect the
USAir 427 derived wheel and rudder inputs, it is necessary to discuss some additional
kinematic analysis of the heading data which was done in parallel with the wake scenario
derivation for the USAir 427 accident.

To validate the techniques described here, several wake encounters from the flight test
were evaluated. This validation process is described in detail in Appendix D.

Heading Interpolation Analysis

During the course of the wake scenario development, a parallel effort was undertaken to
eliminate signal noise generated by numerical processing techniques from the derivation
of rudder position. Specifically, when the sample rate of heading data is below 2
samples-per-second (as in the case of USAir 427), the rudder position derived using
kinematics becomes contaminated with an overlying “noise” signal produced by the
digital filter used to process the data. This noise signal shows up as an oscillation in
derived rudder, with a period of about 0.75 seconds and a peak-to-peak amplitude which
can exceed ten degrees. The rudder position derivations presented in References 1 and 2
show ample evidence of this signal noise, in many cases exceeding the rudder blowdown
limit. ’

In regions of a flight maneuver where rudder position is known or can be inferred (such
as when the rudder is believed to be at its blowdown limit), it is possible to derive a
continuous heading trace between the low-sample rate data points that are known from
measurement. This heading trace accurately represents the airplane heading during the
period of time where rudder position is known or can be inferred.

The process used to accomplish this is an iterative one. Starting with a linear
interpolation of heading between the known data points, small modifications are made to
the heading data between the known points and then rudder position is re-derived untit -
the artificial oscillations in the derived rudder position are minimized around the known



or inferred rudder position. The following constraints are observed in the process of
deriving the airplane heading trace:

1y Only therinterpelated regions betweer knowm, recorded data points may be
changed.

2) The resulting heading curve must be smooth and continuous and go through
all the known, recorded data points.

The end result of this effort is an improved knowledge of the boundary conditions (i.e.,
characteristics) of the heading trace at the edges of the adjoining regions where rudder
position is not known or cannot be inferred (e.g., when the airplane is in the influence of a
wake). Applying these new boundary conditions under the above constraints to the
USAir 427 data resulted in an improved representation of the airplane’s heading from
FDR time 133 to 140, when the airplane was in the influence of the wake. This new
heading interpolation (presented in Figure 16) was then used, along with the derived
wake-induced yawing moment presented in Figure 15, to derive a final, best estimate of
rudder position. A more detailed description and validation of this methodology is
presented in Appendix E.

Resulting USAir 427 Lateral and Directional Control Positions

Figure 17 presents the current best derivation of the USAir 427 lateral and directional
control positions. The left side of Figure 17 presents the extracted rolling and yawing
moment coefficients derived from the USAir 427 FDR using the latest interpolation of
heading presented in Figure 16. The rolling and yawing moment coefficients due to the
727 wake, calculated using the wake model updated with the flight test data from the
Atlantic City testing and presented in Figure 15, are also shown on the left side Figure 17.
The right side of Figure 17 shows the wheel and rudder required to compensate for the
difference in the coefficients extracted from the FDR and those produced by the 727
wake. These control positions represent the best estimate of rudder and wheel that can be
derived from the available FDR data.

Two parametric studies were conducted to provide confidence in the derived solutions. A
parametric study of the effects of varying wake position on the derived control positions
is presented in Appendix F. In addition, a parametric study to demonstrate the effects of
small changes in the derived rudder time history on the flight path is documented in
Appendix G.

Synopsis of USAir 427 Wake Encounter Scenario

The derived wake encounter presented in Figures 13-15 and the resulting derived controls
presented in Figure 17 represent the current best estimate of these data given the available
FDR data set. As shown in Appendix D, the methods used to derive the data give
accurate predictions of wheel and rudder position when applied to the wake encounter
flight test data. Assuming the data in Figure 17 is accurate, it is possible to integrate this



derived data with the other kinematic parameters measured and derived. from the FDR
and hypothesize a scenario. Figures 18-20 present this integrated data set. The yaw
damper command in Figure 28 was calculatee based o body axes yaw rate derived from
the FDR Euler angles.

The wake encounter began at time 132.5 with some low-level load factor fluctuations. At
time 133 a jump in airspeed occurred as a result of pressure field changes on the pitot
static sensors. At time 134 USAir 427 experienced a sharp left roll acceleration due to
the wake, peaking at 20 deg/sec’, to which the autopilot responded with its full right roll
authority of 25° of wheel. Moments later the wake core passed across the fuselage,
causing the thumping sound recorded at time 135.2. At that point the crew put in full
right wheel, overriding the autopilot and causing it to drop into the Control Wheel
Steering (CWS) mode.

The large right wheel deflection was more than enough to overcome the wake’s left roll
influence, and the aircraft rolled back toward the right, experiencing a sharp right roll
acceleration peaking at 35 deg/sec®. Nose-left rudder pedal was deflected briefly to about
3/4 of full travel in a direction to slow the large right roll acceleration, and then reduced
to about 1/4 of full travel. During this time the right wheel input was also reduced
significantly; both actions would be understandable responses to the large right roll
acceleration. However, the aircraft was still in the influence of the right wake core,
which, along with the left roll acceleration caused by the rudder-induced sideslip, began
to roll the aircraft back to the left with a large acceleration peaking at nearly 40 deg/sec’.

At this point the wheel was put in again to full right, which would be a proper response to
stop the left roll acceleration; at the same time, rudder deflection increased again to full
nose-left. At time 136 the pitch attitude began to drop, and the crew began applying
nose-up column in reponse. Another large right roll acceleration resulted, peaking at 40
deg/sec®. The right wheel was reduced again at time 139 in response to the large right roll
acceleration, while fuil left rudder remained applied. The result was an increasing left
roll, and the aircraft was now banked at nearly 40° left wing down.

The crew disconnected the autopilot, and wheel was again put in back to the right, at a
slower rate than before. Duriﬁg this time interval, the crew continued to pull back on the
column, resulting in an increase in load factor and in angle-of-attack. Wheel remained
constant at about 2/3 of full authority for a few seconds, which at the recorded airspeed of
190 KCAS was about the right level required to balance the rolling moment generated by
the rudder-induced sideslip. As a result of the positions of the wheel and rudder, the roll
acceleration went to zero, but the wheel input was not large enough to cancel the
established left roll rate of about 10 deg/sec. The aircraft continued to roil left until a
time of about 143, when full right wheel was again applied, arresting the left roll.

The airplane was then balanced at a left bank angle of over 70°, and the column was near

its aft limit. Angle-of-attack was approaching that for stall. At time 144 the column was
pulled to its full aft limit; this in turn caused the aircraft to pitch up quickly through the
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angle-of-attack for stick shaker and into stall. At this pitch rate the airplane entered stall
before the slats, which were commanded to the gapped position by the autoslat system,
could be futly extended. Fhre controk cobanmr was recorded to have remaimed near the: full
aft Hmit until just before impact. The stick shaker also continued untit impact, indicating
that the aircraft was stalled for the remainder of the maneuver.

As a result of the nose-left sideslip induced by the left rudder, the left wing stalled first,
resulting in yet another left roll acceleration. The aircraft rolled further over to the left
and pitched nose down to a nearly vertical attitude. It appears from the analysis that the
control wheel probably remained at full right deflection, and rudder at full left deflection
to the blowdown limit. However, the dynamic, post-stall nature of the aircraft motion
after time 145 makes it difficult to be completely certain of the rudder and wheel
positions after that time.

For additional clarity in presenting the scenario, a VHS video tape, which shows a
computer-generated visual representation of the USAir 427 accident accompanies this
document. The accident is seen from two different viewpoints. The representations of
the flight path, aircraft orientation and instrument readings are based upon the aircraft’s
FDR; the captions and cockpit area sound recreations are based on the CVR transcript.
The wake derived for the accident and presented in Figures 13-14 is highlighted over the
time interval where it is considered to be known, and the effect of the airplane flow field
in disrupting the wake has also been added. The motion of the elevator and control
columnn represent the data recorded on the FDR; the motion of the lateral controls, the
rudder, the control wheel and rudder pedals represent the position derived for the
encounter and presented in Figure 17. The video also contains representations of the
validation cases discussed in Appendix D.

Conclusions

The derivation of lateral and directional control positions in the USAir 427 accident is
highly desired as information needed to help investigators understand the sequence of
events that contributed to the accident. Because of the limited number of parameters on
the FDR and the involvement of the wake turbulence, any derivation of the lateral and
directional controls will not be precise.

However, the methods established and validated during this investigation for determining
wake effects give accurate results, and the resulting extractions of the lateral and
directional control positions for flight test validation cases agree well with the actual
measured control positions. This validation provides confidence in the methods used to
derive the lateral and directional controls for the USAir 427 accident.

The control positions derived and presented here provide the best approximation of the
lateral and directional control inputs during the accident sequence, given the available
data from the FDR. All the parties involved in the investigation are encouraged to
examine the derived control positions and their correlation with the measured and derived

11



aircraft motion in order to better understand the role of the wake and the control System in
the USAir 427 accident sequence.
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APPENDIX A.

9/94

10/94

12/94

1/95

2/95

3/95

4/95

5/95

6/95

7/95

8/95

9/95

Chronology of Events Related to Derivation of Flight Controls for
USAir 427 Accident Investigation.

Accident occurs on 9/8/94 near Aliquippa, PA; parameters retrieved
from Flight Data Recorder; kinematic corrections made to FDR data;
wake encounter simulation development begins; preliminary roll and
lift model is finished by 9/30/94

Kinematic processing of FDR data begins; angular rates and
accelerations, angle-of-attack, sideslip and flight path are initially

derived; tail effects added to wake encounter simulation model

All-parties meeting in Seattle; wake mode] with lift, roll and yaw
characteristics is demonstrated for investigation parties

Coefficient extractions yield first estimate of flight control positions
which do not account for wake effects; Public hearing in Pittsburgh;
wake encounter flight test is requested by Safety Board

Preliminary body effects added to wake encounter model

First coefficient extractions are performed which attempt to account
for wake effects in flight control derivations

Wake encounter simulation updated to include effects of wake-induced

‘sideslip and sideforce

All-parties meeting in Seattle; estimate of flight control positions
which attempt to account for wake effects based on “final theoretical”
wake encounter simulation is presented and documented; wake flight
test is approved by parties to gather flight test data to verify wake
model

Wake encounter flight test planning begins

Proof-of-concept flight test of 727 smoke generators in Seattle is
successful in demonstrating that the wake cores can be marked with
smoke

Flight test plans are finalized and aircraft for test are identified

Flight test occurs in Atlantic City, NJ

Al



10/95-11/95

1 2(93-2(96

3/96

4/96-5/96

6/96

Reduction of flight test data and preliminary validation of simulation;
second public hearing occurs in Washington, DC.

Validatior of wake: encounter modet using: flight test data; analysis of
yawing moment characteristics leads to development of new yaw
model

All-parties meeting in Washington, DC; wake model validation results
presented to investigation team, along with ramifications of yawing

moment analysis of flight test data

Final derivation of wake position, wake effects, and subsequent
derivation of lateral and directional control positions

Final documentation begins



APPENDIX B. Description of the Wake Encounter Simulation Math Model

The basic 737-300 simulation math model, described in reference 5, is essentially a point-
mass model; that is, all forees and mements (fronr aerodynamics, thrust, and gear) are
resolved at the aircraft center-of-gravity (CG). The kinematic equations of motion are then
applied at this point to calculate the trajectory and orientation of the aircraft. All aecrodynamic
forces are thus functions of the angle-of-attack and sideslip as defined at the aircraft CG. For
flight in a uniform wind field, this assumption is accurate because the angle-of-attack and
sideslip angle are the same nearly everywhere on the aircraft body, and the few locations
where they do vary (such as in the wing downwash field) can be measured and modeled as
functions of angle-of-attack or sideslip at the CG.

However, in the case where it is desired to model the effects of a wake flow field, the angle-
of-attack and sideslip can vary considerably at different locations on the aircraft. Thus, to
model a wake encounter effectively, it becomes necessary to expand the basic model to
account for this variation in angle-of-attack and sideslip. To do this, two basic modeling
elements are needed.

The first element is a mathematical description of the wake-induced velocity field as a
function of position relative to the wake. In the USAir 427 wake analysis the velocity field
was modeled using two counter-rotating Rankine vortices. Rankine vortices were used
because they are simple to model and have been shown in the past to provide a reasonable
prediction of vortex velocity distribution.

The second element is a method to translate the wake flow field velocities into local angles-
of-attack and local sideslip angles at various points on the airplane. This is done using
aerodynamic strip theory. In this method the aerodynamic surfaces of the aircraft are divided
into thin strips which run in the chordwise direction (see Figure B-1). For the case of a wing
or tail, the strip represents a nearly two-dimensional airfoil section. The midspan chord of the
strip 1s chosen as a representative airfoil section, and then the quarter-chord position along this
section is chosen as a representative point for the entire strip; that is, the angle-of-attack and
sideslip at that point are considered to hold constant over the strip.

The location of this point is known in body axes. A simple transformation to the airplane’s
ground axes position through its Euler angles (pitch attitude, roll attitude and heading) is
applied to determine the point’s location in the ground axes system. Next, the point must be
transformed to the wake axes system. In this model the wake is defined about a central point,
considered the wake axes system origin. This point has a ground axes location, and the wake
axes system has an Euler angle (pitch, roll and heading) orienitation relative to the ground axes
system. A transformation of the point’s ground axes position through this set of wake Euler
angles locates the point in the wake axes system.

Bl



The wake axes system is defined so that the wake x-axis runs parallel to the wake cores, and
the wake y-axis is normal to the cores and in the plane of the lines defining the wake core
centers. The wake z-axis is normal to the. wake x and y-axes and.is positive up. This last.
definition actually causesthe wake axes system to be feft-handed, but this. was considered:
acceptable because the wake effects are identical for positive or negative values of x in wake
axes and the definition of the wake z-axis as positive upward was more intuitive. Figure B-2
shows the wake axes system definition.

As previously noted, the wake vortices are modeled by two counterrotating 2-D Rankine
vortices. The horizontal and vertical velocity components (denoted Vyake and wyake,
respectively) of a single Rankine vortex are:

Given:
2

for r > Cuwake:
Vivake
Wwake

for r £ Cwake:
Vwake
Wuake

where T°

kdiss
W

P
Vi
bl

Ay
Az

Cwake

= Ay

]

(1|

+ A7’

(T*Az}/ (2*n*)

(C*Ay)/ 2 *r*rd)

(T*Az)/ (2% T * Cuake )
(T A/ (2* T * Cuake D)

wake circulation (ft* / sec)

kaiss W / pV b', positive counterclockwise
dissipation factor

weight of wake-generating aircraft (Ibs)

air density (slugs / ft)

true airspeed of wake-generating aircraft (ft / sec)
wake generational span of generating aircraft (ft)
(m/4)*span

horizontal distance from center of vortex to point of
interest (ft), positive to the right

vertical distance from center of vortex to point of
interest (ft), positive up

wake core radius (ft)
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The velocity at a given point in the whole wake system is computed by applying this equation
twice, once for each core. The distances for each core are computed as the horizontal and
verticalk distances between the point of intesest and eagh core’ s center, taking careful note. of
the: sigre conventior. The circulatior valueris positive for the right corer and negative for the
left core. The value of the dissipation factor can vary between 0 and 1 and can be calculated
using several theoretical models of wake strength dissipation as a function of distance behind
the trailing aircraft. Once the velocities from each core have been calculated the total wake-
induced velocity at the point of interest is simply the sum of the velocities contributed by each
core.

The velocity at each point is transformed back through ground axes to the airplane body axes
system, where it is resolved into local incremental u, v, and w velocities. These velocities
translate into incremental angles-of-attack and sideslip angles by the following:

Aoj = tan” (w;/(u+U))
AR = tan”' (vi/(w+U))
where Aoy = incremental wake-induced angle-of-attack at point i (deg)

AB; = incremental wake-induced sideslip angle at point { (deg)
uy; = incremental wake-induced x-axis velocity at point i (fi/sec)
vi = incremental wake-induced y-axis velocity at point i (ft/sec)
w; = incremental wake-induced z-axis velocity at point i (ft/sec}
U = total aircraft x-axis velocity (ft/sec)

Incremental aerodynamic lift and drag forces on the wings are then computed from these local
angles-of-attack and sideslip angles using 2-D airfoil aerodynamics:

Lwi = Kwi *[Clwl(aw + Aai +2*T sin(ABi)) - Clwi(U.w)] *q*Si
where Luw; = wing lift for section i (Ibs)
Kwj = spanwise wing lift distribution factor

Clw; = sectional wing lift coefficient for section i

Oy = wing angle-of-attack (deg)

Ao; = incremental angle-of-attack induced by wake
velocity field for section i (deg)

r = wing dihedral angle (deg)

AB; = incremental sideslip induced by wake velocity field
for section i (deg)

q = dynamic pressure (Ibs / ft?)

S; = sectional strip area for section { (ft%)
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Note that at each point the lift coefficient is first evaluated at the total angle-of-attack. In the
case of the wing, this is the sum of the wing basic angle-of-attack, the incremental angle-of-
attack due to-the. wake, and the incremental angle-of-attack due to wake-induced, incremental.
sideslip-angle. The lift coefficient due to just the wing basic angle-of-attack is then subtracted.
from the total, leaving the increment due to the wake only. By using this method it is possible
to incorporate 2-D stall characteristics of the wing airfoil section into the equation.

An equation to that used for the calculation of wing lift coefficient is used to compute
incremental drag along the wing only for purposes of computing the wake-induced yawing
moment on the wing:

Dy, = Kuw ¥[Cdwi(a, + Aoy +2*T Sln(ABl)) - Cdwi(ow)] *q*s'

i

wing drag for section i (Ibs)
sectional drag coefficient for section i

where Duw;
Cdw;

|

. Incremental aerodynamic lift forces on the horizontal tail are computed in similar manner as
those for the wing:

Loy, = Kbu *[Clar(ay + Aoy) - Clari{oy)] *g*S;

where Lut; = horizontal tail lift for section i (1bs)
Kui = spanwise horizontal tail lift distribution factor
Clur; = sectional horizontal tail 1ift coefficient for section i
OH = horizontal tail angle-of-attack (deg)

The calculation of lift over the horizontal tail is simpler than for the wing because sideslip
angle effects are neglected for the horizontal tail. The lift coefficient is again first evaluated at
the total angle-of-attack, which in this case is the sum of the horizontal tail angle-of-attack
and the incremental angle-of-attack due to the wake. The lift coefficient due to just the
horizontal tail angle-of-attack is then subtracted from the total, leaving the increment due to
the wake only. This allows for the incorporation of 2-D stall characteristics of the horizontal
tail airfoil into the equation.

The vertical tail is modeled in the same manner except that a sideforce is computed from
incremental sideslip effects:

Yvri = Kv;* [Cyvn(B + AB:) - Cyvr(B)] * q * S;

where Cyvr; = sectional vertical tail lift coefficient for section i
B = airplane sideslip angle (deg)
Kv; = spanwise vertical tail lift distribution factor
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As in the wing and horizontal tail calculations, the coefficient is computed for the total surface
angle-of-attack (which is the sideslip angle in the case of the vertical tail) and then the
coefficicnt due to the basic surface angle-of-attack is subtiacted to leave only the increment
due to the wake, preserving the ability to-meodel stall characteristics of the: tail surface.

The drag terms for the tail surfaces are neglected because the yawing and pitching moment
increments due to drag changes along the tail are negligibly small.

The wake effects on the forebody are modeled in a slightly different fashion from the lifting
surfaces. The body section is divided into rings, each five feet long. The velocities for each
ring are calculated at the center point of the circular section and resolved into local angles-of-
attack and sideslip angles using the same equations presented above for the lifting surfaces.
The incremental lift and sideforce on each body section are then computed using the
following:

LBDYi = [Cfbdy(A(Ii)] * q *8 * li
Yepoy; = [Cloa{AB)] *q*S*]
where Lepy; = lift force for body section i (lbs)
Yepy; = side force for body section i (lbs}
Cfosy = body force coefficient per unit body length ("
S = wing area (ft})
L - body sectional length for section i (ft)

The body force coefficient function was derived from tail-off 757 wind tunnel data which was
scaled to represent the 737, and is considered to be the same for lift and sideforce, since the
body is a cylinder. The wind tunnel coefficients were normalized by airplane wing area and
then divided by body length to represent a body force per unit length; hence the multiplication
by both wing area and body sectional length. Note that only the incremental angles-of-attack
and sideslip are used to evaluate the function; this approximation was made because stall
characteristics for the wing-body only were not readily available.

In order to determine the total wake effects on the airframe, it is necessary to integrate the
incremental wake forces over all surfaces. The lift and side forces are summed directly over
each surface to obtain total wake forces:

NWING NHT NBDY

Liake = Z Lw;+ ZLHT',+ ZLBDYi

i=] 1= i=1
NVT NBDY

Yoake = E YvT, + EYBDYi

i=] i=]

BS



The rolling, pitching and yawing moments (£, M and N, respectively) are computed by
multiplying the incremental forces by their respective moment arms and then summing over

each surface:

£wake

Mwakc

Nwake

NWING NHT NVT

= L(Lwi*Ayi) + 2(Lum *Ay;) + 2 (YvT * Az)

iw] i=1 i=1

NWING NBDY

= X (Lwi*Ax;) + & (Luti *Ax) + Z(LBDYi*AXi)

[E3) i=l

NVT NWING NEBDY

2 (Yv *Ax )+ 2 (Dwi *Ay,) + 2 (YBDy; * Ax;)

i=l i=1 i=1

Finally, these forces and moments are normalized into coefficient form and converted to

stability axes:

CLwakc
CYwake

C-Cwakc
CNwake

CMwa.kc

where

= (Lwake/ qS) * cos(ow)

= Yuae/qS

= (Lwake / qSb) * cos(ow) + (Nwake / @Sb) * sin{otw)
= (Nuwake / qSb) * cos(tty) + (Lwake / qSb) * sin{ay)
= (Muake / gSc) * cos(ow)

b aircraft span (ft)
c = aircraft mean aerodynamic chord (ft)

These coefficients are then added to the basic aerodynamic coefficient buildup to represent the
total aerodynamic force and moment effects on the aircraft.

Revisions to Model Resulting From Wake Encounter Flight Test

As a result of the Wake Encounter Flight Test performed in Atlantic City, NJ, in September
1995, a significant change was made to the yawing moment calculation in the wake encounter
simulation. Specifically, it was clear that significant yawing moments were only observed in
flight test when the wake cores would pass cleanly above the aircraft body and impact the
vertical tail. In all other cases the interference of the wake velocity field with the aircraft’s
own flow field would disrupt the wake and break it apart.
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The simulation was updated by replacing the strip theory calculations for the vertical tail with
an empirical yawing moment model. The model was developed by observing video footage of
the wake encounters and correlating wake yawing moment (derived from measured kinematic
data) with.the focation, of the wake core relative to the vertical tail. Also, since no notable
yawing moments were observed in flight test when the wake cores were near the forebody or
over the wings, no modeling of the body and wing contributions to yawing moment was
implemented.

The total wake yawing moment is the product of two functions. The first function, denoted
CNwikrrDs 18 the wake-yawing moment as a function of normalized lateral location in the wake
axes system and wake circulation strength:

CNwkFTD = f(ynormy, I')
where ynorm,, = Normalized lateral position in wake axes system
= ¥w / bwake
Yw = Lateral location in wake axes system (ft)

buake Distance between wake cores (ft)
r = Wake circulation strength, (ft*/sec)

The second function, KNwxryp, is a shaping factor which varies from 0 to 1 and is a function
of normalized vertical location in the wake axes system:

KNwkFmD = f(znoims)
where znorm, = Normalized vertical position in wake axes system
= Zy/ buake
Zw = Vertical location in wake axes system (ft)

It is this factor which is used to apply interference effects of the airplane on the wake flow
field. The factor is zero for vertical positions of the wake relative to the body where
interference was observed to disrupt the wake effects. This is observed when the wake cores
are located at or below the level of the airplane aft body. As the wake moves upward relative
to the vertical tail, the shaping factor increases to a maximum value of I at a location
approximately equal to the 3/4 span location on the vertical tail. The factor then decreases
back to zero as the wake moves above the vertical to the point where the wake flow field no
longer influences the aircraft. This position where the wake no longer affects the vertical
occurs when the wake core is approximately 30-40 feet above the tip of the vertical tail.

The total wake yawing moment is calculated as follows:

CNuyake = Cnwxrrp * KNwkrmp
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Figure B1. General Distributed Lift Model.
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APPENDIX C. Update to the 737-300 Aerodynamic Simulator Model

The data collected during the 1995 Seattle and Atlantic City flight testing on the USAir
737-300 PPO53 was used te update the aerodynamic model documented in Reference 5.
The flight test results validated the accuracy of the simulator model in the normal flight
envelope. They also provided the basis for minor adjustments to the modeling of rudder
hinge moments and to the high sideslip, high angle-of-attack aerodynamic data. The
validation of the model in the normal flight envelope was given to the NTSB performance
group during the meeting in Seattle on 12/18/95 and is not repeated here.

The new hinge moment model is based on all relevant data from the 737-300, -400, and -
500 flight test data bases as well as the data flown in the 1995 flight testing. This
includes flight testing conducted before, during and after the certification of these models.
The data covered the maximum range of sideslip and rudder angles predicted for the
USAIr 427 accident. The data show increased sensitivity to sideslip angle in the 8 to 12
degree range of sideslip. The new model significantly improves the correlation between
predicted rudder and rudder blowdown as shown in figure C-1.

The new aerodynamic model incorporates "high angle-of-attack” sideslip data from the
1995 flight testing for angles of attack up to about 14-15 degrees, for angles of sideslip up
to about 12 degrees and for rudder angles up to about 15 degrees. Above 15 degrees
angle-of-attack, the aerodynamic data is weighted mid-way between pure wind tunnel
data and a rational extrapolation of the flight data available below 15 degrees.
Incorporation of this new model further improves the correlation between predicted
rudder and rudder blowdown as show in figure C-2.

The revisions to the model at high sideslip and high angles-of-attack resulted in changes

that were only significant during full rudder sideslips. Figure C-3 shows the effect of the
noted changes in the rudder hinge moment and aerodynamic coefficient models, in terms
of their effect on the full rudder / full wheel crossover speed.
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Appendix D. Validation of Wake Encounter Derivation Process

To validate the techniques used to derive the control inputs from the FDR data, several
wake encounters from the flight test wereevaluated. The validation was performed by
placing the wake in each case in such a way as to match the derived flight test lift and
pitching moment characteristics due to the wake, and using the resulting wake rolling and
yawing moment characteristics to predict the wheel and rudder positions during the
encounter. These predicted control positions were then compared to the actual recorded
controls as a measure of the accuracy of the process.

Three validation cases are presented here. All three are from flight test number 19-08.
The condition numbers are B1.41.0065.002.1, B1.41.0065.006 and B1.41.0065.006.1.
Figures D-1 to D-6 show the results.

Figures D-1 and D-2 present the results for condition B1.41.0065.006, Figures D-3 and
D-4 present the results for condition B1.41.0065.006.1, and Figures D-5 and D-6 present
the results for condition B1.41.0065.002.1. In each case the match of the derived flight
controls to the actual measured flight controls is shown with and without accounting for
wake effects. In each case the match of wheel and rudder is improved when wake effects
are included, and the overall match of control position magnitudes and characteristics is
very good. This good agreement between estimated and measured control positions
demonstrates the validity of the method used to derive the lateral and directional control
positions for USAir 427.
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APPENDIX E. Methodology for Correcting for the Effects of Low
Sample Rate

Giver airplane heading at a rater of ap lease twor samples persecond;, along withe roll and
pitch attitude, vertical and longitudinal acceleration, and airspeed and altitude, it is
possible to derive a detailed representation of rudder position to within an accuracy of
about one degree. Figure E-1 shows a comparison of measured and derived rudder
position for a series of five flight test rudder-step conditions. These conditions were
flown in the simulator validation flight test prior to the wake effects testing in Atlantic

City.

Figure E-2 shows the effect of airplane heading sample rate on the accuracy of derived
rudder position. As previously stated, derived rudder position is generally accurate to
within about one degree when heading sample rate is at least two per second. When the
sample rate is less than two per second, however, the rudder position estimate becomes
contaminated with noise produced by the digital filter used to process the data. The effect
of this contamination is seen as an oscillation in the rudder estimate, with a period of
about 0.75 seconds and a peak-to-peak amplitude that can exceed ten degrees.

In regions of a flight maneuver where rudder position is known or can be inferred from
other information (such as when rudder reaches its blowdown limit), it is possible to
derive a continuous heading trace between the low-sample rate data points that are known
from measurement. This heading trace accurately represents the airplane heading during
the period of time where rudder position is known or can be inferred.

The process used to accomplish this is an iterative one. Starting with a linear
interpolation of heading between the known data points, small modifications are made to
the heading data between the known points and then rudder position is re-derived until
the artificial oscillations in the derived rudder position are minimized around the known
or inferred rudder position. The following constraints are observed in the process of
deriving the continuous heading trace:

1) Only the interpolated regions between known data points may be changed.
2) The resulting curve must be stooth and continuous through each data point.

Figure E-3 illustrates the improvement that can be gained in derivation of rudder and
heading with this methodology, using an example from the Atlantic City flight test. The
top half of Figure E-3 present derived rudder position using airplane heading data at a
sample rate of once per second, compared to the actual measured rudder position. The
derived rudder position shows the effect of sample-rate induced noise, as described
above, with a maximum peak-to-peak amplitude of about six degrees. The bottom half
of Figure E-3 presents the results of using the above process of to derive a heading
between the known points during the interval where rudder position is known. The
derived heading is nearly an exact re-creation of the measured heading trace.
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Furthermore, the derived rudder shows a significant reduction in signal noise, and is a
much more accurate representation of the measured rudder position.

The end result of this.effort is ap improved knowledge of the: boundary conditions: (r.e.,
characteristics) of the heading trace at the edge of adjoining regions where rudder
position is not known. Applying these new boundary conditions, along with the
requirement that the data be smooth and continuous, it is then possible to create an
accurate representation of the actual airplane heading during those periods of unknown
rudder deflection. The new heading data are then used to derive a final, more accurate
rudder position with minimum artificial signal noise during the time intervals where
rudder is not known or cannot be inferred.

Figures E-4 and E-5 illustrate the application of this methodology to the USAir 427
accident data in the region where the rudder is believed to be deflected to the blowdown
limit. The resulting heading trace is smooth, continuous, goes through all the known data
points, and is consistent with expected airplane behavior.

The resultant slopes of the heading trace at times of 135 and 138.2 provide the boundary
conditions needed for re-interpolating heading in the interval between 135 and 138.2,
where the rudder position is unknown and cannot be inferred because the airplane is in
the influence of the wake. The heading derived for this time interval and the
corresponding derived rudder are presented in Figure E-6. Note that this rudder was not
derived with wake effects taken into account, and therefore represents the total effect of
wake-induced yaw and actual rudder deflection.

Figure E-7 shows a comparison between the predicted rudder blowdown limit and the
derived rudder position (with and without predicted wake effects.) It appears that the
rudder is generally against the blowdown limit after an elapsed time of 138.2 seconds,
with the exception of the 1.5 second period from 139.5 to 141.

The depression of rudder position below the blowdown limit line, from 139.5 to 141, may
indicate that the rudder is lagging behind, momentarily, as the blowdown limit increases
with increasing sideslip angle. Similarity in the shape of the predicted rudder and
blowdown limit, however, tends to suggest that the rudder is actually up against the real
blowdown limit. This would indicate that the rudder hinge moment model may need
further refinement in that range of sideslip angles.
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APPENDIX F. Parametric Study of Wake Position and Characteristics

The solutions for derived wheel and rudder position presented in Figure 17 of the main
decument represent those which give the best match of lift and pitching moment,
characteristics attributable to the wake. This solution also meets the boundary condition at
time 135.2 in that the location of the wake impacts the fuselage of the aircraft as necessary to
produce the “thump” heard on the USAir 427 CVR at that time.

A parametric study to observe the effects of changing the wake location and characteristics on
the derived wheel and rudder positions is presented in this Appendix. In this study the wake
was translated up to 15 ft in each direction from the nominal location presented in Figures 13
and 14 in the main document. In addition, wake circulation strength was varied from 500
ft¥/sec to 2400 ft/sec, and wake core radius was varied from 1 ft up to 10 ft.

Figure F-1 presents the results of the study as pertains to the derived wheel. Because the
wake-induced rolling moment is roughly equivalent to full wheel power for the 737, the
variation of wake position can have a significant impact on the derived wheel position.
However, in each case several characteristics are always present. Notably, in all cases a
strong right wheel input is derived between times 136-137, and again at time 138.5. The
largest variation between the cases occurs at time 135: derived wheel varies from nearly half
left authority to full right authority. However, the solution at this time is constrained to be
very close to the nominal solution in order to meet the boundary condition mentioned
previously - the “thump” resulting from the wake impacting the fuselage.

Figure F-2 presents the results of the study as pertains to derived rudder. In this case the
wake-induced yawing moment is much less than that which can be generated by full rudder on
the 737. The result is that the rudder solution does not vary with position nearly as much as
the wheel solution. The nature of the rudder solution in all cases contains an rapid input at
time 137, followed by a rapid release at time 137.5, and the followed again by another rapid
left input to blowdown at time 138.5 In the case where the wake is moved upwards, an
additional release and input is derived from time 138.5 to 139.2. In some cases the smalt
initial rudder input at time 136 is slightly amplified, and in others is slightly decreased; all are
within the level of yawing moment that can be induced by the wake. The second spike and
the step to blowdown that follow, however, are beyond the level of yawing moment that can
be caused by the wake. Therefore, these characteristics are definite reflections of rudder
movement.

Figure F-3 presents the root mean square (RMS) error for lift and pitching moment matches as
a function of position. As the position of the wake was moved, the error in the match between
lift and pitching moment increased from the nominal value. This is an indication that the
nominal derived wake location is very close to that required to provide the best match of lift
and pitching. This wake location would also result in the thump heard on the CVR at time
135.2. Significant movement of the wake from this position would not meet this boundary
condition.

Fl1



Figures F-4 and F-5 present the results of changing wake characteristics. In all cases the
solution for rudder remains relatively unchanged, which again reflects that the wake yawing
moment characteristics are minor compared to the magnitude of the rudder position. Derived
whee} position is- affected to » larger degree by changing circulation; in.effect the change in.
circulation merely scales the level of wake rolling moment directly - the actual characteristics
do not change significantly.
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APPENDIX G. Parametric Study of Derived Rudder Input

Data are presented ip this section to quantify the effect of vasiations in the rudder position.
tinme-istory forthe USAir427 scenarie. Figure G-l presents the radder for best match of’
the FDR data as discussed in earlier sections of this document. Figures G-2 through G-7
present a series of arbitrary modifications to this derived rudder. Figures G-8 through G-
16 present a series of simulated rudder PCU valve jams.

In all cases, the lateral control surfaces were driven to match the derived airplane roll
acceleration to minimize deviation in roll attitude. The heading and pitch attitude
parameters were allowed to respond freely to the mudder inputs.

The effects of these variations in rudder position are shown as incremental errors in
airplane heading, pitch and roll attitude. The heading error is computed relative to the
non-linear curve fit of the one-sample-per-second FDR data (See Appendix E). The time
values of the actual FDR heading data points are indicated with symbols along the
horizontal axis. The heading error should be evaluated at these time points in particular.
The pitch and roll errors, which are of secondary interest only, are considered to be valid
for all points along their respective curves because of the higher sample rate of the pitch
and roll FDR data.

An IRU (Inertial Reference Unit) “Confidence Band” is also plotted along with the
angular-error data to give proper perspective to the results. The indicated confidence level
is based on a statistical survey of 737-300 flight test data. The survey covered all
maneuver types, comprising 3328 flight conditions, for a total of 4.8 million data points.
The outputs of the left and right IRU channels were compared after subtracting out any
average offsets in the data. The remaining differences were then numerically ranked,
point by point, showing that the left and right IRUs agree to within plus or minus 0.3
degrees for 99.96% of all surveyed data. Furthermore, 98% of the data points agree to
within plus or minus 0.1 degree.

It may be reasonably stated, therefore, that failure of the heading error to stay within a
plus or minus 0.3 degree confidence band, for any of the cases evaluated, constitutes a
non-match of the FDR data. Judged on this basis, only the double-puise rudder in Figure
G-1 demonstrates an acceptable match. All other scenarios produce errors of at least one
degree and, in most cases, much more.

It should be noted here that the rudder derivations presented in References [ and 2 also
produced apparently acceptable matches of the FDR heading data. These early analyses
were both lacking, however, in the following respects:

e The data in Reference 2 were based on a purely theoretical wake effects model.
Subsequent wake-effects flight testing showed that the predicted nose-right, wake-
induced yawing moment does not occur for an aircraft stationed above the right -
vortex core. Videotape evidence from the test suggests that the vortex core

Gl



dissipates rapidly as it passes beneath the aircraft in close proximity to the wing,
thereby limiting its influence on the vertical tail. In addition, the current wake
encounter seenario ptaces the: aircraft under the wake ter achieve a substantially
improved matchr of the wake-induced: lift, compared to what was presented i May
1995. Placing the aircraft beneath the right vortex core can only result in a nose-
left induced yaw. This completely invalidates the conclusions of Reference 2 with
respect to the derived rudder position in the region where the aircraft is in the
influence of the wake.

The data in Reference 1 ignored the effect of the wake altogether and, most
importantly, required periodic excursions of the rudder well beyond the rudder
blowdown limit; a clearly impossible situation. Even so, that early derivation of
the rudder showed much of the character of the initial double-pulse required to
match the FDR data.
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