

RE: NTSB Request concerning the Localizer and Glide Slope for runway 4R

June 22, 2009

Timothy W. Monville Senior Air Safety Investigator National Transportation Safety Board 8240 NW 52nd Terrace, Suite 418 Doral, Florida 33166-7765

Dear Mr. Monville:

In response to your request for information regarding the operational status of the Boston Runway 4R ILS Localizer and Glide Slope components on 8/12/2008 and system performance for the prior 12 month period.

- 1. There were no abnormalities with either the 4R Localizer or Glide Slope facilities on/or about 08/12/08. The ILS was in full operational status.
- The Localizer and Glide Slope successfully completed a Periodic with monitor's flight inspection on 03/19/08. There was also a special flight inspection on the Localizer on 04/28/08 for and Expanded Service Volume authorization. (03/19/08 flight inspection report attached)
- 3. There were no unscheduled outages or abnormalities for the Glide Slope in the prior 12 month period. Scheduled periodic maintenance activities were the only service interruptions to the facility. The Localizer had two unscheduled service interruptions; neither an equipment performance abnormality. On 1/14/08 specialist removed heavy snow from the Localizer antenna's to restore the system. On 10/12/07, Verizon restored the T-1 line from the Boston ATCT to the Boston Localizer (in Winthrop, MA) restoring the interlock signal to the facility.

Vic Castro
FAA, BOS N/C Supervisor
600 Control Tower 7th Floor
Logan Airport
E. Boston, MA 02128
office: 617-455-3011
cell:

FLIGHT INSPECTION REPORT INSTRUMENT LANDING SYSTEM

		CUTIMED		M BEDA	DT HEAD	J NED			CREW I	UT ODNIA	TION		
(DE)													
BOS	OWNER	1	CTRY	REGN ANE		SPECTION D	IATE(S)	PIC	SIC VN262	MS	A/C NO		
		LIVIA][05	RUNWAY	———	3/19/08 =COBY	AICE TARE	VN109	VINZOZ	VN106	N73		
BOSTON				04R		EGORY	INSP TYPE S/PROC	ACM			FIFO ACY		
BOSTON				U4R			S/PRUC	<u> </u>			ACT		
				3. F	ACILITY	INFORMA	TION				· · · · ·		
LOCALIZER	Inspected			ME		Ins	pected/Sat		FACILITY S	TATUS			
OFFSET				COMPASSI	OCATOR	Ins	pected/Sat		FIC Unrestricted				
GLIDE SLOPE	Inspected	ATC request to estab requirements met on it at 2000' MSL (Minimu		JGHTING S	YSTEM		pected/Sat			restricted			
LDA			— i-	5 mHz MAI	RKERS		pected/Sat		B/C				
SDF				SIAP		Sat			ILS CLASS		E		
TLS	_		<u> </u> [UBLICATION	ONS	Sat	t		INSP. CRIT	ERIA			
OTHER'	OTHER.				ГН	3,67			ROLLOUT				
			ļ	COMD ANG	ŁE	3.00	<u> </u>						
			[GLIDE SLO	PE TYPE	CE - Cap	ture Effect						
				•	4. N	OTAMs		***					
											į		
		· · · · · · · · · · · · · · · · · · ·							<u> </u>	va			
					5. RE	MARKS							
					alizer/DME								
Periodic v	ith monitors requ	iirements me	t on loca	lizer and glid	alizer/DME deslope.	ESV.	K'd Debra Lovela	and)					
Periodic v ILS -2 lev Maintenai	vith monitors requ el runs flown at 2 nce satisfied with	iirements me 000' MSL (Mi results.	t on loca inimum \	lizer and glid /ectoring Alt	alizer/DME deslope.	ESV.	K'd Debra Lovela	and }					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS	vith monitors requel runs flown at 2 noce satisfied with /L / 7000' - 3000' /D / 7000' - 3000'	iirements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig	t on loca inimum \ ginal - SA ginal - SA	lizer and glid rectoring Alt AT. AT.	alizer/DME deslope. itude) due to	ESV. o weather. (O		·					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					
Periodic v ILS -2 lev Maintena ESV: ILS ESV: ILS After this	vith monitors requel runs flown at 2 nce satisfied with /L / 7000' - 3000' /D / 7000' - 3000' flight check estab	irements me 000' MSL (Mi results. / 30nm / Orig / 30nm / Orig lished the ES	t on loca inimum \ ginal - SA ginal - SA SV, Air Ti	lizer and glid /ectoring Alt AT. raffic put in a	alizer/DME deslope. itude) due to a request to	ESV. o weather. (O	V raised to 10,00	Oft.					

* Remarks are required for fields marked with an asterisk

6. INSTRUMENT LANDING SYSTEM DATA - AZIMUTH (PART I) A. FRONT COURSE **B. BACK COURSE** ILS-1 ALTITUDE 1517 ILS-1 ALTITUDE TX 1 TX 2 TX f TX 2 INITIAL FINAL CD INITIAL FINAL CD INITIAL FINAL INITIAL FINAL CDCD Course Width Course Width 3.72 3.75 Symmetry 49.6 50.0 Symmetry Modulation 39.9 39.7 Modulation Clearance 150 252/13.4 248/12.9 Clearance 150 Clearance 90 243/12.9 247/12.2 Clearance 90 Structure-Z 1 Structure-Z 1 1/4.15 1/4.16 Structure-Z 2 Structure-Z 2 1/0.59 0/0.58 Structure-Z 3 Structure-Z 3 2/0.30 1/0.16 Structure-Z 4 4/0.12 2/0.47 Structure-Z 5 2/0.51 2/0.51 Vert. Polar. Vert. Polar. s Alignment CL 1L Alignment s s dentification Identification Power Ratio Loc Only Structure 7. INSTRUMENT LANDING SYSTEM DATA - GLIDE SLOPE (PART I)

ILS-2 ALTITUDE 2000'		TX 1		TX 2				
	CD	INITIAL	FINAL	CD	INITIAL	FINAL		
Angle			2.97			2.96		
Modulation			79.9			80.2		
Width			0.71			0.73		
Structure Below Path			2.28			2.27		
Symmetry			52.0			49.2		
Structure-Z 1			2/7.25			1/5.00		
Structure-Z 2			11/0.59			11/0.58		
Structure-Z 3			14/0.01			14/0.00		
Angle Alignment "B-C"			19/0.57			17/0.57		
Angle Alignment "C-T"			24/0.15			48/0.01		
Angle Alignment "T"			48/11'			48/11'		

F.,						
	****	8. INSTRUMENT LANDIN	G SYSTEM I	DATA - MARKER WIDTH(s)	
		A. OM				
		B. MM				
		C. IM				
		* Remarks are require	d for fields n	narked with an asterisk		
EAA Earm 9240 9	64.0.7.2005)	Supercodes provinus adition	CINIAL	1 Hadebad: 04/02/00/09 09:20	Ident: EOS	PAGE 2 OF 3

A. FRONT COURSE MONITOR	TX1 CD	TX 1 INITIAL	TX 1 FINAL	TX 2 CD	TX 2 INITIAL	TX 2 FINAL	B. BACK COURSE MONITOR	TX1 CD	TX 1 INITIAL	TX 1 FINAL	TX 2 CD	TX 2 INITIAL	TX 2 FINAL
Usable Dis./Pwr Setting		30NM/ 10.0 / 5.3					Usable Dis./Pwr Setting						
Course Width (Wide)			4.04				Course Width (Wide)						
Clearance 150			225/13.4				Clearance 150						_
Clearance 90			218/13.2				Clearance 90						
Course Width (Narrow)							Course Width (Narrow)						
Clearance 150							Clearance 150						
Clearance 90							Clearance 90						
Alignment R								750 C. S.					
Alignment L						<u> </u>	English to the State of the		外线等		6,4,0.5	-20-400A	

		TX 1					PATH ANGLE					PATH	HTCIW		STRUC	TURE BELOW P		PAT
			TX 2	TX 1 INITIAL	TX 1 FINAL	TX 2 INITIAL	TX 2 FINAL	TX1 INITIAL	TX1 FINAL	TX2 IN:TIAL	TX2 FINAL	TX1 INITIAL	TX1 FINAL	TX2 INITIAL	TX:			
A. ANTENNA	ADVANCE		19°				2.95				0.78				2.00			
DEPHASE	RETARD		19°				3.04				0.70				1.62			
B. MAIN SIDEBAND DEPHASE	ADVANCE																	
	RETARD																	
C. PATH ANGLE LOWER	RED TO LIMI	τ	'		_													
D. PATH ANGLE RAISE	TO LIMIT																	
E. PATH WIDTH NARRO	WED TO LIM	ΙΤ																
F. PATH WIDTH WIDEN	ED TO LIMIT						2.97	-			0.84				2.1			
G. ATTEN. MIDDLE ANT	TO LIMIT																	
H. ATTEN. UPPER ANTI	OLIMIT		1.8DB				2.92				0.77				2.29			
	Berthell State Control			TX 1	35.729F/		TX 2		N. ME	AN WIDT	H/SYMN	ETRY		Althur Arts				
I. USABLE DISTANCE /	PWR SET.								TX		ANGLE	ABOVE						
J. CLEARANCE BELOW	PATH									·	ANGLE	BELOW						
K. MODULATION EQUA	LITY							_			WIDTH							
L. PHASING											SYMME	TRY						
M. Front Course Area W	here Phasing) Was C	onduct	ed					O. TIL	Т								
NIM.			MS	MSL					ΤX		150 Hz	-lz		90 Hz				
P. BEST FIT STRAIGHT	LINE					R	. TRAN	SVERSE	STRUC	TURE	TX1 u/	TX1 H	z TX	2 uA	TX2 H			
ARDH GPI/TH DI	S. RDI	Н	AIM PT	ELEV	OFF	SET	RADIUS	ALT	LEF	OF CL		_						
					<u> </u>				RIGI	IT OF CL		<u> </u>						
Q. GLIDE SLOPE AIMING	3 POINT					s	RADIO	ALTIM	ETER									
LATITUDE			LOI	NGITUDI	 E													