BEA n-qd060105_eqt01

echnical document

VEMD and DECU examination

concerning the accident on **5 January, 2006 at Maui (Hawaï)** to the helicopter EC130B4 registered N11QD

Foreword

This document contains technical information that is the property of the manufacturer of the equipment. Technical information and photographs in this document are intended only to explain the various phases of the examination and should not be used in any way other than for the purposes of this technical investigation.

Note: The onboard computer equipment mentioned in this report functions as a maintenance database and not as a flight recorder.

Contents

FOREWORD
GLOSSARY
EQUIPMENT
1 - SUMMARY
1.1 Circumstances6
1.2 Purpose of the examination6
1.3 Synthesis6
2 – VEMD EXAMINATION DETAILS8
2.1 Technical information8
2.2 External inspection and opening process8
2.2 Readout process8
2.3 Data decoding process8
2.4 Results9
3 – DECU EXAMINATION DETAILS11
3.1 Technical information11
3.2 Readout process11
3.3 Results11
APPENDIX

Glossary

Aluminium wire : The wire used to make a physical connection from the device to the leadframe.

Application software: this sofware drives the fuel flow through the input/output and regulation laws.

DECU : Digital Engine Control Unit.

Die : An individual rectangular pattern on a wafer that contains circuitry to perform a specific function. The internal circuitry is made of thousands of tiny electronic parts. 'Die' refers to a semiconductor component or part that has not yet been packaged.

Die pad : Square metallic pads on the die where the ball bond is attached. The bond pad is used to find acceptable eye points.

Floating gate : In Silicon Gate MOS technology: a gate that is insulated from the rest of the circuit by a dielectric. Used in Flash memories.

Leadframe : A metal structure that is part of the device. The die is attached to the leadframe.

Metallization : Refers to the metal layers that electrically interconnect the various device structures fabricated on the silicon substrate.

Operating software: this sofware functions as an operating system. It manages DECU general functioning. It controls input/output and monitors the application software.

VEMD : Vehicle and Engine Management Display.

Equipment

	VE	MD	DECU
	Amdt L	VEMD 305A02	TURBOMECA Manufactured by SEXTANT AVIONIQUE F9111 SEXTANT AVIONIQUE F9111 ELECTRONIC CONTROL UNIT P/N 708 MF 0 1 0 0 0 MFR P/N 712 3 80 K A 0 1 S/N 1075 DATE 037 02 INSPECTION
Manufacturer	TH	ALES	SEXTANT AVIONICS
Part number	B1903	30SA02	70BMF01000
Serial number	10	651	1075
Module	Av1	Av2	_
Part number	C19184QD05	C19184RD05	
Serial number	2800 2813		
Memory	EEPROM 32Kbyte EEPROM 32Kbyte AT28HC256-12JI AT28HC256-12JI 0042 0014		EEPROM DIP 28
Work performed	Opening, memory unsoldering and reading		Opening, memory unsoldering x-ray inspection, decapsulation and optical examination
Data retrieved	2 x 32 Kby	yte raw data	None

1 - SUMMARY

1.1 Circumstances

On January 5, 2006, about 0945 Hawaiian standard time, a Eurocopter EC130B4 (ECOstar), registered N11QD, experienced a loss of main rotor RPM and made a hard forced landing in Honokohau Valley, near Lahaina, Hawaï.

1.2 Purpose of the examination

A DECU (Digital Engine Control Unit) and a VEMD (Vehicle and Engine Management Display) were removed from the helicopter registered N11QD.

The VEMD was brought to the BEA electronics laboratory to study the possibility of recovering the data that might still be stored on it. The examination was performed the 24 January, 2006.

The DECU was brought to Turbomeca in Bordes facilities to download the data. The examination was performed on 16 February, 2006 with the BEA accredited representative and with Mr Marquié from Turbomeca.

1.3 Synthesis

Flight duration recorded by the VEMD was 13 minutes 18.5 seconds.

Powering on duration recorded by the DECU was 14 minutes 21 seconds.

Neither failures nor over-limits were recorded by the VEMD.

A single failure block was recorded by the DECU.

3 electrical failures were recorded in this block.

"NG cycles" (Generator) and "NF cycles" (Free Turbine) were not recorded for this flight by the VEMD because the recording process was interrupted before the end of the flight.

Power discret input selector failures were recorded 10 times in the whole DECU record. The previous selector failure was recorded in the DECU, counter number 6582, identified as the VEMD flight number 2804. The recorded duration of this flight was 87 seconds.

The VEMD and DECU data analysis seems to indicate that the failures recorded by the DECU occurred simultaneously with the VEMD power supply loss.

It should be interesting to know:

- whether the power supply was shutdown before or just before the impact,
- what was the maintenance action after the VEMD flight number 2804.

A CD-Rom containing the following data accompanies this document:

Both raw VEMD data files in binary format:

✓ N11QD_EEPROM_AV2_0014.bin✓ N11QD_EEPROM_AV2_0042.bin

Decoded data in HTML format:

- ✓ "header.htm"
- ✓ "failure_report.htm"
- ✓ "flight_report.htm"
- ✓ "check_engine.htm"

DECU decoded data in text format:

- ✓ Prm1075a.dmp
- ✓ Prm1075b.dmp

Readout report in pdf format.

✓ N11QD_VEMD_DECU_Report.pdf

2 – VEMD EXAMINATION DETAILS

2.1 Technical information

The VEMD is installed on the instrument panel and designed to manage essential and nonessential vehicle and engine data. It manages:

- the display of vehicle parameters,
- the display of engine parameters,
- the computation and display of engine first limitation,
- the fail management procedures,
- the computation and display of weight related to performance data,
- the computation and display of the number of engine cycles.

It has four independent modes:

- INIT
- OPERATIONAL
- CONFIGURATION
- MAINTENANCE

Note: the last two modes are auxiliary modes, enabled only when the helicopter is on the ground.

2.2 External inspection and opening process

The VEMD was in good external condition.

The VEMD was opened to remove the two electronic boards containing both EEPROM memories.

A mechanical opening was performed to remove the two electronic boards containing both EEPROM memories.

Then an unsoldering process with temperature monitoring was performed to remove the memories.

2.2 Readout process

Readout was performed to download the memory raw data contained in the two EEPROM memories using a dedicated memory reader. Two binary files were extracted for the decoding process: N11QD_EEPROM_AV2_0014.bin and N11QD_EEPROM_AV2_0042.bin.

2.3 Data decoding process

The VEMD is designed to store maintenance data. The interpretation of retrieved data for accident investigation requires precise knowledge of the failure code designed by the manufacturer.

The decoding process was performed with the decoding grids produced by the manufacturer and using dedicated software developed at the BEA.

The areas relating to the presumed event flight were extracted and provided in appendix.

Memory mapping :

The VEMD contains two modules: AV-1 Module and AV-2 Module. Each module contains a 32 Kbyte EEPROM (non volatile memory) reserved for DATA and FAILURE storage. Four blocks are defined in each memory:

			Archive files :
2 Kbyte	EEPROM 1	Read only	"header.htm"
2 Kbyte	EEPROM 2	Write access	"failure_report.htm"
4 Kbyte		Unused memory space	
8 Kbyte	EEPROM 3	Write access	"flight_report.htm"
16 Kbyte	EEPROM 4	Write access	"check_engine.htm"

Figure 1: EEPROM mapping

- **EEPROM 1** is configured once and for all before equipment or module delivery and cannot be modified (Read Only). It is used to store:
 - ✓ module reference voltages,
 - ✓ other module reference voltages,
 - ✓ module VEMD part number, module part number and serial number.
- **EEPROM 2** is checked to be consistent at INIT with the data of the other module. If not, operational use is forbidden. It is used to store:
 - ✓ other_module reference voltages,
 - ✓ other_module VEMD part numbers,
 - ✓ torque calibration parameters,
 - ✓ configuration parameters,
 - ✓ compensation sensor data.
- **EEPROM 3** is used to store the 256 blocks of failure records.
- **EEPROM 4** is used to store:
 - ✓ 32 flight records,
 - ✓ 8 check engine records (only in memory of AV-1 module).

Note: in EEPROM 3 and EEPROM 4 new data continuously replaces the oldest data in the allocated memory space.

2.4 Results

VEMD memory chip examination process

	VEMD EEPROM
	memories
Unsoldering and cleaning	Х
Electrical characterisation	Х
Memory reading out	Х

All data recorded in the two VEMD memories was retrieved and decoded. The two last flight reports, including the accident flight, are given below (module AV1).

Flight number	2823 (0B07h)	2824 (0B08h)
Flight time	3 h 20 mn 35,00 s	13 mn 18,50 s
Module operating time	4550 h 10 mn 9,70 s	4550 h 52 mn 49,70 s
Engine operating time	4260 h 56 mn 54,70 s	4261 h 10 mn 13,15 s
NG cycles	0,32 cycle	0,00 cycle
NF cycles	0,07 cycle	0,00 cycle
Total NG cycles	624,40 cycle	626,45 cycles
Total NF cycles	232,55 cycle	233,00 cycles
Failure flag	0 (00h)	0 (00h)
Overlimit flag	0 (00h)	0 (00h)
NG - T1 over limitation value	4 mn 10.00 s	

- Flight number 2824 recorded in each module of the VEMD was identified as the accident flight.
- Flight duration recorded was 13 minutes 18.5 seconds.
- "Module operating time"¹ and "Engine operating time" were incremented respectively by 42 minutes 40 seconds and 13 minutes 18.45 seconds.
- "NG cycles" (Generator) and "NF cycles" (Free Turbine) were not recorded for this flight.
- Total NG cycles and Total NF cycles were incremented respectively by 2.05 and 0.45 cycles.
- Neither failures nor over-limits are recorded.

¹ In normal operation, the "Module operating time", "Engine operating time", "Total NG cycle", "Total NF cycle" parameters are refreshed in real time. At the end of flight, the DECU sends the "NG cycles" and "NF cycles" values to the VEMD. In this particular case, the recording process was interrupted before the end of the flight so the "NG cycles" and "NF cycles" parameters were not recorded.

3 – DECU EXAMINATION DETAILS

3.1 Technical information

DECU is an electronic onboard device performing fuel regulation, engine parameter management and failure recording. An internal EEPROM stores failure blocks dated in seconds from power up.

3.2 Readout process

Readout was performed to download the data contained in the DECU. Two text files were extracted: Prm1075a.dmp and Prm1075b.dmp.

The DECU is designed to store maintenance data. The interpretation of retrieved data for accident investigation requires precise knowledge of the failure code designed by the manufacturer.

3.3 Results

DECU examination process

The calculator was powered up in a dedicated test bench and the data were downloaded. All data recorded in the DECU were retrieved and decoded.

DECU failure commentary

Below, an analysis of the block of the event flight (block number 15) is presented:

Total DECU operation	Flight of the event duration after powering up	
MST(Power on counter)	6605	6602
Date	1787.4 heures	14 mn 21 s

To define that the block 15 concerns the flight of the event we compared:

- 1. The number of powering up of the block 15 and the total of DECU powering up^2 .
- 2. The flight duration between VEMD and DECU records³.

The recorded failures in block 15 are explained below:

Different time references

 $^{^{2}}$ After the event, the DECU was powered up three times during the readout process.

³ The difference between the flight duration recorded in the DECU and in the VEMD is probably due to:

[•] The fact that the DECU is designed to function with an emergency power supply.

PANNE_COHERENCE_NG_ALTERNATEUR_OUI: this failure concerns the DECU alternator.

PANNE_28V_NON : failure detected by the Operating system. It indicates a failure in the aircraft electrical system.

These two failures confirm an electrical failure on the aircraft electrical system.

PANNE_ARINC_HELICO : indicates a communication problem from DECU and VEMD via the ARINC BUS.

PANNE_ARR_OUI : Stop discrete input

PANNE_RAL_OUI : Idle discrete input

PANNE_VOL_OUI : Flight discrete input

These three failures indicate a failure concerning the three positions selector (related to the engine start) or a communication problem between this selector and the DECU input.

PANNE_CONVERSION_VOIE_A_NON

Failures detected by the Operating System. When a failure happens, these labels are triggered by the operating system.

PANNE_CONVERSION_VOIE_B_NON J

Note: « _OUI » or « _NON » at the end of failure labels indicates whether the failure was validated or not by the application software.

APPENDIX

Appendix 1 VEMD header (AV1)

Appendix 2 VEMD flight report (AV1) extract

Appendix 3 DECU extract (channel A)

Appendix 1

VEMD header (AV1)

	Identifiant	Valeur	Commentaire	Adresse	Taille
1	VREFCHAN10mV	0.010 V	VREF module - 10mV	00000h	2
2	VREFCHAN41mV	0.041 V	VREF module - 41 mV	00002h	2
3	VREFCHAN2V	1999.1000 mV	VREF module - 2V	00004h	2
4	VREFCHAN6V	6002.9000 mV	VREF module - 6V	00006h	2
5	CSM	00001772h (Csm invalide)	Checksum	00008h	4
6	VREFCHANOTH10mV	0.010 V	VREF other module 10 mV	0000Ch	2
7	VREFCHANOTH41mV	0.041 V	VREF other module 41 mV	0000Eh	2
8	VRECHANOTHF2V	1999.2000 mV	VREF other module 2 V	00010h	2
9	VREFCHANOTH6V	5993.7000 mV	VREF other module 6 V	00012h	2
10	PARTNUMCHAN	B19030SA	Module Vemd Part Number	00014h	8
11	MPARTNUMCHAN	C19184QD	Module Part Number	0001Ch	8
12	SERNUM	1651 (0673h)	VEMD Serial Number	00024h	2
13	CSM	00000673h (Csm invalide)	Checksum	00026h	4
14	SPARE	Spare ok	Spare	0002Ah	54
15	VREFOTHCHAN10mV	0.010 V	VREF other module 10mV	00800h	2
16	VREFOTHCHAN41mV	0.041 V	VREF other module 41mV	00802h	2
17	VREFOTHCHAN2V	2003.2000 mV	VREF other module 2V	00804h	2
18	VREFOTHCHAN6V	6008.5000 mV	VREF other module 6V	00806h	2
19	PARTNUMOTH	B19030SA	other module VEMD Part Number	00808h	8
20	MPARTNUMOTH	C19184RD	other module PartNumber	00810h	8
21	SERNUMOTH	1651 (0673h)	other module VEMD Serial Number	00818h	2
22	CSM	00000673h (Csm invalide)	Cheksum	0081Ah	4
23	OTHER	0	Calibrations & compensations data	0081Eh	2018

Appendix 2

VEMD flight report (AV1) extract

	Identifiant	Valeur	Commentaire	Adresse	Taille
2508	NUVOLM	2822 (0B06h)	Flight number	043C0h	2
			<u> </u>		
2509	FLIGHTIMEM	2 h 19 mn 14.00 s	Flight time	043C2h	2
		4546 h 42 mn	Moduler operating time		
2510	CHANOPTIMEM	27.35 s	(min et mx en heures)	043C4h	4
		4257 h 36 mn	Engine operating time (min		
2511	ENGOPTIMEM	19.55 s	et mx en heures)	043C8h	4
2512	CCNGM	0.27 cycle	NG cycles	043CCh	2
2513	CCNTLM	0.08 cycle	NF cycles	043CEh	2
2514	CCNGCM	622.70 cycle	Total NG cycles	043D0h	2
2515	CCNTLCM	232.05 cycle	Total NF cycles	043D2h	2
2516	BFAILM	0 (00h)	Failure flag	043D4h	1
2517	BOVLDETECM	0 (00h)	Overlimit flag	043D5h	1
2518	NRMAX1DEP	0.0 rpm	NR max 1	043D6h	1
2519	NRMAX2DEP	0.0 rpm	NR max 2	043D7h	1
2520 2521	NRMAX3DEP	0.0 rpm	NR max 3	043D8h	1
2521	NRMAX4DEP NRMAX5DEP	0.0 rpm	NR max 4 NR max 5	043D9h 043DAh	1
2522	TRQMAXDEP	0.0 rpm 0.0 %	TRQ max	043DAn 043DBh	1
2523	TRQT1DEP	0.0 %	TRQ - T1	043DCh	2
2524	TRQT2DEP	0.0 s	TRQ - T2	043DEh	2
2525	TRQT3DEP	0.0 s	TRQ - T2 TRQ - T3	043E0h	2
2520	TRQHT1DEPH	0.0 s	TRQ - H - T1	043E2h	2
2527	TRQHT2DEPH	0.0 s	TRQ - H - T2	043E4h	2
2520	TRQHT3DEPH	0.0 s	TRQ - H - T3	043E6h	2
2530	TRQHMAXDEPH	0.0 %	TRQ - H - Max	043E8h	1
2530	NFMAXDEP	0.0 //	NFMAX	043E9h	1
2532	NFT1DEP	0.0 s	NF - T1	043EAh	2
2533	NFT2DEP	0.0 s	NF - T2	043ECh	2
2000			T4 LOW over limitation	0102011	
2534	T4LOWDEP	0.0 s	value	043EEh	2
			T4 MED over limitation		
2535	T4MEDDEP	0.0 s	value	043F0h	2
2536	T4LHIDEP	0.0 s	T4 HI over limitation value	043F2h	2
			T4 MAX D over limitation		
2537	T4MAXDDEP	0.0 °C	value	043F4h	2
2538		0.0.°C	T4 MAX V over limitation	042546	2
2038	T4MAXVDEP	0.0 °C	value	043F6h	2
2539	NGT1DEP	2 mn 51.50 s	NG - T1 over limitation value	043F8h	2
2007	NOTIDEI	2 miror.003	NG - T2 over limitation	0401011	2
2540	NGT2DEP	0.0 s	value	043FAh	2
			NG - T3 over limitation		
2541	NGT3DEP	0.0 s	value	043FCh	2
			NG MAX over limitation		
2542	NGMAXDEP	0.00 %	value	043FEh	2
2543	SPARE	Spare ok	SPR	04400h	128
2544	NUVOLM	2823 (0B07h)	Flight number	04480h	2
2545	FLIGHTIMEM	3 h 20 mn 35.00 s	Flight time	04482h	2
-2544		4550 h 10 mn	Moduler operating time	044045	4
2546	CHANOPTIMEM	9.70 s	(min et mx en heures)	04484h	4
2547	ENGOPTIMEM	4260 h 56 mn 54.70 s	Engine operating time (min et mx en heures)	04488h	4
2547 2548	CCNGM	0.32 cycle	NG cycles	044880 0448Ch	4
2040		U.32 LYLIE	NG CYCLES	0440011	∠

2549	CCNTLM	0.07 cycle	NF cycles	0448Eh	2
2550	CCNGCM	624.40 cycle	Total NG cycles	04490h	2
2551	CCNTLCM	232.55 cycle	Total NF cycles	04492h	2
2552	BFAILM	0 (00h)	Failure flag	04494h	1
2553	BOVLDETECM	0 (00h)	Overlimit flag	04495h	1
2554	NRMAX1DEP	0.0 rpm	NR max 1	04496h	1
2555	NRMAX2DEP	0.0 rpm	NR max 2	04497h	1
2555	NRMAX3DEP		NR max 3	0449711 04498h	1
2557	NRMAX3DEP	0.0 rpm	NR max 4	04498h	1
2558	NRMAX5DEP	0.0 rpm	NR max 5	0449911 0449Ah	1
2558		0.0 rpm			1
2559		0.0 %	TRQ max	0449Bh	2
	TRQT1DEP	0.0 s	TRQ - T1	0449Ch	
2561	TRQT2DEP	0.0 s	TRQ - T2	0449Eh	2
2562	TRQT3DEP	0.0 s	TRQ - T3	044A0h	2
2563	TRQHT1DEPH	0.0 s	TRQ - H - T1	044A2h	2
2564	TRQHT2DEPH	0.0 s	TRQ - H - T2	044A4h	2
2565	TRQHT3DEPH	0.0 s	TRQ - H - T3	044A6h	2
2566	TROHMAXDEPH	0.0 %	TRQ - H - Max	044A8h	1
2567	NFMAXDEP	0 rpm	NFMAX	044A9h	1
2568	NFT1DEP	0.0 s	NF - T1	044AAh	2
2569	NFT2DEP	0.0 s	NF - T2	044ACh	2
			T4 LOW over limitation	_	
2570	T4LOWDEP	0.0 s	value	044AEh	2
0574			T4 MED over limitation	04450	0
2571	T4MEDDEP	0.0 s	value	044B0h	2
0570		0.0.5		044004	0
2572	T4LHIDEP	0.0 s	T4 HI over limitation value	044B2h	2
2572		0.0.%	T4 MAX D over limitation	044046	2
2573	T4MAXDDEP	0.0 °C		044B4h	2
	T4MAXVDEP	0.0 °C	T4 MAX V over limitation value	044B6h	2
2374	THINANULL	0.0 C		0440011	2
2575	NGT1DEP	4 mn 10.00 s	NG - T1 over limitation value	044B8h	2
2010	NOTIDEI	4 1111 10:00 3	NG - T2 over limitation	0440011	2
2576	NGT2DEP	0.0 s	value	044BAh	2
2070		010 0	NG - T3 over limitation	0110/11	_
2577	NGT3DEP	0.0 s	value	044BCh	2
			NG MAX over limitation		
2578	NGMAXDEP	0.00 %	value	044BEh	2
2579	SPARE	Spare ok	SPR	044C0h	128
2580	NUVOLM	2824 (0B08h)	Flight number	04540h	2
2581	FLIGHTIMEM	13 mn 18.50 s	Flight time	04542h	2
		4550 h 52 mn	Moduler operating time		
2582	CHANOPTIMEM	49.70 s	(min et mx en heures)	04544h	4
		4261 h 10 mn	Engine operating time (min		
2583	ENGOPTIMEM	13.15 s	et mx en heures)	04548h	4
2584	CCNGM	0.00 cycle	NG cycles	0454Ch	2
2585	CCNTLM	0.00 cycle	NF cycles	0454Eh	2
2586	CCNGCM	626.45 cycle	Total NG cycles	04550h	2
2587	CCNTLCM	233.00 cycle	Total NF cycles	04552h	2
2588	BFAILM	0 (00h)	Failure flag	04554h	1
2589	BOVLDETECM	0 (00h)	Overlimit flag	04555h	1
2590	NRMAX1DEP	0.0 rpm	NR max 1	04556h	1
2591	NRMAX2DEP	0.0 rpm	NR max 2	04557h	1
2592	NRMAX3DEP	0.0 rpm	NR max 3	04558h	1
2593	NRMAX4DEP	0.0 rpm	NR max 4	04559h	1
2594	NRMAX5DEP	0.0 rpm	NR max 5	0455Ah	1
2595	TRQMAXDEP	0.0 %	TRQ max	0455Bh	1
2596	TRQT1DEP	0.0 s	TRQ - T1	0455Ch	2
2597	TRQT2DEP	0.0 s	TRQ - T2	0455Eh	2
2598	TRQT3DEP	0.0 s	TRQ - T3	04560h	2
		0.03		0100011	-

2599	TRQHT1DEPH	0.0 s	TRQ - H - T1	04562h	2
2600	TRQHT2DEPH	0.0 s	TRQ - H - T2	04564h	2
2601	TRQHT3DEPH	0.0 s	TRQ - H - T3	04566h	2
2602	TRQHMAXDEPH	0.0 %	TRQ - H - Max	04568h	1
2603	NFMAXDEP	0 rpm	NFMAX	04569h	1
2604	NFT1DEP	0.0 s	NF - T1	0456Ah	2
2605	NFT2DEP	0.0 s	NF - T2	0456Ch	2
2606	T4LOWDEP	0.0 s	T4 LOW over limitation value	0456Eh	2
	T4MEDDEP	0.0 s	T4 MED over limitation value	04570h	2
2608	T4LHIDEP	0.0 s	T4 HI over limitation value	04572h	2
2609	T4MAXDDEP	0.0 °C	T4 MAX D over limitation value	04574h	2
2610	T4MAXVDEP	0.0 °C	T4 MAX V over limitation value	04576h	2
2611	NGT1DEP	0.0 s	NG - T1 over limitation value	04578h	2
	NGT2DEP	0.0 s	NG - T2 over limitation value	0457Ah	2
2613	NGT3DEP	0.0 s	NG - T3 over limitation value	0457Ch	2
2614	NGMAXDEP	0.00 %	NG MAX over limitation value	0457Eh	2
2615	SPARE	Spare ok	SPR	04580h	128

Appendix 3

DECU flight of the event extract (channel A)

Extract of DECU data CR: outil "PRO.EXE" vers:3.9 Date : 16.02.06 FADEC S/N : 1075A Nombre MST : 6605 Temps Util : 1787.40 h Usure EEPROM: 0 Cycles NTL : 291.75 Cycles NG : 783.71 OEI 2mn Nb : 0.00 OEI 2mn Cum: 0.00 OEI 30s Nb : 0.00 OEI 30s Cum : 0.00 Reg Moteur : 0.01 Date Diag de +8pan : 4470 Moteur : Arriel 2B1 Double-canal Materiel : C12380KA01XX Amorce : G1377AEA04 Autom.FProm : G1377ACB02 Autom.Eprom : G1377ACB02 Applicatif: L622C00404 CRC : 3CF9 CSM : A606 Voie : A Version : CLIENT : 000000 Recette Genre fadec : DC=01 Option Volet: Absente=01 Option Surv : Absente=00

Tableau resume des pannes

Nombre Description de panne

13 PANNE_CONVERSION_VOIE_A_NON 13 PANNE_CONVERSION_VOIE_B_NON PANNE 28V NON 1 PANNE_ARINC_HELICO_OUI PANNE_P3_OUI 3 1 10 PANNE_ARR_OUI PANNE_RAL_OUI PANNE_VOL_OUI 10 10 1 PANNE_COHERENCE_NG_ALTERNATEUR_OUI ======== _____ _____ Bloc : 15 Mst : 000019CA Date : 0000035D Csum : B5 Csum Ok Panne:1 0006 => PANNE_CONVERSION_VOIE_A_NON 0001 => INTERNE Panne:2 0007 => PANNE_CONVERSION_VOIE_B_NON 0001 => INTERNE Panne:3 000D => PANNE 28V NON 0001 => INTERNE Panne:4 0012 => PANNE_ARINC_HELICO_OUI 0001 => INTERNE Panne:5 0045 => PANNE ARR OUI 0001 => INTERNE Panne:6 0047 => PANNE_RAL_OUI 0001 => INTERNE Panne:7 0049 => PANNE_VOL_OUI 0001 => INTERNE Panne:8 0069 => PANNE_COHERENCE_NG_ALTERNATEUR_OUI 0001 => INTERNE

BEA

Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile

Aéroport du Bourget - Bâtiment 153 93352 Le Bourget Cedex - France T :+33 1 49 92 72 00 - F :+33 1 49 92 72 03 www.bea.aero

