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Summary
This report is a study on the prediction of rogue waves during Hurricane Joaquin provided
as a supplement to the National Transportation Safety Board (NTSB) to assist them in
their investigation of the sinking of the Merchant Vessel El Faro, which occurred east of
the Bahamas on October 1, 2015. This study involved using high resolution hindcasts of
hurricane-generated sea states and wave simulations combined with probabilistic models to
quantify the ocean rogue wave conditions around the time and location of the accident.

Rogue waves have been observed in oceans around the world over the course of a decade.
Such waves stem from a combination of constructive interference and nonlinear effects specific
to the complex dynamics of ocean waves. In rare conditions, waves arrive in an organized
way or almost in phase, leading to an unusual case of constructive interference that can yield
resulting waves with large amplitudes. But this still cannot explain the size of real world
ocean rogue waves. That difference can be accounted for by the nonlinear nature of ocean
waves, which are not sinusoidal - but instead have rounded troughs, along with sharp peaks
that result from the water being pushed upward against the pull of gravity. Thus, one needs
to account for the nonlinearity of the ocean, which is manifested in the lack of symmetry
between the crests and the troughs. These nonlinearities add onto the effects of constructive
interference and yield an enhancement of the crest height, i.e. the vertical distance from the
mean sea level to the top of the wave. As a result, the formation of a rogue wave at a given
point of the ocean is simply chance.

Our rogue wave analysis focused on the study of the 1-hour sea state of Hurricane Joaquin
during which the El Faro vessel sank. We estimated that a fixed observer at a point of the
ocean has a very small probability Pe ≈ 10−6 to encounter a rogue wave whose crest height
exceeds 14 meters ≈ 1.6Hs, Hs being the significant wave height defined as four times
the standard deviation of surface wave elevations. Further, this probability estimate is of
the same order as those for the Andrea and Draupner rogue waves, observed at different
oil platforms in the North Sea in 1995 and 2007, respectively and the Killard rogue wave
observed off the coast of Ireland in 2015.

However, the data suggests that the El Faro vessel was drifting at an average speed of
approximately 2.5 m/s prior to its sinking. As a result, El Faro has a higher probability to
encounter a rogue wave while drifting over a period of time. Indeed, the encounter of a rogue
wave by a moving vessel is analogous to that of a big wave that a surfer is in search of. The
surfer’s likelihood to encounter a big wave increases if he moves around a large area instead
of staying still; if he spans a large area the chances to encounter a large wave increase. This
is a space-time effect very important for ship navigation and it cannot be neglected. Such an
effect is considered in our rogue wave analysis by way of a new probabilistic model for the
prediction of rogue waves encountered by a vessel along its navigation path. In particular,
we give a theoretical formulation and interpretation of the encounter probability of a rogue
wave by a moving vessel. This probability is unconditional as it is not conditioned on the
event that the sinking of El Faro happened.

According to our analysis, the probability that El Faro encounters a rogue wave whose
crest height exceeds 14 meters while drifting over a time interval of 10 minutes is Pe ≈ 1/400.
We also observed that the encounter probability does not scale linearly with time because of
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nonlinearities that reduce the natural dispersion of waves. Indeed, assuming that the vessel
drifts over a time interval 5 times longer (50 minutes), the encounter probability is roughly
3 times larger, i.e. Pe ≈ 1/130.

The predicted rogue wave has similar generating mechanism and characteristics of the
Andrea, Draupner and Killard rogue waves. We found that the main mechanism responsible
for generating these waves is the constructive interference of elementary waves enhanced by
bound nonlinearities and space-time effects, in agreement with recent studies by the first
author. An analysis of the kinematics of the simulated rogue waves suggests that such waves
were nearly incipient breaking, limiting the likelihood of larger rogue events.

The present analysis provides the basis for an improved understanding of how rogue waves
originate during hurricanes and could lead to improved techniques for identifying ocean areas
likely to spawn them, allowing shipping companies to avoid dangerous seas.
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1 Introduction
The tragic sinking of the SS El Faro vessel occurred while it was traveling from Florida to
Puerto Rico. The vessel with a crew of 33 sank about 1140 Hrs UTC on Oct. 1, 2015.

As part of their investigation into the sinking of the El Faro, the National Transportation
Safety Board (NTSB) has requested an analysis on the occurrence of rogue waves during
Hurricane Joaquin around the time and location of the El Faro’s sinking. To do so, we used
as an input the WAVEWATCH III1 hindcast sea states provided by the National Oceanic
and Atmospheric Administration (NOAA) for the time period and region that correspond
to the sinking of the El Faro vessel.

The report is structured as follows. In section 2, we will discuss the sea states char-
acteristics and wave extremes of the Hurricane Joaquin as it passed through the region of
the sinking of El Faro. The convenient wave parameters and statistical models are defined
in Appendix A.1. We use the directional spectra of the hindcast hourly sea states, which
describe the complex energy flow of the associated wave field as an output of WAVEWATCH
III.

In section 3, we discuss the statistical properties of the sea states generated by Hurricane
Joaquin. Then, in section 4 we focus on the study of the 1-hour sea state during which the El
Faro vessel sank, hereafter referred to El Faro sea state. We exploit a higher order spectral
method to solve numerically for the Euler equations governing the dynamics of the ocean
wave field. Initial conditions for the wave field are obtained from the directional spectrum
as an output of WAVEWATCH III. In sections 5 and 6, we present the rogue wave analysis
for the El Faro sea state. In particular, we first study the encounter probability of rogue
waves by a fixed observer at a given point of the ocean. The largest simulated rogue wave
and its generating mechanism and characteristics are then compared to those of the Andrea
and Draupner rogue waves, observed at different oil platforms in the North Sea in 1995 and
2007, respectively, and the Killard rogue wave observed off the coast of Ireland in 2015.2
The metaocean parameters of the four sea states are summarized in Table 1.

In section 7 we study the space-time statistical properties of the El Faro sea state by way
of a new probabilistic model for the prediction of rogue waves encountered by a vessel along its
navigation path. In particular, we give a theoretical formulation of the encounter probability
of a rogue wave by a moving vessel and its statistical interpretation. The data suggest that
the El Faro vessel was drifting at an estimated average speed of approximately 2.5 m/s
prior to its sinking. Thus, we estimate what is the unconditional probability that El Faro
encounters a rogue wave while drifting over a given period of time.

Then, in Section 8 we present results on the breaking onset of the simulated rogue waves.
Conclusions in Section 9 and specific recommendations for future analyses and studies in
Section 10 are finally provided.
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El Faro Andrea Draupner Killard
Significant wave height Hs [m] 9.0 10.0 11.2 11.4
Dominant wave period Tp [s] 10.2 14.3 15.0 17.2
Mean zero-crossing wave period T0 [s] 9.2 11.1 11.3 13.2
Mean wavelength L0 [m] 131 190 195 246
Depth d [m], k0d 4700, 263 74, 2.23 70, 2.01 58, 1.36
Spectral bandwidth ν 0.49 0.35 0.36 0.37
Angular spreading σθ 0.79 0.43 0.44 0.39
Parameter R = σ2

θ/2ν
2 3 1.34 0.72 0.75 0.56

Benjamin Feir Index BFI in deep water 4 0.36 0.24 0.23 0.18
Tayfun NB skewness λ3,NB

5 0.26 0.159 0.165 0.145
Mean skewness λ3 from HOS simulations 0.162 0.141 0.146 0.142
Maximum NB dynamic excess kurtosis λd

40,max
6 10−3 1.3 · 10−3 1.1 · 10−3 1.6 · 10−3

Janssen NB bound excess kurtosis λd
40,NB

7 0.049 0.065 0.074 0.076
Mean excess kurtosis λ40 from HOS simulations 0.042 0.041 0.032 −0.011

Actual maximum crest height h/Hs 1. 68 1.55 1.63 1.62
Actual maximum crest-to-trough (wave) height H/Hs 2.6 2.30 2.15 2.25

Table 1: Wave parameters and various statistics of the simulated El Faro sea state in com-
parison to the Andrea, Draupner and Killard rogue sea states.2 We refer to Appendix A.1
for the definitions of the wave parameters.

2 Metaocean parameters of Hurricane Joaquin in the re-
gion of the sinking of El Faro

In this section, we use the hindcast directional spectra by WAVEWATCH III and describe
the wave characteristics of the sea states generated by Hurricane Joaquin about the time
and location where the El Faro vessel sank. In the following we refer to Appendix A.1 for
the definitions of metaocean parameters and details.

The top panel on the left of Fig. (1) shows hourly variations of the significant wave height
Hs during the event. The top-right panel displays the history of the dominant wave period
Tp, and the dominant wave direction, the U10 wind speed and direction are shown in the
bottom-panels respectively. The red vertical lines delimit the 1–hour interval during which
the El Faro vessel sank. The hourly variations of the mean wavelength L0 and associated
mean wave period T0 are shown in Fig. (2).

The encountered 1-hour sea state by El Faro about the time and location of sinking,
hereafter referred to as El Faro sea state, had a significant wave height of Hs ≈ 9 m and it
was very multidirectional (short-crested) as indicated by the large values of both the spectral
bandwidth ν and angular spreading θv as seen in Fig. (3).

In Table 1 we report the metaocean parameters of the El Faro sea state in comparison to
those of the Draupner, Andrea and Killard rogue sea states.2 Note that the four sea states
have similar metaocean characteristics. However, El Faro is a steeper sea state as the mean
wavelengh L0 is shorter than the other three states.
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Figure 1: WAVEWATCH III parameters history during Hurricane Joaquin around the lo-
cation where the El Faro vessel sank. (top-left) Hourly variation of the significant wave
height Hs, (top-right) dominant wave period Tp, (bottom-left) dominant wave direction and
(bottom-right) normalized U10/U10,max wind speed (solid line) and direction (dashed line).
Maximum wind speed U10,max ≈ 51 m/s. Red vertical lines delimit the 1–hour interval
during which the El Faro vessel sank.

3 Statistical properties of Hurricane Joaquin-generated
seas

The relative importance of ocean nonlinearities can be measured by integral statistics such
as the wave skewness λ3 and the excess kurtosis λ40 of the zero-mean surface elevation η(t):

λ3 = η3/σ3, λ40 = η4/σ4 − 3 . (1)

Here, overbars imply statistical averages and σ is the standard deviation of surface wave
elevations (see Appendix A.1 for definitions of the statistical parameters and details). For
second-order waves in deep water8

λ3 ≈ 3µm(1− ν + ν2), (2)

and the following bounds hold5

3µm(1−
√
2ν + ν2) ≤ λ3 ≤ 3µm. (3)
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Figure 2: WAVEWATCH III parameters history during Hurricane Joaquin around the lo-
cation where the El Faro vessel sank. (top) Hourly variation of the mean wavelength L0

history and (bottom) associated mean wave period T0. Red vertical lines delimit the 1-hour
interval during which the El Faro vessel sank.

Here, ν is the spectral bandwidth and the characteristic wave steepness µm = kmσ, where
km is the wavenumber corresponding to the mean spectral frequency ωm.9 For narrowband
(NB) waves, ν tends to zero and the associated skewness λ3,NB = 3µm.8–10

The skewness coefficient represents the principal parameter with which we describe the
effects of second-order bound nonlinearities on the geometry and statistics of the sea surface
with higher sharper crests and shallower more rounded troughs.8–10 The excess kurtosis
comprises a dynamic component due to third-order quasi-resonant wave-wave interactions
and a bound contribution induced by both second- and third-order bound nonlinearities.3,8–12

For third-order nonlinear random seas the excess kurtosis

λ40 = λd
40 + λb

40 (4)

comprises a dynamic component λd
40 due to nonlinear quasi-resonant wave-wave interac-

tions3,4 and a Stokes bound harmonic contribution λb
40.7 Janssen7 derived a complex general

formula for the bound excess kurtosis. For narrowband (NB) waves, the formula is more
compact (see Eq. (A23) in7 and Appendix A.1). For instance, in deep water it reduces to
the simple form λb

40,NB = 18µ2
m = 2λ2

3,NB
3,7, 13 where λ3,NB is the skewness of narrowband

waves.9
As for the dynamic component, Fedele6 recently revisited Janssen’s4 weakly nonlinear

formulation for λd
40. In deep water, this is given in terms of a six-fold integral that depends

on the Benjamin-Feir index BFI = µm/
√
2ν and the parameter R = σ2

θ/2ν
2, which is

a dimensionless measure of the multidirectionality of dominant waves.3,14 Here, ν is the
spectral bandwidth and σθ denotes angular spreading.3,14 As waves become unidirectional
(1D) waves R tends to zero.
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Figure 3: WAVEWATCH III parameters history during Hurricane Joaquin around the lo-
cation where the El Faro vessel sank. (top) Hourly variation of the spectral bandwidth ν
history, (center) directional spreading θv and (bottom) directional factor R = 1

2
ν2/θ2v. Red

vertical lines delimit the 1-hour interval during which the El Faro vessel sank.

Recent theoretical results clearly show that third-order quasi-resonant interactions play
an insignificant role in the formation of large waves in realistic oceanic seas.2,6 Further,
oceanic evidence available so far10,15,16 seems to suggest that the statistics of large oceanic
wind waves are not affected in any discernible way by quasi-resonant nonlinearities, including
NLS-type modulational instabilities that attenuate as the wave spectrum broadens.17 How-
ever, bound nonlinearities affect both skewness and kurtosis as they shape the wave surface
with sharper crests and shallower troughs.

The bottom panel of Fig. (3) displayes the hourly variations of the directional factor R
during Hurricane Joaquin near the location where El Faro sank. About the peak of the
hurricane the generated sea states are very multidirectional (short-crested) as R > 1 and so
wave energy can spread directionally. As a result, nonlinear focusing due to modulational
instability effects diminishes6,18–20 and becomes essentially insignificant under such realistic
oceanic conditions.2,6, 21,22

The top panel of Fig. (4) displayes the hourly variation of the Tayfun steepness µ (solid
line) with bounds (dashed lines). The excess kurtosis λ40 mostly due to bound nonlinearities
is shown in the center panel and the associated Λ parameter at the bottom. The red vertical
lines delimit the 1-hour interval during which the El Faro vessel sank.

In Table 1 we compare the statistical parameters of the El Faro sea state and the Draup-
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Figure 4: WAVEWATCH III parameters history during Hurricane Joaquin around the loca-
tion where the El Faro vessel sank. (top) Hourly variation of the Tayfun steepness µ (solid
line) with bounds (dashed lines), (center) excess kurtosis λ40 and (bottom) nonlinear coef-
ficient Λ ∼ 8λ40/3. Red vertical lines delimit the 1-hour interval during which the El Faro
vessel sank.

ner, Andrea and Killard rogue sea states.2 Note that the El Faro sea state has the largest
directional spreading. Moreover, for all the four sea states the respective BFI parameters
are less than unity and the maximum dynamic excess kurtosis is of O(10−3) and thus neg-
ligible in comparison to the associated bound component. Hereafter, this will be confirmed
further by a quantitative analysis based on simulations of the El Faro sea state.

4 Higher Order Spectral (HOS) simulations of the El
Faro sea state

We have performed numerical simulations of the El Faro sea state during which the vessel
sank in order to investigate the statistical properties and rogue waves of the wave field
encountered by the El Faro vessel. To attain high accuracy and efficiency in the numerical
simulations we used the Higher-Order pseudo-Spectral (HOS) method23,24 to solve for the
nonlinear wave propagation problem modeled by the Euler equations. In particular, the
associated initial boundary value problem for the Laplace equation with nonlinear boundary
conditions on the free-surface is solved by way of a perturbation expansion of the potential
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velocity field up to a prescribed order of nonlinearities. A detailed description of the Euler
equations and of the HOS numerical method are given in Appendix A.3.

We used as an input for the HOS solver the hourly WAVEWATCH III hindcast directional
spectrum S(f, θ) around the time and region of the El Faro sinking shown in Fig. 5. This
is used to define the initial wave field conditions for the HOS simulations. The hindcast
spectrum is the result of a balance among wind input, four-wave resonance nonlinearities and
wave breaking. Our HOS simulations are performed accounting only for the full (resonant
and bound) nonlinearities of the Euler equations up to fourth order in wave steepness.
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Figure 5: WAVEWATCH III hindcast directional spectrum S(f, θ) [m2s/rad] at approxi-
mately the time and location of the El-Faro sinking.

The first set of simulations of the El Faro sea state have a duration of at least 30 minutes
to a maximum of 1 hour, the computational domain D1 has an area of 2 km x 2 km and we
resolve the wave field using 512 x 512 Fourier modes. A second set of simulations have been
performed for a larger computational domain D2 of area 4 km x 4 km with doubled number
of Fourier modes (1024 x 1024) to keep the same resolution.

In order to quantify the effects of nonlinearities (free and bound harmonic interactions)
on the wave propagation, we have examined the wavenumber-frequency spectrum S(k, ω)
estimated from the HOS simulations of the El Faro sea state over the larger domain D2 for
a duration of 30 min. This is shown in Figure 6, where dashed lines denote the theoretical
dispersion curves associated with the first-order (1st) free waves as well as the second (2nd)
and third-order (3rd) bound harmonic waves. We observe that the HOS predictions indicate
that second order nonlinearities are dominant with a weak effect of third-order nonlinear
bound interactions, in agreement with recent studies of rogue sea states.2

We also observed insignificant differences between third-order and fourth-order HOS sim-
ulations. Further, the associated statistical parameters such as skewness and kurtosis rapidly
reach a steady state as an indication that quasi-resonant wave-wave interactions due to modu-
lation instabilities are negligible in agreement with theoretical predictions6 and simulations.2
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Note that theoretical narrowband predictions slightly overestimate the simulated values for
skewness and excess kurtosis (see Table 1). The same trend is also observed in recent stud-
ies on rogue waves.2 This is simply because narrowband approximations do not take into
account the directionality and the finite bandwidth of the wave spectrum of the El Faro sea
state.

Hereafter, we will investigate the wave statistics and rogue waves of the simulated El
Faro sea state.

Figure 6: HOS simulations of the El Faro sea state: predicted wavenumber-frequency spec-
trum S(k, ω) [m2s/rad]. Dashed lines denote the theoretical dispersion curves associated
with first-order (1st) free waves as we all as second (2nd) and third-order (3rd) bound har-
monic waves.

5 Encounter probability of a rogue wave by a fixed ob-
server: the return period of a wave whose crest height
exceeds a given threshold

To describe the statistics of rogue waves encountered by a fixed observer at a given point
of the ocean, we consider the conditional return period Nh(ξ) of a wave whose crest height
exceeds the threshold h = ξHs, namely

Nh(ξ) =
1

Pr{h > ξHs}
=

1

P (ξ)
, (5)

where P (ξ) is the probability of a wave crest height exceeding ξHs as encountered by a fixed
observer. In other words, P (ξ) is the probability that a wave observed at a fixed point of
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25 and 1.6Hs respectively.

the ocean has a crest height that exceeds the threshold ξHs. Equation (5) also implies that
the threshold ξHs, with Hs = 4σ, is exceeded on average once every Nh(ξ) waves.

For weakly nonlinear random seas, the probability P can be described by the (third-
order) TF, (second-order Tayfun) T or (linear Rayleigh) R distributions. In particular,10

PTF (ξ) = Pr{h > ξ Hs} = exp
(
−8 ξ20

) [
1 + Λξ20

(
4 ξ20 − 1

)]
, (6)

where ξ0 follows from the quadratic equation ξ = ξ0 + 2µ ξ20 .9 Here, the Tayfun wave
steepness µ = λ3/3 is of O(µm) and it is a measure of second-order bound nonlinearities
as it relates to the skewness of surface elevations.8 The parameter Λ is a measure of third-
order nonlinearities as a function of the fourth order cumulants of the wave surface.10 In
our studies it is approximated by Λappr = 8λ40/3 (see Appendix A.1). For second-order
seas, hereafter referred to as Tayfun sea states,26 Λ = 0 only and PTF in Eq. (9) yields the
Tayfun (T) distribution9

PT (ξ) = exp
(
−8ξ20

)
. (7)
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For Gaussian seas, µ = 0 and Λ = 0 and PTF reduces to the Rayleigh (R) distribution

PR(ξ) = exp
(
−8ξ2

)
. (8)

Note that the Tayfun distribution represents an exact result for large second order wave
crest heights and it depends solely on the steepness parameter defined as µ = λ3/3.8

Our statistical analysis of HOS wave data suggest that second-order effects are the dom-
inant factors in shaping the probability structure of the El Faro sea state with a minor
contribution of excess kurtosis effects. Such dominance is seen in Fig. 7, where the HOS
numerical predictions of the conditional return period Nh(ξ) of a crest exceeding the thresh-
old ξHs are compared against the theoretical predictions based on the linear Rayleigh (R),
second-order Tayfun (T) and third-order (TF) models from Eq. (9). In particular, Nh(ξ)
follows from Eq. (5) as the inverse 1/P (ξ) of the empirical probabilities of a crest height
exceeding the threshold ξHs. An excellent agreement is observed between simulations and
the third-order TF model, which slightly exceeds the second-order T model as an indication
that second-order effects are dominant, whereas the linear Rayleigh model underestimates
the empirical return periods.

For both third- and fourth-order nonlinearities, the return period Nr of a wave whose
crest height exceeds the rogue threshold25 1.25Hs ≈ 11 m is nearly Nr ∼ 104 for the El
Faro sea state and for the simulated Andrea, Draupner and Killard rogue sea states.2 This
is in agreement with oceanic rogue wave measurements,16 which indicate that the rogue
threshold for crest heights is exceeded on average once every Nr ∼ 104 waves. Similarly,
recent measurements off the west coast of Ireland27 yield Nr ∼ 6 · 104. In contrast, in a
Gaussian sea the same threshold is exceeded more rarely and on average once every ∼ 3 ·105
waves.

Note that the largest wave crest height observed in the simulated El Faro sea state exceeds
the threshold 1.6Hs ≈ 14 m (see Table 1). This is exceeded on average once every 106

waves in a time series extracted at a point in third- and fourth-order seas and extremely
rarely in Gaussian seas, i.e. on average once every 109 waves. This implies that rogue
waves observed at a fixed point of the ocean are likely to be rare occurrences of weakly
random seas, or Tayfun sea states.26 Our results clearly confirm that rogue wave generation
is the result of the constructive interference (focusing) of elementary waves enhanced by
bound nonlinearities in agreement with the theory of stochastic wave groups proposed by
Fedele and Tayfun (2009),8 which relies on Boccotti’s theory of quasi-determinism.28 Our
conclusions are also in agreement with observations.8,10,12,15

6 Time profile of the simulated rogue waves
The wave profile η with the largest wave crest height (> 1.6Hs ≈ 14 m, see Table 1) observed
in the time series of the surface fluctuations extracted at points randomly sparse over the
simulated domain of the El Faro sea state is shown in the left panel of Fig. (9) and compared
against the Draupner, Andrea and Killard rogue wave profiles.2 In the same figure, the mean
sea level (MSL) below the crests is also shown. The estimation of the MSL follows by low-
pass filtering the measured time series of the wave surface with frequency cutoff fc ∼ fp/2,
where fp is the frequency of the spectral peak.29
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The four wave profiles are very similar suggesting a common generation mechanism of
the rogue events. Further, we observe a set-up of the MSL below the simulated El Faro rogue
wave most likely due to the multidirectionality of the sea state. We point out that a set-up
is also observed for the actual Draupner rogue wave. Indeed, recent studies about Draupner
reported that the hindcast from the European Centre for Medium-Range Weather Forecasts
shows swell waves propagating at approximately 80 degrees to the wind sea.30 They argued
that the Draupner wave may be due to the crossing of two almost orthogonal wave groups
in accord with second-order theory. This would explain the set-up observed under the large
wave29 instead of the second-order set-down normally expected.31

Finally, the average wave profile with a crest height that exceeds the rogue thresh-
old25 1.25Hs ≈ 11 m is shown in Fig. (8). The set-up of the MSL is also evident.
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Figure 8: Third-order HOS simulated extreme wave profiles η/ηmax (solid) and mean sea
levels (MSL) (dashed) versus the dimensionless time t/Tp for (from left to right) El Faro,
Andrea, Draupner and Killard waves. ηmax is the maximum crest height given in Table 1.
For comparisons, actual measurements (thick solid) and MSLs (thick solid) are also shown
for Andrea, Draupner and Killard. Note that the Killard MSL is insignificant and the Andrea
MSL is not available. Tp is the dominant wave period (see Appendix A.1 for definitions).

7 Space-time statistics of the encountered sea state by
El Faro before sinking

The largest crest height of a wave observed in time at a given point of the ocean represents
a maximum observed at that point. Clearly, the maximum wave surface height observed
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Figure 9: Third-order HOS simulated average extreme wave profile η/Hs with a crest height
that exceeds the rogue threshold25 1.25Hs ≈ 11 m (black solid) and mean sea level (MSL)
(dashed) versus the dimensionless time t/Tp, where Tp is the dominant wave period and Hs

is the significant wave height (see Appendix A.1 for definitions). Red lines denote sampled
time wave profiles extracted at stochastically independent random points sparse over the
computational domain of the HOS simulations.

over a given area during a time interval, i.e. space-time extreme, is much larger than that
observed at a given point. Indeed, in relatively short-crested directional seas such as those
generated by hurricanes, it is very unlikely that an observed large crest at a given point in
time actually coincides with the largest crest of a group of waves propagating in space-time.
In contrast, in accord with Boccotti’s quasi-determinism theory,28 it is most likely that the
sea surface was in fact much higher somewhere near the measurement point.

Space-time wave extremes can be modeled stochastically32,33 drawing on the theory of
Euler Characteristics of random fields34–36 and nonlinear wave statistics.10 In the following,
we present a new stochastic model for the prediction of space-time extremes32,37 that accounts
for both second and third-order nonlinearities.10,12
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7.1 A new stochastic space-time (FST) model

Drawing on Fedele’s work,32,37 consider a 3-D non-Gaussian field over an area A for a time
period of D. Clearly, the area cannot be too large since the wave field may not be homo-
geneous. The duration should be short so that spectral changes occurring in time are not
so significant and the sea state can be assumed as stationary. Then, the third-order nonlin-
ear probability P

(nl)
FST(ξ;A,D) that the maximum surface elevation ηmax over the area A and

during the time interval D exceeds the generic threshold ξHs is equal to the probability of
exceeding the threshold ξ0, which accounts for kurtosis effects only, that is

P
(nl)
FST(ξ;A,D) = PST(ξ0;A,D)

(
1 + Λξ20(4ξ

2
0 − 1)

)
. (9)

The Gaussian probability of exceedance

PST(ξ;A,D) = Pr {ηmax > ξHs} = (16M3ξ
2 + 4M2ξ +M1)PR(ξ), (10)

where PR(ξ) is the Rayleigh exceedance probability of Eq. (14).
Here, M1 and M2 are the average number of 1-D and 2-D waves that can occur on the

edges and boundaries of the volume Ω, and M3 is the average number of 3-D waves that
can occur within the volume.32 These all depend on the directional wave spectrum and its
spectral moments mijk and are given in Appendix A.2.

The amplitude ξ accounts for both skewness and kurtosis effects and it relates to ξ0 via
the Tayfun (1980) quadratic equation

ξ = ξ0 + 2µξ20 . (11)

Further, the statistical parameters µ and Λ are defined in section 3.
Given the probability structure of the wave surface defined by Eq. (9), the nonlinear

mean maximum surface or crest height hFST = ξFSTHs attained over the area A during a
time interval D is given, according to Gumbel (1958), by

ξFST = hFST/Hs = ξm + 2µξ2m +
γe (1 + 4µξm)

16ξm − 32M3ξm+4M2

16M3ξ2m+4M2ξm+M1
− ΛG(ξm)

, (12)

where the most probable surface elevation value ξm satisfies PFST(ξm;A,D) = 1, or equiva-
lently from Eq. (9)

(16M3ξ
2
m + 4M2ξm +M1)PR(ξm)

(
1 + Λξ2m(4ξ

2
m − 1)

)
= 1,

and
G(ξm) =

2ξm(8ξ
2
m − 1)

1 + Λξ2m(4ξ
2
m − 1)

.

The nonlinear mean maximum surface or crest height hT expected at a point during the time
interval D follows from Eq. (12) by setting M2 = M3 = 0 and M1 = ND, where ND = D/T̄
denotes the number of wave occurring during D and T̄ is the mean up-crossing period (see
Appendix A.2). The linear mean counterpart follows from Eq. (12) by setting µ = 0 and
Λ = 0.
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The statistical interpretations of the probability P
(nl)
FST(ξ;A,D) and associated space-time

average maximum hFST are as follows. Consider an ensemble of N realizations of a stationary
and homogeneous sea state of duration D, each of which has similar statistical structure to
the El Faro wave field. On this basis, there would be N samples, say (η

(1)
max, ..., η

(N)
max) of the

maximum surface height ηmax observed within the area A during the time interval D. Then,
all the maximum surface heights in the ensemble will exceed the threshold hFST. Clearly,
the maximum surface height can exceed by far such average. Indeed, only in a few number
of realizations N · P (nl)

FST(ξ;A,D) out of the ensemble of N sea states, the maximum surface
height exceeds a threshold ξHs � hFST much larger than the expected value.

To characterize such rare occurrences in third-order nonlinear random seas one can con-
sider the threshold hq = ξqHs exceeded with probability q by the maximum surface height
ηmax over an area A during a sea state of duration D. This satisfies

P
(nl)
FST(ξq;A,D) = q. (13)

The statistical interpretation of hq is as follows: the maximum surface height ηmax ob-
served within the area A during D exceeds the threshold hq only in q N realizations of the
above mentioned ensemble of N sea states.

Note that for large areas, i.e. � >> L0, the FST model as any other similar models
available in literature38–41 will overestimate the maximum surface height over an area and
time interval because they all rely on Gaussianity. This implies that there are no physical
limits on the values that the surface height can attain as the Gaussian model does not
account for the saturation induced by the nonlinear dispersion17 of ocean waves or wave
breaking. Thus, the larger the area A or the time interval D, the greater the number of
waves sampled in space-time, and unrealistically large waves are likely to be sampled in a
Gaussian or weakly nonlinear Gaussian sea.

This point is elaborated further and demonstrated explicitly by way of the results dis-
played in Fig. (10). Here, the theoretical (FST) ratio hFST/hT as a function of the area
width �/L0 is shown for the El Faro, Draupner and Andrea sea states respectively. The FST
ratios for Draupner and Andrea are estimated using the European Reanalysis (ERA)-interim
data.37 For comparisons, the empirical FST ratio from the El Faro HOS simulations together
with the experimental observations at the Acqua Alta tower33 are also shown. Recall that
hFST is the mean maximum surface height expected over the area �2 during a sea state of
duration D = 1 hour and hT is the mean maximum surface height expected at a point.
Clearly, the theoretical FST ratio for El Faro fairly agrees with the HOS simulations for
small areas (� ≤ L0), whereas it yields overestimation over larger areas. We argue that the
saturation of the HOS FST ratio over larger areas is an effect of the nonlinear dispersion
which is effective in limiting the wave growth as a precursor to breaking.17,42

Note that the FST ratios for all the three sea states are nearly the same for � ≤ L0. These
results are very encouraging as they suggest possible statistical similarities and universal laws
for space-time extremes in wind sea states. Moreover, for � ∼ L0 the mean wave surface
maximum expected over the area is 1.35 times larger than that expected at a point in
agreement with Acqua Alta sea observations.33

We point out that the FST model is suitable for offshore applications, where the interest
is in the expected wave maxima over small areas such as those covered by oil platforms, i.e.
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� ≤ L0. Thus, the space-time probability P
(nl)
FST(ξ;A,D) in Eq. (9) can be interpreted as the

probability that the oil rig encounters a wave whose crest height is larger than the threshold
ξHs over the oil rig footprint of area A and during a time span D.
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Figure 10: Space-time extremes: theoretical FST ratios hFST/hT as a function of the area
width �/L0 for El Faro (black), Draupner (red) and Andrea (blue) sea states, where hFST

is the mean maximum surface height expected over the area �2 during a sea state of dura-
tion D = 1 hours and hT is the mean maximum surface height expected at a point. For
comparisons, the empirical FST ratio from the El Faro HOS simulations (dashed line with
circles) together with the experimental observations at the Acqua Alta tower (squares) are
also shown.33 L0 is the mean wavelength.

7.2 The encounter probability of a rogue wave by the El Faro vessel

The data suggest that the El Faro vessel was drifting at an average speed of approxi-
mately 2.5 m/s prior to its sinking. This is considered in our analysis as follows. Define first
the two events:
R= "El Faro encounters a rogue wave along its navigation route";

S= "El Faro sinks".
We know that the event S happened. Thus, one should consider the conditional proba-

bility

Pr{R|S} =
Pr{S

∣∣R} · Pr{R}
Pr{S}

. (14)

pag. 18/37



Here, Pr{S} is the unconditional probability of the event that El Faro sinks. This could be
estimated from worldwide statistics of sunk vessels with characteristics similar to El Faro.
Pr{S

∣∣R} is the conditional probability that El Faro sinks given that the vessel encountered a
rogue wave. This probability can be estimated by Monte Carlo simulations of the nonlinear
interaction of the vessel with the rogue wave field.

Our rogue wave analysis provides an estimate of the unconditional probability Pr{R}
that El Faro encounters a rogue wave along its navigation or drifting route by means of
the encounter probability Pe(h). This is the probability that a vessel along its navigation
path encounters a rogue wave whose crest height exceeds a given threshold h. Clearly, the
probability Pe that El Faro encounters a rogue wave while drifting is higher than that if the
vessel would be anchored at a fixed location like an oil platform.32 Indeed, the encounter
of a rogue wave by a moving vessel is analogous to that of a big wave that a surfer is in
search of. His likelihood to encounter a big wave increases if he moves around a large area
instead of staying still. If the surfer spans a large area the chances to encounter a large wave
increase. This is a space-time effect which is very important for ship navigation and must
be accounted for.32,43–45

In this section, the encounter probability Pe(h) is formulated as follows. Consider a
random wave field whose surface elevation at a given point (x, y) in a fixed frame at time t
is η(x, y, t). Consider a vessel of area A that navigates through the wave field at a constant
speed V along a straight path at an angle β with respect to the x axis. Define also (xe, ye)
as a cartesian frame moving with the ship. Then, the line trajectories of any point (xe, ye)
of the vessel in the fixed frame are given by

x = xe + V cos(β)t, y = xe + V sin(β)t, (15)

where for simplicity we assume that at time t = 0 the center of gravity of the vessel is at the
origin of the fixed frame.

The surface height ηc(t) encountered by the moving vessel, or equivalently the surface
fluctuations measured by a wave probe installed on the ship, is

ηc(xe, ye, t) = η(xe + V cos(β)t, ye + V cos(β)t, t), (16)

If η is a Gaussian wave field homogeneous in space and stationary in time, then so is ηc with
respect to the moving frame (xe, ye, t). The associated space-time covariance is given by

Ψ(X, Y, T ) = ηc(xe, ye, t)ηc(xe +X, ye + Y, t+ T ) =

∫
S(f, θ) cos(kxX+kyY −2πfeT )dfdθ,

(17)
where kx = k cos(θ), ky = k sin(θ) and k is the wavenumber associated with the frequency f
by way of the wave dispersion relation. As a result of the Doppler effect, the encountered,
or apparent frequency is43–45

fe = f − kV cos(θ − β)/(2π), (18)

and S(f, θ) is the directional wave spectrum of the sea state. Note that when the vessel
moves faster than waves coming from a direction θ, the apparent frequency fe < 0 and for
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an observer on the ship waves appear to move away from him/her. In this case, the direction
of those waves should be reversed,43 i.e. θ = θ + π, and fe set as positive.

The spectral moments m
(e)
ijk of the encountered random field readily follow from the

coefficients of the Taylor series expansion of Ψ(X, Y, T ) around (X = 0, Y = 0, T = 0). In
particular,

m
(e)
ijk =

∂i+j+kΨ

∂X i∂Y j∂T k

∣∣∣
X=Y=T=0

=

∫
S(f, θ)ki

xk
j
yf

k
e dfdθ. (19)

The nonlinear space-time statistics can then easily processed by using the encountered
spectral momentsm(e)

ijk as described in section 7.1. Note that for generic navigation routes the
encountered wave field ηc is a non-stationary random process of time. Thus, the associated
spectral moments are time-varying. The space-time statistics can be still computed by first
approximating the navigation route by a polygonal line made of piecewise straight segments
along which the random process ηc is assumed as stationary.

Fig. (11) illustrates the HOS and theoretical predictions for the normalized nonlinear
threshold hn/Hs exceeded with probability 1/n. In particular, a fixed observer at a point
of the ocean has a probability Pe ∼ 10−6 to encounter a wave whose crest height exceeds
the threshold 1.6Hs ≈ 14 m (red lines). On the contrary, the same probability increases
to 3 · 10−4 if the observer moves along the straight path Γ spanned by El Faro drifting
against the dominant wave direction over a time interval of 10 minutes (blue lines). If we
also account for the vessel size (241 x 30 m2), the encounter probability Pe further increases
to 1/400 (black lines).

Finally, we observed that the encounter probability does not scale linearly with time
because of nonlinearities that reduce the natural dispersion of waves. Indeed, assuming that
El Faro drifts over a time interval 5 times longer (50 minutes), the encounter probability
just increases roughly by 3 times, ∼ 1/130.

8 Breaking onset of the simulated rogue waves
Breaking waves remain a centrally-important unresolved phenomenon at the wind-driven sea
surface. Despite the abundant literature and theories on rogue wave formation, the physical
understanding and relation to wave breaking are still open problems. To date it is still unclear
why breaking waves occur much more frequently than large or rogue waves. There remain
fundamental knowledge gaps on the physical mechanisms that lead to breaking. Indeed,
since breaking waves are statistically neither taller nor steeper than the significant waves,46
if rogue waves do break what are the physical mechanisms that lead the wave to break and
inhibit wave growth?

It has been well-known for decades that the dominant open ocean waves evolve in un-
steady groups, with strong local variations in wave height within the groups. Group structure
is a generic feature of such dispersive wave systems, in which different wave scales propagate
with different speeds and exhibit complex behaviour, especially in focal zones where rapid
wave energy convergence leads to very steep waves and conditions especially conducive for
wave breaking. Extreme waves within groups play a central role in wave-driven circula-
tion through Stokes drift and in upper-ocean mixing, through wave breaking and Langmuir
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Figure 11: HOS (squares) and theoretical (solid lines) predictions for the normalized non-
linear threshold hn/Hs exceeded with probability 1/n i) along the straight path Γ spanned
by El Faro while drifting against the dominant wave direction at an estimated approximate
average speed of 2.5 m/s over a time interval of 10 minutes (blue), ii) and also accounting
for the vessel size (241 x 30 m2) (black), and at a point and given time (red). Confidence
bands are also shown (light dashes). The horizontal line denotes the threshold 1.6Hs ≈ 14 m,
which is exceeded with probability 1/400, 3 · 10−4 and 10−6 for the three cases shown.

turbulence. However, knowledge of the space-time structure of these wave groups remains
fragmentary, and there exist many fundamental knowledge gaps, especially in regard to
breaking waves.

Recently an elusive knowledge gap associated with ocean wave groups has been reconciled.
In particular, several studies over the past two decades have suggested that the initial speeds
of breaking crests of dominant waves within groups are typically 20% lower than the expected
speed from linear wave theory (e.g.,47 amongst others). This paradoxical contrast between
long-held theory and observations has been resolved by.17,48,49 Here, the crest slowdown is
identified as a fundamental property of ocean waves as they naturally occur within evolving
groups. Approaching the maximum of the group, each wave crest tilts forward, relaxes to
symmetry at its tallest state, then the crest tilts backwards. As it approaches its maximum
height, the wave crest decelerates significantly, typically by 20%, and either breaking begins
or the height of the non-breaking wave decreases. Banner et al.48 validated these findings for
ocean waves from novel sea tower observations using the state-of-the-art Wave Acquisition
Stereo System (WASS).33 Clearly, the crest slowdown is a generic behaviour that precedes
breaking within unsteady wave groups, and it also adds important new insights into the
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Figure 12: Expected spatial shape of a rogue wave whose crest height is > 1.6Hs ≈ 14 m.

physical mechanisms that underpin rogue wave formation.
In this regard, recent theoretical analysis of the properties of water wave groups indicates

possible physical mechanisms conducive to breaking.17 These studies suggest that nonlinear
wave dispersion may be the leading cause of the observed change in behavior of the wave
dynamics from crest growth to breaking as the wave amplitude progressively increases. This
change is associated with an increase in the growth of kinetic energy with respect to potential
energy. An hypothesis for the breaking of rogue waves is that potential energy growth is
inhibited: nonlinear dispersion limits the crest slowdown of deep-water ocean waves leading
to breaking in a form of superharmonic instability.17,42

Moreover, recent studies show that the breaking onset of the largest crest of unsteady
wave groups initiates before the horizontal particle velocity Ux reaches the crest speed Vc,
with x being the direction of wave propagation. More specifically, it has been observed that
wave breaking initiates when the particle velocity reaches approximately 0.84 times the crest
velocity.50–52 In fact, none of the recurrent groups reach the threshold Bx = Ux/VcD < 0.84,
while all marginal breaking cases exceed the threshold. Here, the physics of breaking onset
can be linked to excess energy fluxes associated with the underlying unsteady wave group
structure, where intra-group energy flux locally exceeds a stability level at the tallest crest,
causing this crest to break. Indeed, it is found that Bx is also the wave energy flux Fx = EUx

at the surface crest normalized by EVc, where E = ρgη + Ke is the total wave energy at
the crest, η the surface height and Ke the associated kinetic energy.52 In this regard, recent
studies53 explored the existence of an energy flux threshold related to the breaking onset.
This suggests looking at the space–time transport of wave energy fluxes near a large crest
of an unsteady wave group and possible local superharmonic instabilities that initiate as
the threshold Bx is exceeded leading to breaking, as those found for steady steep waves.54
Thus, both the particle kinematics on the free surface and the energetics of the wave field
that generates the surface should be considered to establish if the kinematic criterion for
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incipient breaking is valid.
Our HOS simulations indicate that the simulated rogue waves of the El Faro sea state

are nearly close to the breaking onset as the ratio Bx increases and tends to saturate at
about 0.8 as the rogue wave amplitude increases. The saturation is mainly due to the non-
linear dispersion and it is an energy limiter for rogue waves. Note that our HOS simulations
do not account for any dissipation mechanism due to breaking.

9 Conclusions
Our statistical analysis of the 1-hour sea state of Hurricane Joaquin during which the El
Faro vessel sank indicates that a fixed observer at a given point of the ocean encounters a
rogue wave whose crest height from the mean sea level exceeds 14 meters (∼ 1.6Hs) with a
very small probability Pe ∼ 10−6, where Hs is the significant wave height of the sea state
defined as four times the standard deviation of surface wave elevations. This probability
estimate is of the same order as those for the Andrea and Draupner rogue waves, observed
at different oil platforms in the North Sea in 1995 and 2007, respectively and the Killard
rogue wave observed off the coast of Ireland in 2015.2

Data suggest that the El Faro vessel was drifting at an average speed of approximately
2.5 m/s prior to its sinking. Thus, consider an observer that moves along the straight path
Γ spanned by El Faro drifting over a time interval of 10 minutes. Our analysis indicate that
the moving observer has a higher probability to encounter a wave whose crest height exceeds
the threshold 1.6Hs, i.e. Pe ∼ 3 · 10−4. If we also account for the vessel size (241 x 30 m2),
the encounter probability Pe is higher and close to 1/400. We also observe that Pe does not
scale linearly with time because of nonlinearities that reduce the natural dispersion of waves.
For example, Pe just increases roughly by 3 times to ∼ 1/130 if the vessel drifts over a time
interval 5 times longer (50 minutes).

We point out that the encounter probability Pe is unconditional as it is not conditioned
on the event that the sinking of El Faro happened.

The predicted rogue wave for El Faro has similar generating mechanism and character-
istics of the Andrea, Draupner and Killard rogue waves as the constructive interference of
elementary waves enhanced by bound nonlinearities and space-time effects, in agreement
with recent studies.2,32

An analysis of the kinematics of the simulated rogue waves indicate that such waves were
nearly incipient breaking, suggesting that larger rogue events are less likely to occur.17,42

10 Recommendations
The impact of our studies is two-fold. On the one hand, the present statistical analysis
provides the basis for an improved understanding of how rogue waves originate during hurri-
canes. On the other hand, the proposed stochastic model for the encounter probability of a
rogue wave provides the basis in the next generation of wave forecast models for a predictive
capability of wave extremes and early warnings for shipping companies and others to avoid
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dangerous areas at risk of rogue waves. However, further studies and analysis are needed.
In particular, we recommend:

1. to perform HOS simulations of the El Faro sea state over larger areas ≥ 16km2 to
further validate and improve the statistics and prediction of rogue waves presented in
this report.

2. the proposed formulation of the encounter probability Pe is unconditional as it is not
conditioned on the event that the sinking of El Faro happened. Thus, we suggest to
estimate the conditional probability Pr{R

∣∣S} in Eq. (14) that El Faro encountered a
rogue wave given that the sinking of the vessel occurred. This requires Monte Carlo
simulations of the nonlinear interaction of the vessel with a rogue wave field;

3. to perform HOS simulations of the El Faro sea state accounting for both wind input
and wave breaking and study their effects on the statistics and prediction of rogue
waves;

4. further studies on the breaking onset of the simulated rogue waves, which will allow to
quantify the maximal crest amplitudes attainable during intense hurricane-generated
sea states and improvements of probabilistic models, which to date do not account for
nonlinear wave dispersion and breaking.

5. the theoretical predictions of space-time extremes based on the proposed Gaussian-
based FST model fairly agree with the HOS simulations for small areas with width
� ≤ L0, where L0 is the mean wavelength. On the contrary, the FST model overesti-
mates the maximum surface height over larger areas (� > L0) and so any other similar
models.38–41 This is because in a Gaussian or weakly nonlinear Gaussian sea unrealis-
tically large waves are likely to be sampled over large areas or long time intervals. We
argue that in realistic oceanic seas nonlinear wave dispersion is effective in limiting the
wave growth as a precursor to breaking.17 Studies by the first author are in progress
to improve the proposed probabilistic model for the encounter probability of a rogue
wave accounting for both nonlinear wave dispersion and breaking.

Appendix A Methods

A.1 Wave parameters

The significant wave height Hs is defined as the mean value H1/3 of the highest one-third of
wave heights. It can be estimated either from a zero-crossing analysis or more easily from
the wave omnidirectional spectrum So(f) =

∫ 2π

0
S(f, θ)dθ as Hs ≈ 4σ, where σ =

√
m0 is the

standard deviation of surface elevations, mj =
∫
So(f)f

jdf are spectral moments. Further,
S(f, θ) is the directional wave spectrum with θ as the direction of waves at frequency f , and
the cyclic frequency is ω = 2πf .

The dominant wave period Tp = 2π/ωp refers to the cyclic frequency ωp of the spec-
tral peak. The mean zero-crossing wave period T0 is equal to 2π/ω0, with ω0 =

√
m2/m0.
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The associated wavelength L0 = 2π/k0 follows from the linear dispersion relation ω0 =√
gk0 tanh(k0d), with d the water depth. The mean spectral frequency is defined as ωm =

m1/m0
9 and the associated mean period Tm is equal to 2π/ωm. A characteristic wave steep-

ness is defined as µm = kmσ, where km is the wavenumber corresponding to the mean spec-
tral frequency ωm.9 The following quantitites are also introduced: qm = kmd,Qm = tanh qm,
the phase velocity cm = ωm/km, the group velocity cg = cm [1 + 2qm/sinh(2qm)] /2. The
spectral bandwidth ν = (m0m2/m

2
1 − 1)1/2 gives a measure of the frequency spreading.

The angular spreading σθ =
√∫ 2π

0
D(θ)(θ − θm)2dθ, where D(θ) =

∫∞
0

S(ω, θ)dω/σ2 and

θm =
∫ 2π

0
D(θ)θdθ is the mean direction. Note that ω0 = ωm

√
1 + ν2.

The parameter Λ = λ40 + 2λ22 + λ04 is a measure of third-order nonlinearities and is a
function of the fourth order cumulants λnm of the wave surface η and its Hilbert transform
η̂.10 In particular, λ22 = η2η̂2/σ4 − 1 and λ04 = η̂4/σ4 − 3. In practice, Λ is usually
approximated solely in terms of the excess kurtosis as Λappr = 8λ40/3 by assuming the
relations between cumulants55 λ22 = λ40/3 and λ04 = λ40. These, to date, have been proven
to hold for linear and second-order narrowband waves only.11 For third-order nonlinear seas,
our numerical studies indicate that Λ ≈ Λappr within a 3% relative error in agreement with
observations.56,57 The Tayfun wave steepness µ = λ3/3 relates to the wave skewness λ3 of
surface elevations.

A.2 Space-Time Statistical Parameters

For space-time extremes, the coefficients in Eq. (10) are given by32,58

M3 = 2π
D

T

�x

Lx

�y

Ly

αxyt,

M2 =
√
2π

(
D

T

�x

Lx

√
1− α2

xt +
D

T

�y

Ly

√
1− α2

yt +
�x

Lx

�y

Ly

√
1− α2

xy

)
,

M1 = ND +Nx +Ny,

where
ND =

D

T
, Nx =

�x

Lx

, Ny =
�y

Ly

are the average number of waves occurring during the time interval D and along the x and
y sides of length �x and �y respectively. They all depend on the mean period T , mean
wavelengths Lx and Ly in x and y directions:

T = 2π

√
m000

m002

, Lx = 2π

√
m000

m200

, Ly = 2π

√
m000

m020

and
αxyt =

√
1− α2

xt − α2
yt − α2

xy + 2αxtαytαxy.

Here,

mijk =

∫∫
ki
xk

j
yf

kS(f, θ)dfdθ
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are the moments of the directional spectrum S(f, θ) and

αxt =
m101√

m200m002

, αyt =
m011√

m020m002

, αxy =
m110√

m200m020

.

A.3 The Higher Order Spectral (HOS) numerical method

The Mixed Eulerian Lagrangian (MEL) and the High-Order Spectral (HOS) methods are
two reliable numerical schemes for solving the the time evolution of the wave motion of an
inviscid and irrotational fluid with a surface.

MEL splits the kinematic problem (Eulerian step), which solves the spatial distribution of
the kinematic field, from the dynamic problem (Lagrangian step), which solves the temporal
evolution of the kinematic quantities at the free-surface.59 In particular, the Eulerian step is
a linear Cauchy problem for the wave potential, which is usually reformulated as a boundary
integral equation. The associated solution is determined at the surface by the Boundary
Element Method. The Lagrangian step instead describes the evolution of the free surface
through Lagrangian markers that can trace wave overturning of crests over troughs.

Conversely the HOS, developed independently by Dommermuth & Yue23 andWest et al.24
is based on a perturbation expansion of the wave potential function up to a prescribed order
M of nonlinearities in terms of a small parameter ε, a characteristic wave steepness. The
HOS method solves for nonlinear wave-wave interactions (up to an arbitrary specified order
M) of a large number N = O(1000) of free waves (i.e. Fourier modes) on the undisturbed
free-surface plane. A pseudo-spectral technique is used to solve for the associated Boundary
Value Problem (BVP). This ensures a computational cost which scales linearly with N and
M , guaranteeing high computational efficiency for large spatial domains.

Hereafter, we will briefly describe the theoretical formulation of the HOS solver. Let
�r ≡ (x, y, z) be a Cartesian coordinate system with �x ≡ (x, y) coincident with the mean
water level and the z axis upwards. The ideal flow assumption enables the definition of a
velocity potential function Φ (�x, z, t), whose gradient determines the fluid velocity on the
whole field V . To impose mass conservation, Φ satisfies the Laplace equation within the
fluid domain

∇2Φ = 0 in V

and boundary conditions at the free surface, lateral boundaries and sea bottom.
Then, a velocity potential can defined on the free surface z = η(x, t) as,?

Φs (�x, t) ≡ Φ (�x, η (�x, t) , t) (20)

and it is assumed as continuous and single-valued. The free-surface boundary conditions are
then written in terms of the potential Φs as:

ηt + �∇�xη · �∇�xΦ
s −

(
1 + �∇�xη · �∇�xη

)
Φz (�x, η, t) = 0 (21)

Φs
t + gη +

1

2
�∇�xΦ

s · �∇�xΦ
s − 1

2

(
1 + �∇�xη · �∇�xη

)
Φ2

z (�x, η, t) = −PF

ρ
(22)

pag. 26/37



From the above equations, the solution of the free-surface wave field at each time step
requires solving for a Dirichlet BVP of the Lapace equation for the potential Φ on the
instantaneous free-surface wave elevation η(�x, t), in order to get the vertical velocity Φz.

A peculiar feature of the HOS formulation is the efficient strategy proposed for the
solution of the Dirichlet BVP. This is based on a direct use of perturbation expansion in
the small parameter ε = ka, the wave steepness, with k the wave number and a the wave
amplitude. At a given time t, the velocity potential is written as a perturbation series in ε
up to a prescribed order M

Φ (�x, z, t) =
M∑

m=1

Φ(m) (�x, z, t) (23)

where Φ(m) = O (εm) are the perturbation potentials. A further expansion of each Φ(m) in a
Taylor series around the mean free surface z = 0 yields

Φs (�x, t) = Φ (�x, η, t) =
M∑

m=1

M−m∑
­=0

η­

�!

∂­Φ(m) (�x, 0, t)

∂z­
(24)

Expanding (24) and regrouping terms at every order yield a sequence of Dirichlet bound-
ary conditions for each unknown Φ(m) on z = 0:

Φ(m) (�x, 0, t) = f (m) , m = 1, 2, . . . ,M (25)

where 


f (1) = Φs

f (m) =
m−1∑
­=1

η�

­!
∂�Φ(m−�)

∂z�

∣∣∣
z=0

, m = 2, 3, . . . ,M

Eq. (25) together with the Laplace equation satisfied by each potential Φ(m) and associ-
ated boundary conditions define, at each given time t, a sequence of boundary value problems
for Φ(m) m = 1, 2, ...,M , in the domain z <= 0.

These are solved efficiently by way of a pseudo-spectral method. In particular, each Φ(m)

is represented through an eigenfunction expansion of free modes Ψn (�x, z):

Φ(m) (�x, z, t) =
∞∑
n=1

Φ(m)
n (t)Ψn (�x, z) , z ≤ 0

where Φ
(m)
n (t) is the amplitude of the nth mode of the mth perturbation potential. The

mode functions are chosen to implicitly satisfy the Laplace equation along with its boundary
conditions.

Dirichlet free-surface conditions enable the determination of the mode amplitudes in a
recursive way through the use of the Fast Fourier Transform (FFT) algorithm. For numerical
purpose, a finite number N of modes is considered, with N sufficiently large in order to
capture the physical spatial scales of nonlinear wave-wave interactions.

Once the modal amplitudes Φ(m)
n (t) have been determined at each time step, the vertical

velocity on the free surface is computed as:
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Φz (�x, η, t) =
M∑

m=1

M−m∑
­=0

η­

�!

N∑
n=1

Φ(m)
n (t)

∂­+1Ψn (�x, z)

∂z­+1

∣∣∣∣
z=0

providing the final form of the free surface boundary conditions:

ηt + �∇�xη · �∇�xΦ
s −

(
1 + �∇�xη · �∇�xη

)[
M∑

m=1

M−m∑
­=0

η­

�!

N∑
n=1

Φ(m)
n (t)

∂­+1Ψn (�x, z)

∂z­+1

∣∣∣∣
z=0

]
= 0 (26)

Φs
t+gη+

1

2
�∇�xΦ

s·�∇�xΦ
s−1

2

(
1 + �∇�xη · �∇�xη

)[
M∑

m=1

M−m∑
­=0

η­

�!

N∑
n=1

Φ(m)
n (t)

∂­+1Ψn (�x, z)

∂z­+1

∣∣∣∣
z=0

]2

= −PF

ρ

(27)
which give the time evolution for Φs and η.
A suitable choice of the eigenfunctions enables the study of the wave propagation in

different sea bottom conditions. The sea state is on deep waters, thus

Ψn(�x, z) = e(|
�kn|z+i�kn·�x)

whit �kn = (kxn, kyn) the wave number vector. The associated discretized components in the
wavenumber space are defined as:




kxn = 2πnx

Lx
nx = 0,±1, ...,±(Nx − 1)

kyn = 2πny

Ly
ny = 0,±1, ...,±(Ny − 1)

(28)

where Nx, Ny are the maximum numbers of Fourier modes along x and y, respectively, while
Lx and Ly are the respective lengths of the physical domain.

Two different HOS formulations can be found in literature,60 depending on the treatment
of the last term in the LHS of the free-surface BC, i.e. eqs. (21)-(22), or equivalently,
eqs. (26)-(27). By choosing for sake of simplicity the kinematic equation, 23 chooses the
approximation (

1 + �∇�xη · �∇�xη
)
Φz (�x, η, t) ≈ (Φz)M + |�∇�xη|2(Φz)M

with (Φz)M =
∑M

m=1 Φ
(m)
z , while24 uses

(
1 + �∇�xη · �∇�xη

)
Φz (�x, η, t) ≈ (Φz)M + |�∇�xη|2(Φz)M−2

A similar approximation can be used for the dynamic free-surface boundary conditions.
In our work, we will see the second HOS formulation,24 which accounts for all the non-

linear terms at a given order of the perturbation expansion. Further, the HOS method relies
on a pseudo-spectral solver and nonlinear terms are evaluated in physical space. This yield
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unavoidable aliasing errors, which can be removed by a proper choice of the number of points
Px and Qy in the physical space,24 i.e.

{
Px ≥ (M + 1)Nx

Qy ≥ (M + 1)Ny
(29)

Following West et al.,24 time evolution of the free-surface wave field is done in the wavenum-
ber space by way of a time integration of the single Fourier modes. To do so, a fourth-order
Runge-Kutta method is used with a time step satisfying the CFL conditions

dt <
dx

min(Cx, Cy)

with Cx and Cy indicating the significant phase speed along x and y, respectively, for the
physical problem of interest.

The Potential Φ and wave surface elevation η are required at t = 0 as initial conditions
for the simulations. Here, in order to simulate the sea state occurring around the time and
region of the El Faro sinking, we used the hindcast directional spectrum estimated by WAVE-
WATCH III. In the wavenumber domain, the Fourier transform η̂(k) of η is constructed as
S(k) exp(iβ), where β is normally distributed over [0, 2π]. Similarly, the Fourier transform
Φ̂(k) of Φ is obtained via linear wave theory.

First, a sensitivity analysis on the discretization and the physical quantities influencing
the statistics have been performed. Figure A13 shows the comparison of the omnidirectional
wave spectrum So(ω) estimated from two simulations of the same third-order HOS algorithm
on two different grids and for the same time of analysis (30 min). They have been obtained by
halving both domain lengths Lx and Ly and keeping constant the number of Fourier modes
along each direction. From Eqs. (28-29), this choice implies halving the spatial discretization
of the simulated physical domain. The analysis confirms the substantial convergence of the
HOS algorithm in terms of wave spectra, and the same trend is also observed for other
statistical quantities, such as skewness and kurtosis.

We have also carried out a further analysis to test the performance of the HOS solver
when the perturbation expansion for the wave potential Φ is retained up to third and fourth
order, i.e. M = 3 and M = 4 respectively. In this regard, we ran distinct HOS simulations
of the El Faro sea state for the two orders of the solver on the same grid and for the same
temporal duration (30 min). We found that the associated omnidirectional wave spectra
are practically indistinguishable as clearly seen in Figure A14. Thus, the wave dynamics is
mostly governed by nonlinear interactions up to the third order, and second order bound
nonlinearities are dominant in agreement with the recent analysis of rogue waves.2 Thus,
the HOS simulations of the El Faro sea state are carried out using a third-order scheme with
M = 3.

We have also carried out simulations of the El Faro sea state using a third-order HOS
scheme for two different sizes of the physical domain and sea state duration of 30 min. The
grid spacing or spatial discretization is kept the same for both cases requiring doubling the
number of Fourier modes for the larger domain in accordance with Eqs. (29) and (28). The
predicted omnidirectional wave spectra So(ω) for the two simulated cases are very similar are
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Figure A13: HOS simulations of the El Faro sea state: predicted omnidirectional wave
spectra So(ω) as a function of the cyclic frequency ω using a third-order HOS scheme for
two different spatial grids of a large spatial domain of size Lx = Ly = 2000 m (red curve)
and an halved domain of size Lx = Ly = 1000 m (blue curve). Sea state duration 30 min
and number of Fourier modes Nx = Ny = 512 for both cases.

clearly shown in Figure A15 as a further confirmation of the robust convergence properties
of the HOS solver.

Finally, we have carried out HOS simulations of the El Faro sea state for different dura-
tions of 30 and 60 minutes respectively. The results indicate both the spectral and statistical
properties of the sea state are practically the same for the two runs. Note that the HOS
solver conserves mass and energy up to machine precision, even for a long simulation time
of 60 min as illustrated in Figure A16.
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Figure A14: HOS simulations of the El Faro sea state: predicted omnidirectional wave
spectra So(ω) as a function of the cyclic frequency ω using a third-order (continuous line) and
a fourth-order (dashed line) HOS schemes (sea state duration 30 min). Same discretization
is used for both cases, i.e. Lx = Ly = 2000 m and Nx = Ny = 512.
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Figure A15: HOS simulations of the El Faro sea state: predicted omnidirectional wave
spectra So(ω) as a function of the cyclic frequency ω using a third-order HOS scheme for two
different sizes of the physical domain and sea state duration of 30 min Same discretization
is used for both cases, i.e. Lx = Ly = 2000 m, Nx = Ny = 512 (red curve), and Lx = Ly =
4000 m, Nx = Ny = 1024 (black curve).
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Figure A16: HOS simulations of the El Faro sea state: time evolution of the excess of mass
(top), kinetic (center) and potential (bottom) energy. Lx = Ly = 2000 m, Nx = Ny = 512.
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